Coda wave interferometry during the heating of deep geothermal reservoir rocks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10-25

AUTHORS

Jérôme Azzola, Luke Griffiths, Jean Schmittbuhl, Dimitri Zigone, Vincent Magnenet, Frédéric Masson, Michael Heap, Patrick Baud

ABSTRACT

Coda wave interferometry (CWI) is a high-resolution technique that aims at tracking small changes in a diffusive medium from the time correlation of seismic waveforms. CWI has been widely used in recent years to monitor the fine-scale evolution of fault zones and more recently of deep reservoirs. However, to provide a quantitative interpretation of the reservoir, direct modeling of physical effects like the influence of temperature on seismic wave scattering is required to investigate temperature effects from measurements of velocity changes. Here, we propose to quantify the impact of thermo-elastic deformation on CWI measurements by comparing experimental results obtained from a previous study on Westerly Granite to a numerical approach based on two combined codes (SPECFEM2D and Code_Aster) for modeling wave propagation in complex media during thermo-elastic deformation. We obtain two major results. First, we show that multiple reflections on the boundaries of our simplified numerical sample reproduce well the wave scattering properties of the experimental granitic sample characterized by a complex mineral assembly and a large set of microcracks. We based our comparison on the wave diffusion model that describes both the experimental and numerical samples (similarity in energy density function and mean free path). We also show that both samples share a similar thermo-elastic behavior, but only after the second heating and cooling cycle. Second, the stretching technique used for CWI measurements on both samples reveals reversible time shifts correlated with the thermo-elastic deformation of the sample. However, the influence of thermo-elastic deformation is different between our numerical proxy and the experimental sample. We discuss the role of irreversible deformation (e.g., microcracking) for the observed discrepancy by introducing temperature dependence of elastic moduli in the model. These results suggest that there are open perspectives to monitor thermal strain in geothermal reservoirs using CWI. More... »

PAGES

21

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40517-018-0107-2

DOI

http://dx.doi.org/10.1186/s40517-018-0107-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107832027


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0404", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geophysics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut de Physique du Globe de Strasbourg, Universit\u00e9 de Strasbourg/EOST, Strasbourg, France", 
          "id": "http://www.grid.ac/institutes/grid.11843.3f", 
          "name": [
            "Institut de Physique du Globe de Strasbourg, Universit\u00e9 de Strasbourg/EOST, Strasbourg, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Azzola", 
        "givenName": "J\u00e9r\u00f4me", 
        "id": "sg:person.013247267620.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013247267620.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Petroleumsgeomekanikk og geofysikk, NGI (Norwegian Geotechnical Institute), Oslo, Norway", 
          "id": "http://www.grid.ac/institutes/grid.425894.6", 
          "name": [
            "Petroleumsgeomekanikk og geofysikk, NGI (Norwegian Geotechnical Institute), Oslo, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Griffiths", 
        "givenName": "Luke", 
        "id": "sg:person.07663225761.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07663225761.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Physique du Globe de Strasbourg, Universit\u00e9 de Strasbourg/EOST, Strasbourg, France", 
          "id": "http://www.grid.ac/institutes/grid.11843.3f", 
          "name": [
            "Institut de Physique du Globe de Strasbourg, Universit\u00e9 de Strasbourg/EOST, Strasbourg, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmittbuhl", 
        "givenName": "Jean", 
        "id": "sg:person.01107434532.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107434532.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Physique du Globe de Strasbourg, Universit\u00e9 de Strasbourg/EOST, Strasbourg, France", 
          "id": "http://www.grid.ac/institutes/grid.11843.3f", 
          "name": [
            "Institut de Physique du Globe de Strasbourg, Universit\u00e9 de Strasbourg/EOST, Strasbourg, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zigone", 
        "givenName": "Dimitri", 
        "id": "sg:person.010325407011.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010325407011.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ICUBE, Illkirch, France", 
          "id": "http://www.grid.ac/institutes/grid.463766.6", 
          "name": [
            "ICUBE, Illkirch, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magnenet", 
        "givenName": "Vincent", 
        "id": "sg:person.01070011460.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070011460.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Physique du Globe de Strasbourg, Universit\u00e9 de Strasbourg/EOST, Strasbourg, France", 
          "id": "http://www.grid.ac/institutes/grid.11843.3f", 
          "name": [
            "Institut de Physique du Globe de Strasbourg, Universit\u00e9 de Strasbourg/EOST, Strasbourg, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masson", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "id": "sg:person.014034077057.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014034077057.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Physique du Globe de Strasbourg, Universit\u00e9 de Strasbourg/EOST, Strasbourg, France", 
          "id": "http://www.grid.ac/institutes/grid.11843.3f", 
          "name": [
            "Institut de Physique du Globe de Strasbourg, Universit\u00e9 de Strasbourg/EOST, Strasbourg, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heap", 
        "givenName": "Michael", 
        "id": "sg:person.010527646621.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527646621.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de Physique du Globe de Strasbourg, Universit\u00e9 de Strasbourg/EOST, Strasbourg, France", 
          "id": "http://www.grid.ac/institutes/grid.11843.3f", 
          "name": [
            "Institut de Physique du Globe de Strasbourg, Universit\u00e9 de Strasbourg/EOST, Strasbourg, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baud", 
        "givenName": "Patrick", 
        "id": "sg:person.07536613303.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07536613303.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41598-017-14468-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092371201", 
          "https://doi.org/10.1038/s41598-017-14468-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40517-018-0096-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105038019", 
          "https://doi.org/10.1186/s40517-018-0096-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40517-016-0055-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002710653", 
          "https://doi.org/10.1186/s40517-016-0055-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00024-005-0026-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021338259", 
          "https://doi.org/10.1007/s00024-005-0026-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40517-017-0085-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092857809", 
          "https://doi.org/10.1186/s40517-017-0085-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-08108-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091033741", 
          "https://doi.org/10.1038/s41598-017-08108-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40517-018-0103-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106320575", 
          "https://doi.org/10.1186/s40517-018-0103-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00024-009-0485-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034008932", 
          "https://doi.org/10.1007/s00024-009-0485-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00603-017-1228-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085076949", 
          "https://doi.org/10.1007/s00603-017-1228-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-25", 
    "datePublishedReg": "2018-10-25", 
    "description": "Coda wave interferometry (CWI) is a high-resolution technique that aims at tracking small changes in a diffusive medium from the time correlation of seismic waveforms. CWI has been widely used in recent years to monitor the fine-scale evolution of fault zones and more recently of deep reservoirs. However, to provide a quantitative interpretation of the reservoir, direct modeling of physical effects like the influence of temperature on seismic wave scattering is required to investigate temperature effects from measurements of velocity changes. Here, we propose to quantify the impact of thermo-elastic deformation on CWI measurements by comparing experimental results obtained from a previous study on Westerly Granite to a numerical approach based on two combined codes (SPECFEM2D and Code_Aster) for modeling wave propagation in complex media during thermo-elastic deformation. We obtain two major results. First, we show that multiple reflections on the boundaries of our simplified numerical sample reproduce well the wave scattering properties of the experimental granitic sample characterized by a complex mineral assembly and a large set of microcracks. We based our comparison on the wave diffusion model that describes both the experimental and numerical samples (similarity in energy density function and mean free path). We also show that both samples share a similar thermo-elastic behavior, but only after the second heating and cooling cycle. Second, the stretching technique used for CWI measurements on both samples reveals reversible time shifts correlated with the thermo-elastic deformation of the sample. However, the influence of thermo-elastic deformation is different between our numerical proxy and the experimental sample. We discuss the role of irreversible deformation (e.g., microcracking) for the observed discrepancy by introducing temperature dependence of elastic moduli in the model. These results suggest that there are open perspectives to monitor thermal strain in geothermal reservoirs using CWI.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s40517-018-0107-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5051075", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136002", 
        "issn": [
          "2195-9706"
        ], 
        "name": "Geothermal Energy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "coda wave interferometry", 
      "thermo-elastic deformation", 
      "geothermal reservoir rocks", 
      "wave interferometry", 
      "seismic wave scattering", 
      "fault zone", 
      "granitic samples", 
      "deep reservoir", 
      "reservoir rocks", 
      "seismic waveforms", 
      "geothermal reservoir", 
      "mineral assemblies", 
      "Westerly granite", 
      "thermo-elastic behavior", 
      "numerical samples", 
      "quantitative interpretation", 
      "velocity changes", 
      "numerical proxy", 
      "reservoir", 
      "deformation", 
      "thermal strain", 
      "irreversible deformation", 
      "high-resolution techniques", 
      "time shift", 
      "elastic modulus", 
      "numerical approach", 
      "wave propagation", 
      "influence of temperature", 
      "granite", 
      "rocks", 
      "direct modeling", 
      "major results", 
      "observed discrepancies", 
      "zone", 
      "proxy", 
      "diffusion model", 
      "small changes", 
      "multiple reflections", 
      "time correlation", 
      "experimental results", 
      "second heating", 
      "heating", 
      "temperature effects", 
      "interferometry", 
      "experimental samples", 
      "evolution", 
      "wave scattering", 
      "boundaries", 
      "physical effects", 
      "microcracks", 
      "changes", 
      "previous studies", 
      "samples", 
      "interpretation", 
      "modulus", 
      "waves", 
      "measurements", 
      "temperature dependence", 
      "cycle", 
      "influence", 
      "model", 
      "temperature", 
      "propagation", 
      "modeling", 
      "diffusive media", 
      "large set", 
      "discrepancy", 
      "technique", 
      "shift", 
      "properties", 
      "impact", 
      "waveforms", 
      "correlation", 
      "results", 
      "complex media", 
      "recent years", 
      "years", 
      "reflection", 
      "behavior", 
      "medium", 
      "effect", 
      "assembly", 
      "comparison", 
      "dependence", 
      "code", 
      "set", 
      "open perspectives", 
      "strains", 
      "scattering", 
      "approach", 
      "study", 
      "role", 
      "perspective", 
      "fine-scale evolution", 
      "CWI measurements", 
      "experimental granitic sample", 
      "complex mineral assembly", 
      "wave diffusion model", 
      "similar thermo-elastic behavior", 
      "reversible time shifts", 
      "deep geothermal reservoir rocks"
    ], 
    "name": "Coda wave interferometry during the heating of deep geothermal reservoir rocks", 
    "pagination": "21", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107832027"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40517-018-0107-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40517-018-0107-2", 
      "https://app.dimensions.ai/details/publication/pub.1107832027"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_760.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s40517-018-0107-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40517-018-0107-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40517-018-0107-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40517-018-0107-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40517-018-0107-2'


 

This table displays all metadata directly associated to this object as RDF triples.

251 TRIPLES      22 PREDICATES      135 URIs      118 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40517-018-0107-2 schema:about anzsrc-for:04
2 anzsrc-for:0404
3 schema:author Ne72fea30594c41219682b5f5d16ded07
4 schema:citation sg:pub.10.1007/s00024-005-0026-6
5 sg:pub.10.1007/s00024-009-0485-2
6 sg:pub.10.1007/s00603-017-1228-9
7 sg:pub.10.1038/s41598-017-08108-5
8 sg:pub.10.1038/s41598-017-14468-9
9 sg:pub.10.1186/s40517-016-0055-7
10 sg:pub.10.1186/s40517-017-0085-9
11 sg:pub.10.1186/s40517-018-0096-1
12 sg:pub.10.1186/s40517-018-0103-6
13 schema:datePublished 2018-10-25
14 schema:datePublishedReg 2018-10-25
15 schema:description Coda wave interferometry (CWI) is a high-resolution technique that aims at tracking small changes in a diffusive medium from the time correlation of seismic waveforms. CWI has been widely used in recent years to monitor the fine-scale evolution of fault zones and more recently of deep reservoirs. However, to provide a quantitative interpretation of the reservoir, direct modeling of physical effects like the influence of temperature on seismic wave scattering is required to investigate temperature effects from measurements of velocity changes. Here, we propose to quantify the impact of thermo-elastic deformation on CWI measurements by comparing experimental results obtained from a previous study on Westerly Granite to a numerical approach based on two combined codes (SPECFEM2D and Code_Aster) for modeling wave propagation in complex media during thermo-elastic deformation. We obtain two major results. First, we show that multiple reflections on the boundaries of our simplified numerical sample reproduce well the wave scattering properties of the experimental granitic sample characterized by a complex mineral assembly and a large set of microcracks. We based our comparison on the wave diffusion model that describes both the experimental and numerical samples (similarity in energy density function and mean free path). We also show that both samples share a similar thermo-elastic behavior, but only after the second heating and cooling cycle. Second, the stretching technique used for CWI measurements on both samples reveals reversible time shifts correlated with the thermo-elastic deformation of the sample. However, the influence of thermo-elastic deformation is different between our numerical proxy and the experimental sample. We discuss the role of irreversible deformation (e.g., microcracking) for the observed discrepancy by introducing temperature dependence of elastic moduli in the model. These results suggest that there are open perspectives to monitor thermal strain in geothermal reservoirs using CWI.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf Nb79a5e427ac348f1bf00b7474c691181
20 Ne6f75f5c615444b09ecfe2679b3354ac
21 sg:journal.1136002
22 schema:keywords CWI measurements
23 Westerly granite
24 approach
25 assembly
26 behavior
27 boundaries
28 changes
29 coda wave interferometry
30 code
31 comparison
32 complex media
33 complex mineral assembly
34 correlation
35 cycle
36 deep geothermal reservoir rocks
37 deep reservoir
38 deformation
39 dependence
40 diffusion model
41 diffusive media
42 direct modeling
43 discrepancy
44 effect
45 elastic modulus
46 evolution
47 experimental granitic sample
48 experimental results
49 experimental samples
50 fault zone
51 fine-scale evolution
52 geothermal reservoir
53 geothermal reservoir rocks
54 granite
55 granitic samples
56 heating
57 high-resolution techniques
58 impact
59 influence
60 influence of temperature
61 interferometry
62 interpretation
63 irreversible deformation
64 large set
65 major results
66 measurements
67 medium
68 microcracks
69 mineral assemblies
70 model
71 modeling
72 modulus
73 multiple reflections
74 numerical approach
75 numerical proxy
76 numerical samples
77 observed discrepancies
78 open perspectives
79 perspective
80 physical effects
81 previous studies
82 propagation
83 properties
84 proxy
85 quantitative interpretation
86 recent years
87 reflection
88 reservoir
89 reservoir rocks
90 results
91 reversible time shifts
92 rocks
93 role
94 samples
95 scattering
96 second heating
97 seismic wave scattering
98 seismic waveforms
99 set
100 shift
101 similar thermo-elastic behavior
102 small changes
103 strains
104 study
105 technique
106 temperature
107 temperature dependence
108 temperature effects
109 thermal strain
110 thermo-elastic behavior
111 thermo-elastic deformation
112 time correlation
113 time shift
114 velocity changes
115 wave diffusion model
116 wave interferometry
117 wave propagation
118 wave scattering
119 waveforms
120 waves
121 years
122 zone
123 schema:name Coda wave interferometry during the heating of deep geothermal reservoir rocks
124 schema:pagination 21
125 schema:productId N75a5d3d5ef8741c09f8d00d6a11f6f96
126 Nb1ac462a89554ce18a7713d24dda8b86
127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107832027
128 https://doi.org/10.1186/s40517-018-0107-2
129 schema:sdDatePublished 2021-11-01T18:31
130 schema:sdLicense https://scigraph.springernature.com/explorer/license/
131 schema:sdPublisher N08033b31385e41aeb2d7f063d4377dde
132 schema:url https://doi.org/10.1186/s40517-018-0107-2
133 sgo:license sg:explorer/license/
134 sgo:sdDataset articles
135 rdf:type schema:ScholarlyArticle
136 N08033b31385e41aeb2d7f063d4377dde schema:name Springer Nature - SN SciGraph project
137 rdf:type schema:Organization
138 N102b6c4766b049e38009b87c0e8b5e4a rdf:first sg:person.01107434532.38
139 rdf:rest N8c897026c720401f8ee3aa8b7268d859
140 N1d10d904db574a99a11c5506aba26a5f rdf:first sg:person.014034077057.39
141 rdf:rest N668e8fba5c844b76b4c831ea3a141be3
142 N4c8ce33d2bbc4fe187db7de32f0ca837 rdf:first sg:person.07663225761.89
143 rdf:rest N102b6c4766b049e38009b87c0e8b5e4a
144 N668e8fba5c844b76b4c831ea3a141be3 rdf:first sg:person.010527646621.78
145 rdf:rest Nea502625bedb4ba191004a3e7efce942
146 N75a5d3d5ef8741c09f8d00d6a11f6f96 schema:name dimensions_id
147 schema:value pub.1107832027
148 rdf:type schema:PropertyValue
149 N8c897026c720401f8ee3aa8b7268d859 rdf:first sg:person.010325407011.05
150 rdf:rest N9e318a70842e4528848546230abcaedc
151 N9e318a70842e4528848546230abcaedc rdf:first sg:person.01070011460.26
152 rdf:rest N1d10d904db574a99a11c5506aba26a5f
153 Nb1ac462a89554ce18a7713d24dda8b86 schema:name doi
154 schema:value 10.1186/s40517-018-0107-2
155 rdf:type schema:PropertyValue
156 Nb79a5e427ac348f1bf00b7474c691181 schema:issueNumber 1
157 rdf:type schema:PublicationIssue
158 Ne6f75f5c615444b09ecfe2679b3354ac schema:volumeNumber 6
159 rdf:type schema:PublicationVolume
160 Ne72fea30594c41219682b5f5d16ded07 rdf:first sg:person.013247267620.62
161 rdf:rest N4c8ce33d2bbc4fe187db7de32f0ca837
162 Nea502625bedb4ba191004a3e7efce942 rdf:first sg:person.07536613303.16
163 rdf:rest rdf:nil
164 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
165 schema:name Earth Sciences
166 rdf:type schema:DefinedTerm
167 anzsrc-for:0404 schema:inDefinedTermSet anzsrc-for:
168 schema:name Geophysics
169 rdf:type schema:DefinedTerm
170 sg:grant.5051075 http://pending.schema.org/fundedItem sg:pub.10.1186/s40517-018-0107-2
171 rdf:type schema:MonetaryGrant
172 sg:journal.1136002 schema:issn 2195-9706
173 schema:name Geothermal Energy
174 schema:publisher Springer Nature
175 rdf:type schema:Periodical
176 sg:person.010325407011.05 schema:affiliation grid-institutes:grid.11843.3f
177 schema:familyName Zigone
178 schema:givenName Dimitri
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010325407011.05
180 rdf:type schema:Person
181 sg:person.010527646621.78 schema:affiliation grid-institutes:grid.11843.3f
182 schema:familyName Heap
183 schema:givenName Michael
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527646621.78
185 rdf:type schema:Person
186 sg:person.01070011460.26 schema:affiliation grid-institutes:grid.463766.6
187 schema:familyName Magnenet
188 schema:givenName Vincent
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070011460.26
190 rdf:type schema:Person
191 sg:person.01107434532.38 schema:affiliation grid-institutes:grid.11843.3f
192 schema:familyName Schmittbuhl
193 schema:givenName Jean
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107434532.38
195 rdf:type schema:Person
196 sg:person.013247267620.62 schema:affiliation grid-institutes:grid.11843.3f
197 schema:familyName Azzola
198 schema:givenName Jérôme
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013247267620.62
200 rdf:type schema:Person
201 sg:person.014034077057.39 schema:affiliation grid-institutes:grid.11843.3f
202 schema:familyName Masson
203 schema:givenName Frédéric
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014034077057.39
205 rdf:type schema:Person
206 sg:person.07536613303.16 schema:affiliation grid-institutes:grid.11843.3f
207 schema:familyName Baud
208 schema:givenName Patrick
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07536613303.16
210 rdf:type schema:Person
211 sg:person.07663225761.89 schema:affiliation grid-institutes:grid.425894.6
212 schema:familyName Griffiths
213 schema:givenName Luke
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07663225761.89
215 rdf:type schema:Person
216 sg:pub.10.1007/s00024-005-0026-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021338259
217 https://doi.org/10.1007/s00024-005-0026-6
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/s00024-009-0485-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034008932
220 https://doi.org/10.1007/s00024-009-0485-2
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/s00603-017-1228-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085076949
223 https://doi.org/10.1007/s00603-017-1228-9
224 rdf:type schema:CreativeWork
225 sg:pub.10.1038/s41598-017-08108-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091033741
226 https://doi.org/10.1038/s41598-017-08108-5
227 rdf:type schema:CreativeWork
228 sg:pub.10.1038/s41598-017-14468-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092371201
229 https://doi.org/10.1038/s41598-017-14468-9
230 rdf:type schema:CreativeWork
231 sg:pub.10.1186/s40517-016-0055-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002710653
232 https://doi.org/10.1186/s40517-016-0055-7
233 rdf:type schema:CreativeWork
234 sg:pub.10.1186/s40517-017-0085-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092857809
235 https://doi.org/10.1186/s40517-017-0085-9
236 rdf:type schema:CreativeWork
237 sg:pub.10.1186/s40517-018-0096-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105038019
238 https://doi.org/10.1186/s40517-018-0096-1
239 rdf:type schema:CreativeWork
240 sg:pub.10.1186/s40517-018-0103-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106320575
241 https://doi.org/10.1186/s40517-018-0103-6
242 rdf:type schema:CreativeWork
243 grid-institutes:grid.11843.3f schema:alternateName Institut de Physique du Globe de Strasbourg, Université de Strasbourg/EOST, Strasbourg, France
244 schema:name Institut de Physique du Globe de Strasbourg, Université de Strasbourg/EOST, Strasbourg, France
245 rdf:type schema:Organization
246 grid-institutes:grid.425894.6 schema:alternateName Petroleumsgeomekanikk og geofysikk, NGI (Norwegian Geotechnical Institute), Oslo, Norway
247 schema:name Petroleumsgeomekanikk og geofysikk, NGI (Norwegian Geotechnical Institute), Oslo, Norway
248 rdf:type schema:Organization
249 grid-institutes:grid.463766.6 schema:alternateName ICUBE, Illkirch, France
250 schema:name ICUBE, Illkirch, France
251 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...