Disrupted architecture of large-scale brain functional connectivity networks in patients with generalized tonic–clonic seizure View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Rong Li, Yangyang Yu, Wei Liao, Zhiqiang Zhang, Guangming Lu, Huafu Chen

ABSTRACT

Generalized tonic–clonic seizure (GTCS) is characterized by the abnormal functional organization among distant brain regions. Previous studies in GTCS that have comprehensively examined connectivity abnormalities across the complete range of large-scale brain networks remain relatively rare. Here, we employed an amount of regions of interest to investigate the intra- and inter-connections among seven large-scale brain networks in GTCS and healthy controls. Network contingency analysis revealed that patients with GTCS exhibit significantly increased connectivity between default mode network (DMN) and frontoparietal network (FPN), between DMN and dorsal attention network, and between somatomotor network and limbic network, and decreased functional connectivity within FPN (all p values were Bonferroni corrected). Consistent with existing evidence, the disrupted functional architecture of the DMN and task-positive network may be related to self-related processes and deficits in cognitive control and attention in patients. These findings support the notion that GTCS is associated with disrupted architecture in large-scale brain networks, providing information for better understanding of the pathophysiological mechanisms of GTCS. More... »

PAGES

15

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40535-017-0045-2

DOI

http://dx.doi.org/10.1186/s40535-017-0045-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1093062699


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Electronic Science and Technology of China", 
          "id": "https://www.grid.ac/institutes/grid.54549.39", 
          "name": [
            "The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, 610054, Chengdu, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Rong", 
        "id": "sg:person.0745224741.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745224741.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Electronic Science and Technology of China", 
          "id": "https://www.grid.ac/institutes/grid.54549.39", 
          "name": [
            "The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, 610054, Chengdu, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Yangyang", 
        "id": "sg:person.014574066761.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014574066761.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Electronic Science and Technology of China", 
          "id": "https://www.grid.ac/institutes/grid.54549.39", 
          "name": [
            "The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, 610054, Chengdu, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liao", 
        "givenName": "Wei", 
        "id": "sg:person.01014074345.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014074345.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing General Hospital of Nanjing Military Command", 
          "id": "https://www.grid.ac/institutes/grid.440259.e", 
          "name": [
            "Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zhiqiang", 
        "id": "sg:person.01254205652.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254205652.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing General Hospital of Nanjing Military Command", 
          "id": "https://www.grid.ac/institutes/grid.440259.e", 
          "name": [
            "Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Guangming", 
        "id": "sg:person.0671033341.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671033341.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Electronic Science and Technology of China", 
          "id": "https://www.grid.ac/institutes/grid.54549.39", 
          "name": [
            "The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, 610054, Chengdu, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Huafu", 
        "id": "sg:person.015312307417.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312307417.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1528-1157.1989.tb05316.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000080639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0017294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001285804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.yebeh.2012.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002049449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(10)70180-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002632408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0504136102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004124686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brainres.2010.12.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007361259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00338.2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008540929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2011.10.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009534385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/epi.12580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013438688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awr223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015936315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0135058100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017455767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.yebeh.2010.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020636317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2011.07.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021589261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/jocn_a_00281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021676178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0504935102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025393420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0604187103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026596739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1528-1167.2010.02938.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027943284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1053-8119(03)00204-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031727978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1053-8119(03)00204-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031727978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.yebeh.2015.03.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035015526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.23323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036471429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neubiorev.2005.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038339422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neubiorev.2005.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038339422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0068910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042879902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2010.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043825672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2010.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047472356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129065717500186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062899542"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Generalized tonic\u2013clonic seizure (GTCS) is characterized by the abnormal functional organization among distant brain regions. Previous studies in GTCS that have comprehensively examined connectivity abnormalities across the complete range of large-scale brain networks remain relatively rare. Here, we employed an amount of regions of interest to investigate the intra- and inter-connections among seven large-scale brain networks in GTCS and healthy controls. Network contingency analysis revealed that patients with GTCS exhibit significantly increased connectivity between default mode network (DMN) and frontoparietal network (FPN), between DMN and dorsal attention network, and between somatomotor network and limbic network, and decreased functional connectivity within FPN (all p values were Bonferroni corrected). Consistent with existing evidence, the disrupted functional architecture of the DMN and task-positive network may be related to self-related processes and deficits in cognitive control and attention in patients. These findings support the notion that GTCS is associated with disrupted architecture in large-scale brain networks, providing information for better understanding of the pathophysiological mechanisms of GTCS.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40535-017-0045-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1053269", 
        "issn": [
          "2196-0089"
        ], 
        "name": "Applied Informatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Disrupted architecture of large-scale brain functional connectivity networks in patients with generalized tonic\u2013clonic seizure", 
    "pagination": "15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e404426302343b89e976457d5ea3f7fbbaabaeecbf71517984f820d6f8b37ee7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40535-017-0045-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1093062699"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40535-017-0045-2", 
      "https://app.dimensions.ai/details/publication/pub.1093062699"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/s40535-017-0045-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40535-017-0045-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40535-017-0045-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40535-017-0045-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40535-017-0045-2'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40535-017-0045-2 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Nbf9252cc85b84a4ea7b7f4ac95ddfccd
4 schema:citation https://doi.org/10.1002/hbm.23323
5 https://doi.org/10.1016/j.brainres.2010.12.034
6 https://doi.org/10.1016/j.neubiorev.2005.06.004
7 https://doi.org/10.1016/j.neuroimage.2010.05.010
8 https://doi.org/10.1016/j.neuroimage.2011.07.044
9 https://doi.org/10.1016/j.neuroimage.2011.10.018
10 https://doi.org/10.1016/j.tics.2010.04.004
11 https://doi.org/10.1016/j.yebeh.2010.07.003
12 https://doi.org/10.1016/j.yebeh.2012.01.013
13 https://doi.org/10.1016/j.yebeh.2015.03.031
14 https://doi.org/10.1016/s1053-8119(03)00204-0
15 https://doi.org/10.1016/s1474-4422(10)70180-0
16 https://doi.org/10.1073/pnas.0135058100
17 https://doi.org/10.1073/pnas.0504136102
18 https://doi.org/10.1073/pnas.0504935102
19 https://doi.org/10.1073/pnas.0604187103
20 https://doi.org/10.1093/brain/awr223
21 https://doi.org/10.1111/epi.12580
22 https://doi.org/10.1111/j.1528-1157.1989.tb05316.x
23 https://doi.org/10.1111/j.1528-1167.2010.02938.x
24 https://doi.org/10.1142/s0129065717500186
25 https://doi.org/10.1152/jn.00338.2011
26 https://doi.org/10.1162/jocn_a_00281
27 https://doi.org/10.1371/journal.pone.0017294
28 https://doi.org/10.1371/journal.pone.0068910
29 schema:datePublished 2017-12
30 schema:datePublishedReg 2017-12-01
31 schema:description Generalized tonic–clonic seizure (GTCS) is characterized by the abnormal functional organization among distant brain regions. Previous studies in GTCS that have comprehensively examined connectivity abnormalities across the complete range of large-scale brain networks remain relatively rare. Here, we employed an amount of regions of interest to investigate the intra- and inter-connections among seven large-scale brain networks in GTCS and healthy controls. Network contingency analysis revealed that patients with GTCS exhibit significantly increased connectivity between default mode network (DMN) and frontoparietal network (FPN), between DMN and dorsal attention network, and between somatomotor network and limbic network, and decreased functional connectivity within FPN (all p values were Bonferroni corrected). Consistent with existing evidence, the disrupted functional architecture of the DMN and task-positive network may be related to self-related processes and deficits in cognitive control and attention in patients. These findings support the notion that GTCS is associated with disrupted architecture in large-scale brain networks, providing information for better understanding of the pathophysiological mechanisms of GTCS.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N41ebb2eeba354d339046d30a7612f857
36 Na230855fcc21442cbc1af4b10d39141c
37 sg:journal.1053269
38 schema:name Disrupted architecture of large-scale brain functional connectivity networks in patients with generalized tonic–clonic seizure
39 schema:pagination 15
40 schema:productId N484797203e4c4bd6b6f7f67905e42424
41 Nae4df9a002f6471b9603c5887f799c33
42 Nc5bbb33ebe664ecdb0306aa1bd7a5518
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093062699
44 https://doi.org/10.1186/s40535-017-0045-2
45 schema:sdDatePublished 2019-04-10T14:05
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N20ce0f7c1b524cb3908e5bee0fccceee
48 schema:url http://link.springer.com/10.1186/s40535-017-0045-2
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N1320de1c3c96483c88bfe5f7844d455a rdf:first sg:person.014574066761.49
53 rdf:rest Nda301a3f1ba64d9f921eb333fb793366
54 N20ce0f7c1b524cb3908e5bee0fccceee schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N41ebb2eeba354d339046d30a7612f857 schema:issueNumber 1
57 rdf:type schema:PublicationIssue
58 N484797203e4c4bd6b6f7f67905e42424 schema:name dimensions_id
59 schema:value pub.1093062699
60 rdf:type schema:PropertyValue
61 N4bebc849fa81497bb5503dcfe0d096f1 rdf:first sg:person.0671033341.01
62 rdf:rest Naab1383942b04c0595a169984f61305b
63 N82f2c700cc964aa8b69fe136163d1baf rdf:first sg:person.01254205652.10
64 rdf:rest N4bebc849fa81497bb5503dcfe0d096f1
65 Na230855fcc21442cbc1af4b10d39141c schema:volumeNumber 4
66 rdf:type schema:PublicationVolume
67 Naab1383942b04c0595a169984f61305b rdf:first sg:person.015312307417.34
68 rdf:rest rdf:nil
69 Nae4df9a002f6471b9603c5887f799c33 schema:name doi
70 schema:value 10.1186/s40535-017-0045-2
71 rdf:type schema:PropertyValue
72 Nbf9252cc85b84a4ea7b7f4ac95ddfccd rdf:first sg:person.0745224741.20
73 rdf:rest N1320de1c3c96483c88bfe5f7844d455a
74 Nc5bbb33ebe664ecdb0306aa1bd7a5518 schema:name readcube_id
75 schema:value e404426302343b89e976457d5ea3f7fbbaabaeecbf71517984f820d6f8b37ee7
76 rdf:type schema:PropertyValue
77 Nda301a3f1ba64d9f921eb333fb793366 rdf:first sg:person.01014074345.61
78 rdf:rest N82f2c700cc964aa8b69fe136163d1baf
79 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
80 schema:name Medical and Health Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
83 schema:name Neurosciences
84 rdf:type schema:DefinedTerm
85 sg:journal.1053269 schema:issn 2196-0089
86 schema:name Applied Informatics
87 rdf:type schema:Periodical
88 sg:person.01014074345.61 schema:affiliation https://www.grid.ac/institutes/grid.54549.39
89 schema:familyName Liao
90 schema:givenName Wei
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014074345.61
92 rdf:type schema:Person
93 sg:person.01254205652.10 schema:affiliation https://www.grid.ac/institutes/grid.440259.e
94 schema:familyName Zhang
95 schema:givenName Zhiqiang
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254205652.10
97 rdf:type schema:Person
98 sg:person.014574066761.49 schema:affiliation https://www.grid.ac/institutes/grid.54549.39
99 schema:familyName Yu
100 schema:givenName Yangyang
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014574066761.49
102 rdf:type schema:Person
103 sg:person.015312307417.34 schema:affiliation https://www.grid.ac/institutes/grid.54549.39
104 schema:familyName Chen
105 schema:givenName Huafu
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312307417.34
107 rdf:type schema:Person
108 sg:person.0671033341.01 schema:affiliation https://www.grid.ac/institutes/grid.440259.e
109 schema:familyName Lu
110 schema:givenName Guangming
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671033341.01
112 rdf:type schema:Person
113 sg:person.0745224741.20 schema:affiliation https://www.grid.ac/institutes/grid.54549.39
114 schema:familyName Li
115 schema:givenName Rong
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745224741.20
117 rdf:type schema:Person
118 https://doi.org/10.1002/hbm.23323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036471429
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.brainres.2010.12.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007361259
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.neubiorev.2005.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038339422
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.neuroimage.2010.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043825672
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.neuroimage.2011.07.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021589261
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.neuroimage.2011.10.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009534385
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.tics.2010.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047472356
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.yebeh.2010.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020636317
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.yebeh.2012.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002049449
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.yebeh.2015.03.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035015526
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s1053-8119(03)00204-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031727978
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s1474-4422(10)70180-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002632408
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1073/pnas.0135058100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017455767
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1073/pnas.0504136102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004124686
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1073/pnas.0504935102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025393420
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1073/pnas.0604187103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026596739
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1093/brain/awr223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015936315
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1111/epi.12580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013438688
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1111/j.1528-1157.1989.tb05316.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000080639
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1111/j.1528-1167.2010.02938.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027943284
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1142/s0129065717500186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062899542
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1152/jn.00338.2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008540929
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1162/jocn_a_00281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021676178
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1371/journal.pone.0017294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001285804
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1371/journal.pone.0068910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042879902
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.440259.e schema:alternateName Nanjing General Hospital of Nanjing Military Command
169 schema:name Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.54549.39 schema:alternateName University of Electronic Science and Technology of China
172 schema:name The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, 610054, Chengdu, People’s Republic of China
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...