Community detection based on influence power View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Wei Shi, Chang-Dong Wang, Jian-Huang Lai

ABSTRACT

Nowadays, more and more people use social network to share their lives and communicate with each other. In real social network, a person is influenced by others and also influences others at the same time. So the status of a person in the network can be determined by his influence power. In other words, a person with larger influence power always plays more important role and is more likely to act as a core of a community. Different from most of existing community detection algorithms which concentrate on the topology of networks, we propose an algorithm based on influence power to discover potential core members from which the community structure can be revealed. Extensive experiments confirm that our proposed algorithm has good performance in detecting community in real social network. More... »

PAGES

8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40535-017-0037-2

DOI

http://dx.doi.org/10.1186/s40535-017-0037-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092106931


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "School of Data and Computer Science, Sun Yat-sen University, Guangzhou Higher Education Mega Center, 510006, Guangzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Wei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "School of Data and Computer Science, Sun Yat-sen University, Guangzhou Higher Education Mega Center, 510006, Guangzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Chang-Dong", 
        "id": "sg:person.016704710117.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016704710117.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "School of Data and Computer Science, Sun Yat-sen University, Guangzhou Higher Education Mega Center, 510006, Guangzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lai", 
        "givenName": "Jian-Huang", 
        "id": "sg:person.0577472674.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577472674.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.0601602103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016125157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.78.046110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016699541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.78.046110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016699541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-8733(78)90021-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016916901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0706851105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017158516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2005/09/p09008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017878564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2005/09/p09008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017878564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.122653799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018411012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2009.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020482279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.036104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021120999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.036104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021120999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2016.11.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021308750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00265-003-0651-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025345051", 
          "https://doi.org/10.1007/s00265-003-0651-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1242072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027692695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.036106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029327122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.036106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029327122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aad9029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031633083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.066111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035552384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.066111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035552384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2008/10/p10008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037912856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.066133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039022482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.066133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039022482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/e15125419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045410827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.026113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048148225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.026113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048148225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.1912.tb05611.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052695319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/jar.33.4.3629752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058909178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/43.87601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061174288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2013.153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061662738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219525903001067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062998237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40535-017-0035-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085210691", 
          "https://doi.org/10.1186/s40535-017-0035-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40535-017-0035-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085210691", 
          "https://doi.org/10.1186/s40535-017-0035-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972832.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088800701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2016.7727287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093699719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2013.167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094004099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780199206650.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098762313"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Nowadays, more and more people use social network to share their lives and communicate with each other. In real social network, a person is influenced by others and also influences others at the same time. So the status of a person in the network can be determined by his influence power. In other words, a person with larger influence power always plays more important role and is more likely to act as a core of a community. Different from most of existing community detection algorithms which concentrate on the topology of networks, we propose an algorithm based on influence power to discover potential core members from which the community structure can be revealed. Extensive experiments confirm that our proposed algorithm has good performance in detecting community in real social network.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40535-017-0037-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1053269", 
        "issn": [
          "2196-0089"
        ], 
        "name": "Applied Informatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Community detection based on influence power", 
    "pagination": "8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "64b467cd9b2dd6444107a8e5174256d0732882c463f75b78a0a9c606872faeb9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40535-017-0037-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092106931"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40535-017-0037-2", 
      "https://app.dimensions.ai/details/publication/pub.1092106931"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000548.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs40535-017-0037-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40535-017-0037-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40535-017-0037-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40535-017-0037-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40535-017-0037-2'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40535-017-0037-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nde44e5158c29425d9cdbbc04ab3fdcb2
4 schema:citation sg:pub.10.1007/s00265-003-0651-y
5 sg:pub.10.1186/s40535-017-0035-4
6 https://doi.org/10.1016/0378-8733(78)90021-7
7 https://doi.org/10.1016/j.neucom.2016.11.019
8 https://doi.org/10.1016/j.physrep.2009.11.002
9 https://doi.org/10.1073/pnas.0601602103
10 https://doi.org/10.1073/pnas.0706851105
11 https://doi.org/10.1073/pnas.122653799
12 https://doi.org/10.1086/jar.33.4.3629752
13 https://doi.org/10.1088/1742-5468/2005/09/p09008
14 https://doi.org/10.1088/1742-5468/2008/10/p10008
15 https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
16 https://doi.org/10.1103/physreve.69.026113
17 https://doi.org/10.1103/physreve.69.066133
18 https://doi.org/10.1103/physreve.70.066111
19 https://doi.org/10.1103/physreve.74.036104
20 https://doi.org/10.1103/physreve.76.036106
21 https://doi.org/10.1103/physreve.78.046110
22 https://doi.org/10.1109/43.87601
23 https://doi.org/10.1109/icdm.2013.167
24 https://doi.org/10.1109/ijcnn.2016.7727287
25 https://doi.org/10.1109/tkde.2013.153
26 https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
27 https://doi.org/10.1126/science.1242072
28 https://doi.org/10.1126/science.aad9029
29 https://doi.org/10.1137/1.9781611972832.17
30 https://doi.org/10.1142/s0219525903001067
31 https://doi.org/10.3390/e15125419
32 schema:datePublished 2017-12
33 schema:datePublishedReg 2017-12-01
34 schema:description Nowadays, more and more people use social network to share their lives and communicate with each other. In real social network, a person is influenced by others and also influences others at the same time. So the status of a person in the network can be determined by his influence power. In other words, a person with larger influence power always plays more important role and is more likely to act as a core of a community. Different from most of existing community detection algorithms which concentrate on the topology of networks, we propose an algorithm based on influence power to discover potential core members from which the community structure can be revealed. Extensive experiments confirm that our proposed algorithm has good performance in detecting community in real social network.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N109c61cd06a3497ab6ae6c263bedda2e
39 Ne08e89114fde44a4999b93f6f270f636
40 sg:journal.1053269
41 schema:name Community detection based on influence power
42 schema:pagination 8
43 schema:productId N715e182a039448d2930dd5e5b1828d75
44 Nb985b36c5d2f489b81c1d7cefe84ec80
45 Nca989428705f4305a2b75c0822919f07
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092106931
47 https://doi.org/10.1186/s40535-017-0037-2
48 schema:sdDatePublished 2019-04-10T13:24
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nec7a9a9f2ebd40a6baec7a1022f307ad
51 schema:url https://link.springer.com/10.1186%2Fs40535-017-0037-2
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N067436565b714616a1aae2d16d42ca97 rdf:first sg:person.0577472674.86
56 rdf:rest rdf:nil
57 N109c61cd06a3497ab6ae6c263bedda2e schema:issueNumber 1
58 rdf:type schema:PublicationIssue
59 N174ac5036e604029b55b62b78ce0b065 schema:affiliation Nb36062d96b91434c9c3823712f70d2c4
60 schema:familyName Shi
61 schema:givenName Wei
62 rdf:type schema:Person
63 N48a51ce0d0404e3394d64429ada13453 schema:name School of Data and Computer Science, Sun Yat-sen University, Guangzhou Higher Education Mega Center, 510006, Guangzhou, People’s Republic of China
64 rdf:type schema:Organization
65 N715e182a039448d2930dd5e5b1828d75 schema:name doi
66 schema:value 10.1186/s40535-017-0037-2
67 rdf:type schema:PropertyValue
68 N8064fc40508143a7a28b40962a9aaf42 schema:name School of Data and Computer Science, Sun Yat-sen University, Guangzhou Higher Education Mega Center, 510006, Guangzhou, People’s Republic of China
69 rdf:type schema:Organization
70 Nb36062d96b91434c9c3823712f70d2c4 schema:name School of Data and Computer Science, Sun Yat-sen University, Guangzhou Higher Education Mega Center, 510006, Guangzhou, People’s Republic of China
71 rdf:type schema:Organization
72 Nb985b36c5d2f489b81c1d7cefe84ec80 schema:name readcube_id
73 schema:value 64b467cd9b2dd6444107a8e5174256d0732882c463f75b78a0a9c606872faeb9
74 rdf:type schema:PropertyValue
75 Nca989428705f4305a2b75c0822919f07 schema:name dimensions_id
76 schema:value pub.1092106931
77 rdf:type schema:PropertyValue
78 Nde44e5158c29425d9cdbbc04ab3fdcb2 rdf:first N174ac5036e604029b55b62b78ce0b065
79 rdf:rest Nfc8dede8edbc42eaa7d45790c96dc957
80 Ne08e89114fde44a4999b93f6f270f636 schema:volumeNumber 4
81 rdf:type schema:PublicationVolume
82 Nec7a9a9f2ebd40a6baec7a1022f307ad schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Nfc8dede8edbc42eaa7d45790c96dc957 rdf:first sg:person.016704710117.59
85 rdf:rest N067436565b714616a1aae2d16d42ca97
86 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
87 schema:name Information and Computing Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
90 schema:name Artificial Intelligence and Image Processing
91 rdf:type schema:DefinedTerm
92 sg:journal.1053269 schema:issn 2196-0089
93 schema:name Applied Informatics
94 rdf:type schema:Periodical
95 sg:person.016704710117.59 schema:affiliation N8064fc40508143a7a28b40962a9aaf42
96 schema:familyName Wang
97 schema:givenName Chang-Dong
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016704710117.59
99 rdf:type schema:Person
100 sg:person.0577472674.86 schema:affiliation N48a51ce0d0404e3394d64429ada13453
101 schema:familyName Lai
102 schema:givenName Jian-Huang
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577472674.86
104 rdf:type schema:Person
105 sg:pub.10.1007/s00265-003-0651-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1025345051
106 https://doi.org/10.1007/s00265-003-0651-y
107 rdf:type schema:CreativeWork
108 sg:pub.10.1186/s40535-017-0035-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085210691
109 https://doi.org/10.1186/s40535-017-0035-4
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0378-8733(78)90021-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016916901
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.neucom.2016.11.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021308750
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.physrep.2009.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020482279
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1073/pnas.0601602103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016125157
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1073/pnas.0706851105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017158516
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1073/pnas.122653799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411012
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1086/jar.33.4.3629752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058909178
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1088/1742-5468/2005/09/p09008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017878564
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1088/1742-5468/2008/10/p10008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037912856
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1093/acprof:oso/9780199206650.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098762313
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physreve.69.026113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048148225
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physreve.69.066133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039022482
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physreve.70.066111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035552384
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physreve.74.036104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021120999
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physreve.76.036106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029327122
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physreve.78.046110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016699541
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/43.87601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061174288
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/icdm.2013.167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094004099
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/ijcnn.2016.7727287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093699719
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/tkde.2013.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061662738
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1111/j.1469-8137.1912.tb05611.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052695319
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1126/science.1242072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027692695
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1126/science.aad9029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031633083
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1137/1.9781611972832.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800701
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1142/s0219525903001067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062998237
160 rdf:type schema:CreativeWork
161 https://doi.org/10.3390/e15125419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045410827
162 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...