Recent progress toward reducing the uncertainty in tropical low cloud feedback and climate sensitivity: a review View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-06-23

AUTHORS

Youichi Kamae, Tomoo Ogura, Hideo Shiogama, Masahiro Watanabe

ABSTRACT

Equilibrium climate sensitivity (ECS) to doubling of atmospheric CO2 concentration is a key index for understanding the Earth’s climate history and prediction of future climate changes. Tropical low cloud feedback, the predominant factor for uncertainty in modeled ECS, diverges both in sign and magnitude among climate models. Despite its importance, the uncertainty in ECS and low cloud feedback remains a challenge. Recently, researches based on observations and climate models have demonstrated a possibility that the tropical low cloud feedback in a perturbed climate can be constrained by the observed relationship between cloud, sea surface temperature and atmospheric dynamic and thermodynamic structures. The observational constraint on the tropical low cloud feedback suggests a higher ECS range than raw range obtained from climate model simulations. In addition, newly devised modeling frameworks that address both spreads among different model structures and parameter settings have contributed to evaluate possible ranges of the uncertainty in ECS and low cloud feedback. Further observational and modeling approaches and their combinations may help to advance toward dispelling the clouds of uncertainty. More... »

PAGES

17

References to SciGraph publications

  • 2012-12-18. Quantitative evaluation of the seasonal variations in climate model cloud regimes in CLIMATE DYNAMICS
  • 2015-03-07. Rapid Adjustments of Cloud and Hydrological Cycle to Increasing CO2: a Review in CURRENT CLIMATE CHANGE REPORTS
  • 2014-12-19. The strength of the tropical inversion and its response to climate change in 18 CMIP5 models in CLIMATE DYNAMICS
  • 2012-06-13. Climate models at their limit? in NATURE
  • 2014-01-01. Spread in model climate sensitivity traced to atmospheric convective mixing in NATURE
  • 2012-10-12. Tropospheric adjustment to increasing CO2: its timescale and the role of land–sea contrast in CLIMATE DYNAMICS
  • 2012-04-12. Origins of differences in climate sensitivity, forcing and feedback in climate models in CLIMATE DYNAMICS
  • 2015-08-16. Recent Progress in Constraining Climate Sensitivity With Model Ensembles in CURRENT CLIMATE CHANGE REPORTS
  • 2015-03-31. Clouds, circulation and climate sensitivity in NATURE GEOSCIENCE
  • 2013-09-29. On the spread of changes in marine low cloud cover in climate model simulations of the 21st century in CLIMATE DYNAMICS
  • 2015-04-20. Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models in NATURE GEOSCIENCE
  • 2016-07-18. A review of progress towards understanding the transient global mean surface temperature response to radiative perturbation in PROGRESS IN EARTH AND PLANETARY SCIENCE
  • 2014-05-04. Using aquaplanets to understand the robust responses of comprehensive climate models to forcing in CLIMATE DYNAMICS
  • 2015-04-23. Connections Between Clouds, Radiation, and Midlatitude Dynamics: a Review in CURRENT CLIMATE CHANGE REPORTS
  • 2008-10-26. The equilibrium sensitivity of the Earth's temperature to radiation changes in NATURE GEOSCIENCE
  • 2013-10-08. Importance of instantaneous radiative forcing for rapid tropospheric adjustment in CLIMATE DYNAMICS
  • 2014-10-14. The Non-hydrostatic Icosahedral Atmospheric Model: description and development in PROGRESS IN EARTH AND PLANETARY SCIENCE
  • 2004-08. Quantification of modelling uncertainties in a large ensemble of climate change simulations in NATURE
  • 2010-05-07. Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles in CLIMATE DYNAMICS
  • 2005-01. Uncertainty in predictions of the climate response to rising levels of greenhouse gases in NATURE
  • 2015-10-26. Emergent Constraints for Cloud Feedbacks in CURRENT CLIMATE CHANGE REPORTS
  • 2011-11-17. Cloud Adjustment and its Role in CO2 Radiative Forcing and Climate Sensitivity: A Review in SURVEYS IN GEOPHYSICS
  • 2012-07-22. Perturbed physics ensemble using the MIROC5 coupled atmosphere–ocean GCM without flux corrections: experimental design and results in CLIMATE DYNAMICS
  • 2012-02-29. Climate sensitivity and cloud feedback processes imposed by two different external forcings in an aquaplanet GCM in THEORETICAL AND APPLIED CLIMATOLOGY
  • 2012-01-15. Interpretation of the positive low-cloud feedback predicted by a climate model under global warming in CLIMATE DYNAMICS
  • 2001-09. Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models in CLIMATE DYNAMICS
  • 2006-02-04. On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles in CLIMATE DYNAMICS
  • 2009-09-17. Climate feedbacks determined using radiative kernels in a multi-thousand member ensemble of AOGCMs in CLIMATE DYNAMICS
  • 2011-09-17. Fast and slow timescales in the tropical low-cloud response to increasing CO2 in two climate models in CLIMATE DYNAMICS
  • 2013-03-23. On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates in CLIMATE DYNAMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40562-016-0053-4

    DOI

    http://dx.doi.org/10.1186/s40562-016-0053-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039760148


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, MC 206, La Jolla, 92093-0206, San Diego, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.217200.6", 
              "name": [
                "Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, 305-8506, Tsukuba, Ibaraki, Japan", 
                "Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, MC 206, La Jolla, 92093-0206, San Diego, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kamae", 
            "givenName": "Youichi", 
            "id": "sg:person.014264221555.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264221555.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Global Environmental Research, National Institute for Environmental Studies, 16-2, Onogawa, 305-8506, Tsukuba, Ibaraki, Japan", 
              "id": "http://www.grid.ac/institutes/grid.140139.e", 
              "name": [
                "Center for Global Environmental Research, National Institute for Environmental Studies, 16-2, Onogawa, 305-8506, Tsukuba, Ibaraki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ogura", 
            "givenName": "Tomoo", 
            "id": "sg:person.010065645611.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010065645611.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Global Environmental Research, National Institute for Environmental Studies, 16-2, Onogawa, 305-8506, Tsukuba, Ibaraki, Japan", 
              "id": "http://www.grid.ac/institutes/grid.140139.e", 
              "name": [
                "Center for Global Environmental Research, National Institute for Environmental Studies, 16-2, Onogawa, 305-8506, Tsukuba, Ibaraki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shiogama", 
            "givenName": "Hideo", 
            "id": "sg:person.011356656533.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356656533.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, 277-8568, Kashiwa, Chiba, Japan", 
              "id": "http://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, 277-8568, Kashiwa, Chiba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Watanabe", 
            "givenName": "Masahiro", 
            "id": "sg:person.016316106377.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016316106377.80"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10712-011-9152-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024832656", 
              "https://doi.org/10.1007/s10712-011-9152-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004923988", 
              "https://doi.org/10.1038/ngeo337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40641-015-0021-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008145862", 
              "https://doi.org/10.1007/s40641-015-0021-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030001284", 
              "https://doi.org/10.1038/nature03301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02771", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036499414", 
              "https://doi.org/10.1038/nature02771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00704-012-0607-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021643173", 
              "https://doi.org/10.1007/s00704-012-0607-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-009-0661-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034546573", 
              "https://doi.org/10.1007/s00382-009-0661-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40641-015-0010-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028145777", 
              "https://doi.org/10.1007/s40641-015-0010-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-013-1945-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013560667", 
              "https://doi.org/10.1007/s00382-013-1945-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40645-016-0096-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025122489", 
              "https://doi.org/10.1186/s40645-016-0096-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-012-1555-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018693226", 
              "https://doi.org/10.1007/s00382-012-1555-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-012-1609-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014312552", 
              "https://doi.org/10.1007/s00382-012-1609-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40641-015-0007-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012023852", 
              "https://doi.org/10.1007/s40641-015-0007-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-011-1279-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031005835", 
              "https://doi.org/10.1007/s00382-011-1279-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40641-015-0027-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025182217", 
              "https://doi.org/10.1007/s40641-015-0027-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40645-014-0018-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016272440", 
              "https://doi.org/10.1186/s40645-014-0018-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-013-1955-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005906269", 
              "https://doi.org/10.1007/s00382-013-1955-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0808-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008516124", 
              "https://doi.org/10.1007/s00382-010-0808-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016927016", 
              "https://doi.org/10.1038/nature12829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/486183a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027625855", 
              "https://doi.org/10.1038/486183a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-006-0111-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021690503", 
              "https://doi.org/10.1007/s00382-006-0111-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015288292", 
              "https://doi.org/10.1038/ngeo2414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-013-1725-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028387493", 
              "https://doi.org/10.1007/s00382-013-1725-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-014-2138-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009581813", 
              "https://doi.org/10.1007/s00382-014-2138-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820100157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036889233", 
              "https://doi.org/10.1007/s003820100157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-012-1441-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015787016", 
              "https://doi.org/10.1007/s00382-012-1441-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-014-2441-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047364571", 
              "https://doi.org/10.1007/s00382-014-2441-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031423891", 
              "https://doi.org/10.1038/ngeo2398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-011-1178-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014145652", 
              "https://doi.org/10.1007/s00382-011-1178-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-012-1336-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030808219", 
              "https://doi.org/10.1007/s00382-012-1336-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-06-23", 
        "datePublishedReg": "2016-06-23", 
        "description": "Equilibrium climate sensitivity (ECS) to doubling of atmospheric CO2 concentration is a key index for understanding the Earth\u2019s climate history and prediction of future climate changes. Tropical low cloud feedback, the predominant factor for uncertainty in modeled ECS, diverges both in sign and magnitude among climate models. Despite its importance, the uncertainty in ECS and low cloud feedback remains a challenge. Recently, researches based on observations and climate models have demonstrated a possibility that the tropical low cloud feedback in a perturbed climate can be constrained by the observed relationship between cloud, sea surface temperature and atmospheric dynamic and thermodynamic structures. The observational constraint on the tropical low cloud feedback suggests a higher ECS range than raw range obtained from climate model simulations. In addition, newly devised modeling frameworks that address both spreads among different model structures and parameter settings have contributed to evaluate possible ranges of the uncertainty in ECS and low cloud feedback. Further observational and modeling approaches and their combinations may help to advance toward dispelling the clouds of uncertainty.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s40562-016-0053-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136511", 
            "issn": [
              "2196-4092", 
              "2196-4092"
            ], 
            "name": "Geoscience Letters", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "keywords": [
          "tropical low-cloud feedback", 
          "low-cloud feedback", 
          "equilibrium climate sensitivity", 
          "cloud feedback", 
          "climate history", 
          "climate models", 
          "climate sensitivity", 
          "Earth's climate history", 
          "climate model simulations", 
          "sea surface temperature", 
          "future climate change", 
          "atmospheric CO2 concentration", 
          "ECS range", 
          "perturbed climate", 
          "thermodynamic structure", 
          "model simulations", 
          "surface temperature", 
          "climate change", 
          "CO2 concentration", 
          "different model structures", 
          "observational constraints", 
          "observed relationship", 
          "cloud of uncertainty", 
          "possible range", 
          "modeling framework", 
          "cloud", 
          "uncertainty", 
          "model structure", 
          "climate", 
          "predominant factor", 
          "key index", 
          "feedback", 
          "magnitude", 
          "range", 
          "doubling", 
          "model", 
          "temperature", 
          "history", 
          "constraints", 
          "changes", 
          "concentration", 
          "prediction", 
          "simulations", 
          "setting", 
          "structure", 
          "importance", 
          "relationship", 
          "index", 
          "diverges", 
          "sensitivity", 
          "combination", 
          "parameter settings", 
          "recent progress", 
          "framework", 
          "factors", 
          "possibility", 
          "addition", 
          "progress", 
          "research", 
          "approach", 
          "signs", 
          "challenges", 
          "review", 
          "address", 
          "observations"
        ], 
        "name": "Recent progress toward reducing the uncertainty in tropical low cloud feedback and climate sensitivity: a review", 
        "pagination": "17", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039760148"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40562-016-0053-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40562-016-0053-4", 
          "https://app.dimensions.ai/details/publication/pub.1039760148"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_682.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s40562-016-0053-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40562-016-0053-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40562-016-0053-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40562-016-0053-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40562-016-0053-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    274 TRIPLES      22 PREDICATES      121 URIs      82 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40562-016-0053-4 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 anzsrc-for:0406
    4 schema:author N98a39aa85a12499d9720f1d6300e24b6
    5 schema:citation sg:pub.10.1007/s00382-006-0111-2
    6 sg:pub.10.1007/s00382-009-0661-1
    7 sg:pub.10.1007/s00382-010-0808-0
    8 sg:pub.10.1007/s00382-011-1178-y
    9 sg:pub.10.1007/s00382-011-1279-7
    10 sg:pub.10.1007/s00382-012-1336-x
    11 sg:pub.10.1007/s00382-012-1441-x
    12 sg:pub.10.1007/s00382-012-1555-1
    13 sg:pub.10.1007/s00382-012-1609-4
    14 sg:pub.10.1007/s00382-013-1725-9
    15 sg:pub.10.1007/s00382-013-1945-z
    16 sg:pub.10.1007/s00382-013-1955-x
    17 sg:pub.10.1007/s00382-014-2138-0
    18 sg:pub.10.1007/s00382-014-2441-9
    19 sg:pub.10.1007/s003820100157
    20 sg:pub.10.1007/s00704-012-0607-0
    21 sg:pub.10.1007/s10712-011-9152-0
    22 sg:pub.10.1007/s40641-015-0007-5
    23 sg:pub.10.1007/s40641-015-0010-x
    24 sg:pub.10.1007/s40641-015-0021-7
    25 sg:pub.10.1007/s40641-015-0027-1
    26 sg:pub.10.1038/486183a
    27 sg:pub.10.1038/nature02771
    28 sg:pub.10.1038/nature03301
    29 sg:pub.10.1038/nature12829
    30 sg:pub.10.1038/ngeo2398
    31 sg:pub.10.1038/ngeo2414
    32 sg:pub.10.1038/ngeo337
    33 sg:pub.10.1186/s40645-014-0018-1
    34 sg:pub.10.1186/s40645-016-0096-3
    35 schema:datePublished 2016-06-23
    36 schema:datePublishedReg 2016-06-23
    37 schema:description Equilibrium climate sensitivity (ECS) to doubling of atmospheric CO2 concentration is a key index for understanding the Earth’s climate history and prediction of future climate changes. Tropical low cloud feedback, the predominant factor for uncertainty in modeled ECS, diverges both in sign and magnitude among climate models. Despite its importance, the uncertainty in ECS and low cloud feedback remains a challenge. Recently, researches based on observations and climate models have demonstrated a possibility that the tropical low cloud feedback in a perturbed climate can be constrained by the observed relationship between cloud, sea surface temperature and atmospheric dynamic and thermodynamic structures. The observational constraint on the tropical low cloud feedback suggests a higher ECS range than raw range obtained from climate model simulations. In addition, newly devised modeling frameworks that address both spreads among different model structures and parameter settings have contributed to evaluate possible ranges of the uncertainty in ECS and low cloud feedback. Further observational and modeling approaches and their combinations may help to advance toward dispelling the clouds of uncertainty.
    38 schema:genre article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree true
    41 schema:isPartOf N4475b64e8a2843fe9ab14c8b7692d646
    42 N47c9abe1460445a59406ab4803d45e7e
    43 sg:journal.1136511
    44 schema:keywords CO2 concentration
    45 ECS range
    46 Earth's climate history
    47 addition
    48 address
    49 approach
    50 atmospheric CO2 concentration
    51 challenges
    52 changes
    53 climate
    54 climate change
    55 climate history
    56 climate model simulations
    57 climate models
    58 climate sensitivity
    59 cloud
    60 cloud feedback
    61 cloud of uncertainty
    62 combination
    63 concentration
    64 constraints
    65 different model structures
    66 diverges
    67 doubling
    68 equilibrium climate sensitivity
    69 factors
    70 feedback
    71 framework
    72 future climate change
    73 history
    74 importance
    75 index
    76 key index
    77 low-cloud feedback
    78 magnitude
    79 model
    80 model simulations
    81 model structure
    82 modeling framework
    83 observational constraints
    84 observations
    85 observed relationship
    86 parameter settings
    87 perturbed climate
    88 possibility
    89 possible range
    90 prediction
    91 predominant factor
    92 progress
    93 range
    94 recent progress
    95 relationship
    96 research
    97 review
    98 sea surface temperature
    99 sensitivity
    100 setting
    101 signs
    102 simulations
    103 structure
    104 surface temperature
    105 temperature
    106 thermodynamic structure
    107 tropical low-cloud feedback
    108 uncertainty
    109 schema:name Recent progress toward reducing the uncertainty in tropical low cloud feedback and climate sensitivity: a review
    110 schema:pagination 17
    111 schema:productId N9deec3d939a7420d9d0ffa75491b73a5
    112 Nc37f398da4cf4e869b0ff65898285d27
    113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039760148
    114 https://doi.org/10.1186/s40562-016-0053-4
    115 schema:sdDatePublished 2022-05-20T07:31
    116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    117 schema:sdPublisher N0a57be775c52491d91516f39a4817828
    118 schema:url https://doi.org/10.1186/s40562-016-0053-4
    119 sgo:license sg:explorer/license/
    120 sgo:sdDataset articles
    121 rdf:type schema:ScholarlyArticle
    122 N0a57be775c52491d91516f39a4817828 schema:name Springer Nature - SN SciGraph project
    123 rdf:type schema:Organization
    124 N4475b64e8a2843fe9ab14c8b7692d646 schema:volumeNumber 3
    125 rdf:type schema:PublicationVolume
    126 N47c9abe1460445a59406ab4803d45e7e schema:issueNumber 1
    127 rdf:type schema:PublicationIssue
    128 N6c960fed1036432aaa2567ff8c5a8b38 rdf:first sg:person.011356656533.12
    129 rdf:rest N734b9136af9545dd8640d0c82ffb9a86
    130 N734b9136af9545dd8640d0c82ffb9a86 rdf:first sg:person.016316106377.80
    131 rdf:rest rdf:nil
    132 N98a39aa85a12499d9720f1d6300e24b6 rdf:first sg:person.014264221555.90
    133 rdf:rest N99a9d0187a594ca4b7ec7f4f6fb324c6
    134 N99a9d0187a594ca4b7ec7f4f6fb324c6 rdf:first sg:person.010065645611.09
    135 rdf:rest N6c960fed1036432aaa2567ff8c5a8b38
    136 N9deec3d939a7420d9d0ffa75491b73a5 schema:name dimensions_id
    137 schema:value pub.1039760148
    138 rdf:type schema:PropertyValue
    139 Nc37f398da4cf4e869b0ff65898285d27 schema:name doi
    140 schema:value 10.1186/s40562-016-0053-4
    141 rdf:type schema:PropertyValue
    142 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Earth Sciences
    144 rdf:type schema:DefinedTerm
    145 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Atmospheric Sciences
    147 rdf:type schema:DefinedTerm
    148 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Physical Geography and Environmental Geoscience
    150 rdf:type schema:DefinedTerm
    151 sg:journal.1136511 schema:issn 2196-4092
    152 schema:name Geoscience Letters
    153 schema:publisher Springer Nature
    154 rdf:type schema:Periodical
    155 sg:person.010065645611.09 schema:affiliation grid-institutes:grid.140139.e
    156 schema:familyName Ogura
    157 schema:givenName Tomoo
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010065645611.09
    159 rdf:type schema:Person
    160 sg:person.011356656533.12 schema:affiliation grid-institutes:grid.140139.e
    161 schema:familyName Shiogama
    162 schema:givenName Hideo
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356656533.12
    164 rdf:type schema:Person
    165 sg:person.014264221555.90 schema:affiliation grid-institutes:grid.217200.6
    166 schema:familyName Kamae
    167 schema:givenName Youichi
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264221555.90
    169 rdf:type schema:Person
    170 sg:person.016316106377.80 schema:affiliation grid-institutes:grid.26999.3d
    171 schema:familyName Watanabe
    172 schema:givenName Masahiro
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016316106377.80
    174 rdf:type schema:Person
    175 sg:pub.10.1007/s00382-006-0111-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021690503
    176 https://doi.org/10.1007/s00382-006-0111-2
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s00382-009-0661-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034546573
    179 https://doi.org/10.1007/s00382-009-0661-1
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s00382-010-0808-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008516124
    182 https://doi.org/10.1007/s00382-010-0808-0
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s00382-011-1178-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1014145652
    185 https://doi.org/10.1007/s00382-011-1178-y
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s00382-011-1279-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031005835
    188 https://doi.org/10.1007/s00382-011-1279-7
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s00382-012-1336-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030808219
    191 https://doi.org/10.1007/s00382-012-1336-x
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s00382-012-1441-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015787016
    194 https://doi.org/10.1007/s00382-012-1441-x
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s00382-012-1555-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018693226
    197 https://doi.org/10.1007/s00382-012-1555-1
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s00382-012-1609-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014312552
    200 https://doi.org/10.1007/s00382-012-1609-4
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s00382-013-1725-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028387493
    203 https://doi.org/10.1007/s00382-013-1725-9
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s00382-013-1945-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1013560667
    206 https://doi.org/10.1007/s00382-013-1945-z
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s00382-013-1955-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005906269
    209 https://doi.org/10.1007/s00382-013-1955-x
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s00382-014-2138-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009581813
    212 https://doi.org/10.1007/s00382-014-2138-0
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s00382-014-2441-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047364571
    215 https://doi.org/10.1007/s00382-014-2441-9
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s003820100157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036889233
    218 https://doi.org/10.1007/s003820100157
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s00704-012-0607-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021643173
    221 https://doi.org/10.1007/s00704-012-0607-0
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s10712-011-9152-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024832656
    224 https://doi.org/10.1007/s10712-011-9152-0
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/s40641-015-0007-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012023852
    227 https://doi.org/10.1007/s40641-015-0007-5
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/s40641-015-0010-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028145777
    230 https://doi.org/10.1007/s40641-015-0010-x
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/s40641-015-0021-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008145862
    233 https://doi.org/10.1007/s40641-015-0021-7
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/s40641-015-0027-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025182217
    236 https://doi.org/10.1007/s40641-015-0027-1
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/486183a schema:sameAs https://app.dimensions.ai/details/publication/pub.1027625855
    239 https://doi.org/10.1038/486183a
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/nature02771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036499414
    242 https://doi.org/10.1038/nature02771
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/nature03301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030001284
    245 https://doi.org/10.1038/nature03301
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/nature12829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016927016
    248 https://doi.org/10.1038/nature12829
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/ngeo2398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031423891
    251 https://doi.org/10.1038/ngeo2398
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/ngeo2414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015288292
    254 https://doi.org/10.1038/ngeo2414
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/ngeo337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004923988
    257 https://doi.org/10.1038/ngeo337
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1186/s40645-014-0018-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016272440
    260 https://doi.org/10.1186/s40645-014-0018-1
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1186/s40645-016-0096-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025122489
    263 https://doi.org/10.1186/s40645-016-0096-3
    264 rdf:type schema:CreativeWork
    265 grid-institutes:grid.140139.e schema:alternateName Center for Global Environmental Research, National Institute for Environmental Studies, 16-2, Onogawa, 305-8506, Tsukuba, Ibaraki, Japan
    266 schema:name Center for Global Environmental Research, National Institute for Environmental Studies, 16-2, Onogawa, 305-8506, Tsukuba, Ibaraki, Japan
    267 rdf:type schema:Organization
    268 grid-institutes:grid.217200.6 schema:alternateName Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, MC 206, La Jolla, 92093-0206, San Diego, CA, USA
    269 schema:name Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, 305-8506, Tsukuba, Ibaraki, Japan
    270 Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, MC 206, La Jolla, 92093-0206, San Diego, CA, USA
    271 rdf:type schema:Organization
    272 grid-institutes:grid.26999.3d schema:alternateName Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, 277-8568, Kashiwa, Chiba, Japan
    273 schema:name Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, 277-8568, Kashiwa, Chiba, Japan
    274 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...