Ontology type: schema:ScholarlyArticle Open Access: True
2016-06-23
AUTHORSYouichi Kamae, Tomoo Ogura, Hideo Shiogama, Masahiro Watanabe
ABSTRACTEquilibrium climate sensitivity (ECS) to doubling of atmospheric CO2 concentration is a key index for understanding the Earth’s climate history and prediction of future climate changes. Tropical low cloud feedback, the predominant factor for uncertainty in modeled ECS, diverges both in sign and magnitude among climate models. Despite its importance, the uncertainty in ECS and low cloud feedback remains a challenge. Recently, researches based on observations and climate models have demonstrated a possibility that the tropical low cloud feedback in a perturbed climate can be constrained by the observed relationship between cloud, sea surface temperature and atmospheric dynamic and thermodynamic structures. The observational constraint on the tropical low cloud feedback suggests a higher ECS range than raw range obtained from climate model simulations. In addition, newly devised modeling frameworks that address both spreads among different model structures and parameter settings have contributed to evaluate possible ranges of the uncertainty in ECS and low cloud feedback. Further observational and modeling approaches and their combinations may help to advance toward dispelling the clouds of uncertainty. More... »
PAGES17
http://scigraph.springernature.com/pub.10.1186/s40562-016-0053-4
DOIhttp://dx.doi.org/10.1186/s40562-016-0053-4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1039760148
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atmospheric Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Geography and Environmental Geoscience",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, MC 206, La Jolla, 92093-0206, San Diego, CA, USA",
"id": "http://www.grid.ac/institutes/grid.217200.6",
"name": [
"Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, 305-8506, Tsukuba, Ibaraki, Japan",
"Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, MC 206, La Jolla, 92093-0206, San Diego, CA, USA"
],
"type": "Organization"
},
"familyName": "Kamae",
"givenName": "Youichi",
"id": "sg:person.014264221555.90",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264221555.90"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Center for Global Environmental Research, National Institute for Environmental Studies, 16-2, Onogawa, 305-8506, Tsukuba, Ibaraki, Japan",
"id": "http://www.grid.ac/institutes/grid.140139.e",
"name": [
"Center for Global Environmental Research, National Institute for Environmental Studies, 16-2, Onogawa, 305-8506, Tsukuba, Ibaraki, Japan"
],
"type": "Organization"
},
"familyName": "Ogura",
"givenName": "Tomoo",
"id": "sg:person.010065645611.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010065645611.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Center for Global Environmental Research, National Institute for Environmental Studies, 16-2, Onogawa, 305-8506, Tsukuba, Ibaraki, Japan",
"id": "http://www.grid.ac/institutes/grid.140139.e",
"name": [
"Center for Global Environmental Research, National Institute for Environmental Studies, 16-2, Onogawa, 305-8506, Tsukuba, Ibaraki, Japan"
],
"type": "Organization"
},
"familyName": "Shiogama",
"givenName": "Hideo",
"id": "sg:person.011356656533.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356656533.12"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, 277-8568, Kashiwa, Chiba, Japan",
"id": "http://www.grid.ac/institutes/grid.26999.3d",
"name": [
"Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, 277-8568, Kashiwa, Chiba, Japan"
],
"type": "Organization"
},
"familyName": "Watanabe",
"givenName": "Masahiro",
"id": "sg:person.016316106377.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016316106377.80"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10712-011-9152-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024832656",
"https://doi.org/10.1007/s10712-011-9152-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ngeo337",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004923988",
"https://doi.org/10.1038/ngeo337"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s40641-015-0021-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008145862",
"https://doi.org/10.1007/s40641-015-0021-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature03301",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030001284",
"https://doi.org/10.1038/nature03301"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature02771",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036499414",
"https://doi.org/10.1038/nature02771"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00704-012-0607-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021643173",
"https://doi.org/10.1007/s00704-012-0607-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-009-0661-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034546573",
"https://doi.org/10.1007/s00382-009-0661-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s40641-015-0010-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028145777",
"https://doi.org/10.1007/s40641-015-0010-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-013-1945-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013560667",
"https://doi.org/10.1007/s00382-013-1945-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s40645-016-0096-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025122489",
"https://doi.org/10.1186/s40645-016-0096-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-012-1555-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018693226",
"https://doi.org/10.1007/s00382-012-1555-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-012-1609-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014312552",
"https://doi.org/10.1007/s00382-012-1609-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s40641-015-0007-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012023852",
"https://doi.org/10.1007/s40641-015-0007-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-011-1279-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031005835",
"https://doi.org/10.1007/s00382-011-1279-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s40641-015-0027-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025182217",
"https://doi.org/10.1007/s40641-015-0027-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s40645-014-0018-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016272440",
"https://doi.org/10.1186/s40645-014-0018-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-013-1955-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005906269",
"https://doi.org/10.1007/s00382-013-1955-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-010-0808-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008516124",
"https://doi.org/10.1007/s00382-010-0808-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature12829",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016927016",
"https://doi.org/10.1038/nature12829"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/486183a",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027625855",
"https://doi.org/10.1038/486183a"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-006-0111-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021690503",
"https://doi.org/10.1007/s00382-006-0111-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ngeo2414",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015288292",
"https://doi.org/10.1038/ngeo2414"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-013-1725-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028387493",
"https://doi.org/10.1007/s00382-013-1725-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-014-2138-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009581813",
"https://doi.org/10.1007/s00382-014-2138-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s003820100157",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036889233",
"https://doi.org/10.1007/s003820100157"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-012-1441-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015787016",
"https://doi.org/10.1007/s00382-012-1441-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-014-2441-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047364571",
"https://doi.org/10.1007/s00382-014-2441-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ngeo2398",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031423891",
"https://doi.org/10.1038/ngeo2398"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-011-1178-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014145652",
"https://doi.org/10.1007/s00382-011-1178-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-012-1336-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030808219",
"https://doi.org/10.1007/s00382-012-1336-x"
],
"type": "CreativeWork"
}
],
"datePublished": "2016-06-23",
"datePublishedReg": "2016-06-23",
"description": "Equilibrium climate sensitivity (ECS) to doubling of atmospheric CO2 concentration is a key index for understanding the Earth\u2019s climate history and prediction of future climate changes. Tropical low cloud feedback, the predominant factor for uncertainty in modeled ECS, diverges both in sign and magnitude among climate models. Despite its importance, the uncertainty in ECS and low cloud feedback remains a challenge. Recently, researches based on observations and climate models have demonstrated a possibility that the tropical low cloud feedback in a perturbed climate can be constrained by the observed relationship between cloud, sea surface temperature and atmospheric dynamic and thermodynamic structures. The observational constraint on the tropical low cloud feedback suggests a higher ECS range than raw range obtained from climate model simulations. In addition, newly devised modeling frameworks that address both spreads among different model structures and parameter settings have contributed to evaluate possible ranges of the uncertainty in ECS and low cloud feedback. Further observational and modeling approaches and their combinations may help to advance toward dispelling the clouds of uncertainty.",
"genre": "article",
"id": "sg:pub.10.1186/s40562-016-0053-4",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136511",
"issn": [
"2196-4092",
"2196-4092"
],
"name": "Geoscience Letters",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "3"
}
],
"keywords": [
"tropical low-cloud feedback",
"low-cloud feedback",
"equilibrium climate sensitivity",
"cloud feedback",
"climate history",
"climate models",
"climate sensitivity",
"Earth's climate history",
"climate model simulations",
"sea surface temperature",
"future climate change",
"atmospheric CO2 concentration",
"ECS range",
"perturbed climate",
"thermodynamic structure",
"model simulations",
"surface temperature",
"climate change",
"CO2 concentration",
"different model structures",
"observational constraints",
"observed relationship",
"cloud of uncertainty",
"possible range",
"modeling framework",
"cloud",
"uncertainty",
"model structure",
"climate",
"predominant factor",
"key index",
"feedback",
"magnitude",
"range",
"doubling",
"model",
"temperature",
"history",
"constraints",
"changes",
"concentration",
"prediction",
"simulations",
"setting",
"structure",
"importance",
"relationship",
"index",
"diverges",
"sensitivity",
"combination",
"parameter settings",
"recent progress",
"framework",
"factors",
"possibility",
"addition",
"progress",
"research",
"approach",
"signs",
"challenges",
"review",
"address",
"observations"
],
"name": "Recent progress toward reducing the uncertainty in tropical low cloud feedback and climate sensitivity: a review",
"pagination": "17",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1039760148"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/s40562-016-0053-4"
]
}
],
"sameAs": [
"https://doi.org/10.1186/s40562-016-0053-4",
"https://app.dimensions.ai/details/publication/pub.1039760148"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:31",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_682.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/s40562-016-0053-4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40562-016-0053-4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40562-016-0053-4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40562-016-0053-4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40562-016-0053-4'
This table displays all metadata directly associated to this object as RDF triples.
274 TRIPLES
22 PREDICATES
121 URIs
82 LITERALS
6 BLANK NODES