Feature selection for driving fatigue characterization and detection using visual- and signal-based sensors View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Khadidja Henni, Neila Mezghani, Charles Gouin-Vallerand, Perrine Ruer, Youssef Ouakrim, Évelyne Vallières

ABSTRACT

Driving fatigue detection has been the subject of several studies which relied on a set of features describing driver’s facial expressions, driving behaviors, and bio-signals. The purpose of this study is to improve driving fatigue detection by identifying the adequate set of features which accurately characterize fatigued drivers. The considered features are derived from non-intrusive sensors; they are related to the changes in driving behavior and visual facial expressions. The relevance is first investigated by several feature selection methods. Second, a meta-analysis was performed to investigate method agreement about the relevance of each feature in driving fatigue recognition. Support vector machine and DBSCAN classifiers were used to detect fatigue by means of the identified features. Experimental analyses are performed on a real-world database, collected through the computer vision system “FaceLab” and car sensors, from 66 senior drivers when driving an instrumented car on a highway. Results provide a list of the most discriminative features, which enhances the classification average accuracy to 89.13%. More... »

PAGES

7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40535-018-0054-9

DOI

http://dx.doi.org/10.1186/s40535-018-0054-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107946976


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "T\u00c9LUQ University", 
          "id": "https://www.grid.ac/institutes/grid.422889.d", 
          "name": [
            "Centre de recherche LICEF, universit\u00e9 TELUQ, 5800 Rue St-Denis, Montr\u00e9al, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henni", 
        "givenName": "Khadidja", 
        "id": "sg:person.014273655132.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014273655132.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre Hospitalier de l\u2019Universit\u00e9 de Montr\u00e9al", 
          "id": "https://www.grid.ac/institutes/grid.410559.c", 
          "name": [
            "Laboratoire de recherche en imagerie et orthope\u00e9die (LIO), Centre de recherche du CHUM, 900 Rue St-Denis, Montr\u00e9al, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mezghani", 
        "givenName": "Neila", 
        "id": "sg:person.0726033241.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726033241.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "T\u00c9LUQ University", 
          "id": "https://www.grid.ac/institutes/grid.422889.d", 
          "name": [
            "Centre de recherche LICEF, universit\u00e9 TELUQ, 5800 Rue St-Denis, Montr\u00e9al, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gouin-Vallerand", 
        "givenName": "Charles", 
        "id": "sg:person.0622015163.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622015163.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "T\u00c9LUQ University", 
          "id": "https://www.grid.ac/institutes/grid.422889.d", 
          "name": [
            "Centre de recherche LICEF, universit\u00e9 TELUQ, 5800 Rue St-Denis, Montr\u00e9al, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruer", 
        "givenName": "Perrine", 
        "id": "sg:person.013116664643.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013116664643.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre Hospitalier de l\u2019Universit\u00e9 de Montr\u00e9al", 
          "id": "https://www.grid.ac/institutes/grid.410559.c", 
          "name": [
            "Laboratoire de recherche en imagerie et orthope\u00e9die (LIO), Centre de recherche du CHUM, 900 Rue St-Denis, Montr\u00e9al, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ouakrim", 
        "givenName": "Youssef", 
        "id": "sg:person.015072153633.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015072153633.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "T\u00c9LUQ University", 
          "id": "https://www.grid.ac/institutes/grid.422889.d", 
          "name": [
            "Centre de recherche LICEF, universit\u00e9 TELUQ, 5800 Rue St-Denis, Montr\u00e9al, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Valli\u00e8res", 
        "givenName": "\u00c9velyne", 
        "id": "sg:person.01224053362.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224053362.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0001-4575(02)00014-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009801032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2015/548602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010900075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trf.2005.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011857730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trf.2005.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011857730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009778005914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014832254", 
          "https://doi.org/10.1023/a:1009778005914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jns.2013.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018355334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s150924191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025972889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-35488-8_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026061992", 
          "https://doi.org/10.1007/978-3-540-35488-8_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physbeh.2005.02.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030276386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10614-007-9092-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031349614", 
          "https://doi.org/10.1007/s10614-007-9092-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10614-007-9092-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031349614", 
          "https://doi.org/10.1007/s10614-007-9092-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2010.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032013526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s121216937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034175905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2014.01.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035160115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/648431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037066964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02564602.2014.906859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037412861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-012-9506-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038515460", 
          "https://doi.org/10.1007/s10278-012-9506-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2008.09.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042752104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/263983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046373408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2869.2006.00504.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046485561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2869.2006.00504.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046485561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1273496.1273641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051811766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2006.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052397525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tits.2007.895298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061657461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tits.2013.2247759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061658103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2010.215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvt.2004.830974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061818420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5120/14573-2697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072596922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-its.2017.0183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092599676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-its.2016.0249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093128568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2004.1334213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093225562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isms.2014.56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093228372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2002.1048415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093658774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ivs.2010.5548039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094703991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isie.2005.1529113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095302814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/itsc.2010.5624966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095627313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2015.478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095649841"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Driving fatigue detection has been the subject of several studies which relied on a set of features describing driver\u2019s facial expressions, driving behaviors, and bio-signals. The purpose of this study is to improve driving fatigue detection by identifying the adequate set of features which accurately characterize fatigued drivers. The considered features are derived from non-intrusive sensors; they are related to the changes in driving behavior and visual facial expressions. The relevance is first investigated by several feature selection methods. Second, a meta-analysis was performed to investigate method agreement about the relevance of each feature in driving fatigue recognition. Support vector machine and DBSCAN classifiers were used to detect fatigue by means of the identified features. Experimental analyses are performed on a real-world database, collected through the computer vision system \u201cFaceLab\u201d and car sensors, from 66 senior drivers when driving an instrumented car on a highway. Results provide a list of the most discriminative features, which enhances the classification average accuracy to 89.13%.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40535-018-0054-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1053269", 
        "issn": [
          "2196-0089"
        ], 
        "name": "Applied Informatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Feature selection for driving fatigue characterization and detection using visual- and signal-based sensors", 
    "pagination": "7", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "53e9e0764c9d76aec3c8cd7de78438fc6c274b8261871bc480cacd9fa2093bad"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40535-018-0054-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107946976"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40535-018-0054-9", 
      "https://app.dimensions.ai/details/publication/pub.1107946976"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000574.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs40535-018-0054-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40535-018-0054-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40535-018-0054-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40535-018-0054-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40535-018-0054-9'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40535-018-0054-9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Na4a4b6147f6943b393a2262631312294
4 schema:citation sg:pub.10.1007/978-3-540-35488-8_13
5 sg:pub.10.1007/s10278-012-9506-2
6 sg:pub.10.1007/s10614-007-9092-4
7 sg:pub.10.1023/a:1009778005914
8 https://doi.org/10.1016/j.asoc.2014.01.020
9 https://doi.org/10.1016/j.clinph.2006.03.011
10 https://doi.org/10.1016/j.eswa.2008.09.030
11 https://doi.org/10.1016/j.isprsjprs.2010.11.001
12 https://doi.org/10.1016/j.jns.2013.12.003
13 https://doi.org/10.1016/j.physbeh.2005.02.021
14 https://doi.org/10.1016/j.trf.2005.04.012
15 https://doi.org/10.1016/s0001-4575(02)00014-3
16 https://doi.org/10.1049/iet-its.2016.0249
17 https://doi.org/10.1049/iet-its.2017.0183
18 https://doi.org/10.1080/02564602.2014.906859
19 https://doi.org/10.1109/iccv.2015.478
20 https://doi.org/10.1109/icpr.2002.1048415
21 https://doi.org/10.1109/icpr.2004.1334213
22 https://doi.org/10.1109/isie.2005.1529113
23 https://doi.org/10.1109/isms.2014.56
24 https://doi.org/10.1109/itsc.2010.5624966
25 https://doi.org/10.1109/ivs.2010.5548039
26 https://doi.org/10.1109/tits.2007.895298
27 https://doi.org/10.1109/tits.2013.2247759
28 https://doi.org/10.1109/tpami.2010.215
29 https://doi.org/10.1109/tvt.2004.830974
30 https://doi.org/10.1111/j.1365-2869.2006.00504.x
31 https://doi.org/10.1145/1273496.1273641
32 https://doi.org/10.1155/2013/263983
33 https://doi.org/10.1155/2013/648431
34 https://doi.org/10.1155/2015/548602
35 https://doi.org/10.3390/s121216937
36 https://doi.org/10.3390/s150924191
37 https://doi.org/10.5120/14573-2697
38 schema:datePublished 2018-12
39 schema:datePublishedReg 2018-12-01
40 schema:description Driving fatigue detection has been the subject of several studies which relied on a set of features describing driver’s facial expressions, driving behaviors, and bio-signals. The purpose of this study is to improve driving fatigue detection by identifying the adequate set of features which accurately characterize fatigued drivers. The considered features are derived from non-intrusive sensors; they are related to the changes in driving behavior and visual facial expressions. The relevance is first investigated by several feature selection methods. Second, a meta-analysis was performed to investigate method agreement about the relevance of each feature in driving fatigue recognition. Support vector machine and DBSCAN classifiers were used to detect fatigue by means of the identified features. Experimental analyses are performed on a real-world database, collected through the computer vision system “FaceLab” and car sensors, from 66 senior drivers when driving an instrumented car on a highway. Results provide a list of the most discriminative features, which enhances the classification average accuracy to 89.13%.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N303070d8225c490984acd0d04338c9a6
45 N80255600a3124054a96821c1e7de9db3
46 sg:journal.1053269
47 schema:name Feature selection for driving fatigue characterization and detection using visual- and signal-based sensors
48 schema:pagination 7
49 schema:productId N06bc5800f8dd42d4a27c81f4c10b38ca
50 N11020e7022a348a9b2652a51a8b2810a
51 Nb1109eea511f4c2f84ad96a45ef26bb1
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107946976
53 https://doi.org/10.1186/s40535-018-0054-9
54 schema:sdDatePublished 2019-04-10T19:18
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Ne3af3fb40a1b4c4bb2f265457362d152
57 schema:url https://link.springer.com/10.1186%2Fs40535-018-0054-9
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N06bc5800f8dd42d4a27c81f4c10b38ca schema:name doi
62 schema:value 10.1186/s40535-018-0054-9
63 rdf:type schema:PropertyValue
64 N11020e7022a348a9b2652a51a8b2810a schema:name readcube_id
65 schema:value 53e9e0764c9d76aec3c8cd7de78438fc6c274b8261871bc480cacd9fa2093bad
66 rdf:type schema:PropertyValue
67 N189b6d856fec4e9ab4bdb71404dcc473 rdf:first sg:person.0622015163.65
68 rdf:rest Ne3522352f8f44543a2d553c16bc9381a
69 N2683a7bb2734491e9ce580e35eee1eeb rdf:first sg:person.015072153633.77
70 rdf:rest N6bce3c3e4c83426e8dc1bc49976d69e9
71 N303070d8225c490984acd0d04338c9a6 schema:issueNumber 1
72 rdf:type schema:PublicationIssue
73 N6bce3c3e4c83426e8dc1bc49976d69e9 rdf:first sg:person.01224053362.53
74 rdf:rest rdf:nil
75 N80255600a3124054a96821c1e7de9db3 schema:volumeNumber 5
76 rdf:type schema:PublicationVolume
77 Na4a4b6147f6943b393a2262631312294 rdf:first sg:person.014273655132.92
78 rdf:rest Na56ce530d89945c58ec83f39134e9ac6
79 Na56ce530d89945c58ec83f39134e9ac6 rdf:first sg:person.0726033241.85
80 rdf:rest N189b6d856fec4e9ab4bdb71404dcc473
81 Nb1109eea511f4c2f84ad96a45ef26bb1 schema:name dimensions_id
82 schema:value pub.1107946976
83 rdf:type schema:PropertyValue
84 Ne3522352f8f44543a2d553c16bc9381a rdf:first sg:person.013116664643.43
85 rdf:rest N2683a7bb2734491e9ce580e35eee1eeb
86 Ne3af3fb40a1b4c4bb2f265457362d152 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
89 schema:name Information and Computing Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
92 schema:name Artificial Intelligence and Image Processing
93 rdf:type schema:DefinedTerm
94 sg:journal.1053269 schema:issn 2196-0089
95 schema:name Applied Informatics
96 rdf:type schema:Periodical
97 sg:person.01224053362.53 schema:affiliation https://www.grid.ac/institutes/grid.422889.d
98 schema:familyName Vallières
99 schema:givenName Évelyne
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224053362.53
101 rdf:type schema:Person
102 sg:person.013116664643.43 schema:affiliation https://www.grid.ac/institutes/grid.422889.d
103 schema:familyName Ruer
104 schema:givenName Perrine
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013116664643.43
106 rdf:type schema:Person
107 sg:person.014273655132.92 schema:affiliation https://www.grid.ac/institutes/grid.422889.d
108 schema:familyName Henni
109 schema:givenName Khadidja
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014273655132.92
111 rdf:type schema:Person
112 sg:person.015072153633.77 schema:affiliation https://www.grid.ac/institutes/grid.410559.c
113 schema:familyName Ouakrim
114 schema:givenName Youssef
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015072153633.77
116 rdf:type schema:Person
117 sg:person.0622015163.65 schema:affiliation https://www.grid.ac/institutes/grid.422889.d
118 schema:familyName Gouin-Vallerand
119 schema:givenName Charles
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622015163.65
121 rdf:type schema:Person
122 sg:person.0726033241.85 schema:affiliation https://www.grid.ac/institutes/grid.410559.c
123 schema:familyName Mezghani
124 schema:givenName Neila
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726033241.85
126 rdf:type schema:Person
127 sg:pub.10.1007/978-3-540-35488-8_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026061992
128 https://doi.org/10.1007/978-3-540-35488-8_13
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s10278-012-9506-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038515460
131 https://doi.org/10.1007/s10278-012-9506-2
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s10614-007-9092-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031349614
134 https://doi.org/10.1007/s10614-007-9092-4
135 rdf:type schema:CreativeWork
136 sg:pub.10.1023/a:1009778005914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014832254
137 https://doi.org/10.1023/a:1009778005914
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.asoc.2014.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035160115
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.clinph.2006.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052397525
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.eswa.2008.09.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042752104
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.isprsjprs.2010.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032013526
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.jns.2013.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018355334
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.physbeh.2005.02.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030276386
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.trf.2005.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011857730
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s0001-4575(02)00014-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009801032
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1049/iet-its.2016.0249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093128568
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1049/iet-its.2017.0183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092599676
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1080/02564602.2014.906859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037412861
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/iccv.2015.478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095649841
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/icpr.2002.1048415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093658774
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/icpr.2004.1334213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093225562
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/isie.2005.1529113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095302814
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/isms.2014.56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093228372
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/itsc.2010.5624966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095627313
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/ivs.2010.5548039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094703991
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/tits.2007.895298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061657461
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/tits.2013.2247759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061658103
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/tpami.2010.215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743926
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/tvt.2004.830974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061818420
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1111/j.1365-2869.2006.00504.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046485561
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1145/1273496.1273641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051811766
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1155/2013/263983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046373408
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1155/2013/648431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037066964
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1155/2015/548602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010900075
192 rdf:type schema:CreativeWork
193 https://doi.org/10.3390/s121216937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034175905
194 rdf:type schema:CreativeWork
195 https://doi.org/10.3390/s150924191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025972889
196 rdf:type schema:CreativeWork
197 https://doi.org/10.5120/14573-2697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072596922
198 rdf:type schema:CreativeWork
199 https://www.grid.ac/institutes/grid.410559.c schema:alternateName Centre Hospitalier de l’Université de Montréal
200 schema:name Laboratoire de recherche en imagerie et orthopeédie (LIO), Centre de recherche du CHUM, 900 Rue St-Denis, Montréal, QC, Canada
201 rdf:type schema:Organization
202 https://www.grid.ac/institutes/grid.422889.d schema:alternateName TÉLUQ University
203 schema:name Centre de recherche LICEF, université TELUQ, 5800 Rue St-Denis, Montréal, QC, Canada
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...