A parallel and distributed stochastic gradient descent implementation using commodity clusters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Robert K. L. Kennedy, Taghi M. Khoshgoftaar, Flavio Villanustre, Timothy Humphrey

ABSTRACT

Deep Learning is an increasingly important subdomain of artificial intelligence, which benefits from training on Big Data. The size and complexity of the model combined with the size of the training dataset makes the training process very computationally and temporally expensive. Accelerating the training process of Deep Learning using cluster computers faces many challenges ranging from distributed optimizers to the large communication overhead specific to systems with off the shelf networking components. In this paper, we present a novel distributed and parallel implementation of stochastic gradient descent (SGD) on a distributed cluster of commodity computers. We use high-performance computing cluster (HPCC) systems as the underlying cluster environment for the implementation. We overview how the HPCC systems platform provides the environment for distributed and parallel Deep Learning, how it provides a facility to work with third party open source libraries such as TensorFlow, and detail our use of third-party libraries and HPCC functionality for implementation. We provide experimental results that validate our work and show that our implementation can scale with respect to both dataset size and the number of compute nodes in the cluster. More... »

PAGES

16

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40537-019-0179-2

DOI

http://dx.doi.org/10.1186/s40537-019-0179-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112146594


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computer Software", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Florida Atlantic University", 
          "id": "https://www.grid.ac/institutes/grid.255951.f", 
          "name": [
            "Florida Atlantic University, 777 Glades Road, 33431, Boca Raton, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kennedy", 
        "givenName": "Robert K. L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Florida Atlantic University", 
          "id": "https://www.grid.ac/institutes/grid.255951.f", 
          "name": [
            "Florida Atlantic University, 777 Glades Road, 33431, Boca Raton, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khoshgoftaar", 
        "givenName": "Taghi M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "LexisNexis Business Information Solutions, 245 Peachtree Center Avenue, 30303, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Villanustre", 
        "givenName": "Flavio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "LexisNexis Business Information Solutions, 245 Peachtree Center Avenue, 30303, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Humphrey", 
        "givenName": "Timothy", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1496091.1496100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003809858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40537-014-0007-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003948507", 
          "https://doi.org/10.1186/s40537-014-0007-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40537-014-0007-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003948507", 
          "https://doi.org/10.1186/s40537-014-0007-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/323533a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018367015", 
          "https://doi.org/10.1038/323533a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0042519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030890551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0743-7315(92)90068-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039452295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1465482.1465560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041113372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2.485893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061105568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.329683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mc.2008.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061387949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msp.2012.2205597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061423808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40537-017-0084-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090745158", 
          "https://doi.org/10.1186/s40537-017-0084-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40537-017-0084-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090745158", 
          "https://doi.org/10.1186/s40537-017-0084-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iri.2015.39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093728652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2013.6638312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093968466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7298594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094291017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2013.6639348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094742597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ictai.2009.25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094866311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/hpdc.1998.709982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095351194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2013.6639343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095400300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icmla.2007.76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095715390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icmla.2017.00-48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100484327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iri.2018.00010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106023818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40537-018-0138-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106619929", 
          "https://doi.org/10.1186/s40537-018-0138-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Deep Learning is an increasingly important subdomain of artificial intelligence, which benefits from training on Big Data. The size and complexity of the model combined with the size of the training dataset makes the training process very computationally and temporally expensive. Accelerating the training process of Deep Learning using cluster computers faces many challenges ranging from distributed optimizers to the large communication overhead specific to systems with off the shelf networking components. In this paper, we present a novel distributed and parallel implementation of stochastic gradient descent (SGD) on a distributed cluster of commodity computers. We use high-performance computing cluster (HPCC) systems as the underlying cluster environment for the implementation. We overview how the HPCC systems platform provides the environment for distributed and parallel Deep Learning, how it provides a facility to work with third party open source libraries such as TensorFlow, and detail our use of third-party libraries and HPCC functionality for implementation. We provide experimental results that validate our work and show that our implementation can scale with respect to both dataset size and the number of compute nodes in the cluster.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40537-019-0179-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1051924", 
        "issn": [
          "2196-1115"
        ], 
        "name": "Journal of Big Data", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "A parallel and distributed stochastic gradient descent implementation using commodity clusters", 
    "pagination": "16", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7017934e7104cd7243fd2eb1f951987addf021111a6ab6fcfc766be673fbb2f5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40537-019-0179-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112146594"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40537-019-0179-2", 
      "https://app.dimensions.ai/details/publication/pub.1112146594"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000337_0000000337/records_37553_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs40537-019-0179-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40537-019-0179-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40537-019-0179-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40537-019-0179-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40537-019-0179-2'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40537-019-0179-2 schema:about anzsrc-for:08
2 anzsrc-for:0803
3 schema:author N3f815b2562464b5b9d6522df81556091
4 schema:citation sg:pub.10.1038/323533a0
5 sg:pub.10.1186/s40537-014-0007-7
6 sg:pub.10.1186/s40537-017-0084-5
7 sg:pub.10.1186/s40537-018-0138-3
8 https://doi.org/10.1016/0743-7315(92)90068-x
9 https://doi.org/10.1037/h0042519
10 https://doi.org/10.1109/2.485893
11 https://doi.org/10.1109/72.329683
12 https://doi.org/10.1109/cvpr.2015.7298594
13 https://doi.org/10.1109/hpdc.1998.709982
14 https://doi.org/10.1109/icassp.2013.6638312
15 https://doi.org/10.1109/icassp.2013.6639343
16 https://doi.org/10.1109/icassp.2013.6639348
17 https://doi.org/10.1109/icmla.2007.76
18 https://doi.org/10.1109/icmla.2017.00-48
19 https://doi.org/10.1109/ictai.2009.25
20 https://doi.org/10.1109/iri.2015.39
21 https://doi.org/10.1109/iri.2018.00010
22 https://doi.org/10.1109/mc.2008.122
23 https://doi.org/10.1109/msp.2012.2205597
24 https://doi.org/10.1145/1465482.1465560
25 https://doi.org/10.1145/1496091.1496100
26 schema:datePublished 2019-12
27 schema:datePublishedReg 2019-12-01
28 schema:description Deep Learning is an increasingly important subdomain of artificial intelligence, which benefits from training on Big Data. The size and complexity of the model combined with the size of the training dataset makes the training process very computationally and temporally expensive. Accelerating the training process of Deep Learning using cluster computers faces many challenges ranging from distributed optimizers to the large communication overhead specific to systems with off the shelf networking components. In this paper, we present a novel distributed and parallel implementation of stochastic gradient descent (SGD) on a distributed cluster of commodity computers. We use high-performance computing cluster (HPCC) systems as the underlying cluster environment for the implementation. We overview how the HPCC systems platform provides the environment for distributed and parallel Deep Learning, how it provides a facility to work with third party open source libraries such as TensorFlow, and detail our use of third-party libraries and HPCC functionality for implementation. We provide experimental results that validate our work and show that our implementation can scale with respect to both dataset size and the number of compute nodes in the cluster.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N7a08bea8a30d4ed498328fc181c9e694
33 Nc5e1a558da964ab69cac2d87bda2c80d
34 sg:journal.1051924
35 schema:name A parallel and distributed stochastic gradient descent implementation using commodity clusters
36 schema:pagination 16
37 schema:productId N43ea0afe919c453089b1e3158b572b12
38 N69e173a08563410dbdfb7e000d827089
39 Nef197775b1664f00aacab47cc65c0b8b
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112146594
41 https://doi.org/10.1186/s40537-019-0179-2
42 schema:sdDatePublished 2019-04-11T09:06
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N179301524936432093e3cb5eb4635184
45 schema:url https://link.springer.com/10.1186%2Fs40537-019-0179-2
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N179301524936432093e3cb5eb4635184 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N35cac91ab7f34e77a9965f890b1fd326 rdf:first N8a0706cff18143919cd0d3f19626ede0
52 rdf:rest Na0483a6ecce24dbebe6486ad7e84d82c
53 N3f815b2562464b5b9d6522df81556091 rdf:first Nff2199964a924265b3e8c0881aee56a7
54 rdf:rest N986dec7a2c6448f29f399db728e1f1c5
55 N43ea0afe919c453089b1e3158b572b12 schema:name doi
56 schema:value 10.1186/s40537-019-0179-2
57 rdf:type schema:PropertyValue
58 N527c42c9e5fb4d928bef5e50703fdb6b schema:affiliation Na94cc0be2962434482048b20d11262b5
59 schema:familyName Humphrey
60 schema:givenName Timothy
61 rdf:type schema:Person
62 N69e173a08563410dbdfb7e000d827089 schema:name readcube_id
63 schema:value 7017934e7104cd7243fd2eb1f951987addf021111a6ab6fcfc766be673fbb2f5
64 rdf:type schema:PropertyValue
65 N7a08bea8a30d4ed498328fc181c9e694 schema:volumeNumber 6
66 rdf:type schema:PublicationVolume
67 N8a0706cff18143919cd0d3f19626ede0 schema:affiliation Nd2be0e43bc34463fa1cbbd5872e757d3
68 schema:familyName Villanustre
69 schema:givenName Flavio
70 rdf:type schema:Person
71 N986dec7a2c6448f29f399db728e1f1c5 rdf:first Nf9fda4c34e5c4e348b040498d7f7c115
72 rdf:rest N35cac91ab7f34e77a9965f890b1fd326
73 Na0483a6ecce24dbebe6486ad7e84d82c rdf:first N527c42c9e5fb4d928bef5e50703fdb6b
74 rdf:rest rdf:nil
75 Na94cc0be2962434482048b20d11262b5 schema:name LexisNexis Business Information Solutions, 245 Peachtree Center Avenue, 30303, Atlanta, GA, USA
76 rdf:type schema:Organization
77 Nc5e1a558da964ab69cac2d87bda2c80d schema:issueNumber 1
78 rdf:type schema:PublicationIssue
79 Nd2be0e43bc34463fa1cbbd5872e757d3 schema:name LexisNexis Business Information Solutions, 245 Peachtree Center Avenue, 30303, Atlanta, GA, USA
80 rdf:type schema:Organization
81 Nef197775b1664f00aacab47cc65c0b8b schema:name dimensions_id
82 schema:value pub.1112146594
83 rdf:type schema:PropertyValue
84 Nf9fda4c34e5c4e348b040498d7f7c115 schema:affiliation https://www.grid.ac/institutes/grid.255951.f
85 schema:familyName Khoshgoftaar
86 schema:givenName Taghi M.
87 rdf:type schema:Person
88 Nff2199964a924265b3e8c0881aee56a7 schema:affiliation https://www.grid.ac/institutes/grid.255951.f
89 schema:familyName Kennedy
90 schema:givenName Robert K. L.
91 rdf:type schema:Person
92 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
93 schema:name Information and Computing Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
96 schema:name Computer Software
97 rdf:type schema:DefinedTerm
98 sg:journal.1051924 schema:issn 2196-1115
99 schema:name Journal of Big Data
100 rdf:type schema:Periodical
101 sg:pub.10.1038/323533a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018367015
102 https://doi.org/10.1038/323533a0
103 rdf:type schema:CreativeWork
104 sg:pub.10.1186/s40537-014-0007-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003948507
105 https://doi.org/10.1186/s40537-014-0007-7
106 rdf:type schema:CreativeWork
107 sg:pub.10.1186/s40537-017-0084-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090745158
108 https://doi.org/10.1186/s40537-017-0084-5
109 rdf:type schema:CreativeWork
110 sg:pub.10.1186/s40537-018-0138-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106619929
111 https://doi.org/10.1186/s40537-018-0138-3
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0743-7315(92)90068-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039452295
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1037/h0042519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030890551
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/2.485893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061105568
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/72.329683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218503
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/cvpr.2015.7298594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094291017
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/hpdc.1998.709982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095351194
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/icassp.2013.6638312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093968466
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/icassp.2013.6639343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095400300
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/icassp.2013.6639348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094742597
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/icmla.2007.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095715390
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/icmla.2017.00-48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100484327
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/ictai.2009.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094866311
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/iri.2015.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093728652
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/iri.2018.00010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106023818
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/mc.2008.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061387949
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/msp.2012.2205597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061423808
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1145/1465482.1465560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041113372
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1145/1496091.1496100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003809858
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.255951.f schema:alternateName Florida Atlantic University
150 schema:name Florida Atlantic University, 777 Glades Road, 33431, Boca Raton, FL, USA
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...