Geometric disintegration and star-shaped distributions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-10-01

AUTHORS

Wolf-Dieter Richter

ABSTRACT

Geometric and stochastic representations are derived for the big class of p-generalized elliptically contoured distributions, and (generalizing Cavalieri’s and Torricelli’s method of indivisibles in a non-Euclidean sense) a geometric disintegration method is established for deriving even more general star-shaped distributions. Applications to constructing non-concentric elliptically contoured and generalized von Mises distributions are presented.AMS subject classification Primary 60E05; 60D05; secondary 28A50; 28A75; 51F99 More... »

PAGES

20

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40488-014-0020-6

DOI

http://dx.doi.org/10.1186/s40488-014-0020-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049781277


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Mathematics, University of Rostock, Ulmenstra\u00dfe 69, Haus 3, 18057, Rostock, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Mathematics, University of Rostock, Ulmenstra\u00dfe 69, Haus 3, 18057, Rostock, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Richter", 
        "givenName": "Wolf-Dieter", 
        "id": "sg:person.016265453773.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016265453773.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4613-0045-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007589130", 
          "https://doi.org/10.1007/978-1-4613-0045-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01095082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049727028", 
          "https://doi.org/10.1007/bf01095082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8528-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052088082", 
          "https://doi.org/10.1007/978-1-4613-8528-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-3019-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108488388", 
          "https://doi.org/10.1007/978-1-4899-3019-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10986-009-9030-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013789965", 
          "https://doi.org/10.1007/s10986-009-9030-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-2937-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705827", 
          "https://doi.org/10.1007/978-1-4899-2937-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10986-011-9138-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036777534", 
          "https://doi.org/10.1007/s10986-011-9138-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3682-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011120608", 
          "https://doi.org/10.1007/978-1-4612-3682-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0079663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021054248", 
          "https://doi.org/10.1007/bfb0079663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b80163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022585272", 
          "https://doi.org/10.1007/b80163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001840100174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001044494", 
          "https://doi.org/10.1007/s001840100174"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-10-01", 
    "datePublishedReg": "2014-10-01", 
    "description": "Geometric and stochastic representations are derived for the big class of p-generalized elliptically contoured distributions, and (generalizing Cavalieri\u2019s and Torricelli\u2019s method of indivisibles in a non-Euclidean sense) a geometric disintegration method is established for deriving even more general star-shaped distributions. Applications to constructing non-concentric elliptically contoured and generalized von Mises distributions are presented.AMS subject classification Primary 60E05; 60D05; secondary 28A50; 28A75; 51F99", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s40488-014-0020-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1051646", 
        "issn": [
          "2195-5832"
        ], 
        "name": "Journal of Statistical Distributions and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "keywords": [
      "star-shaped distributions", 
      "stochastic representation", 
      "von Mises distribution", 
      "big class", 
      "Mises distribution", 
      "class", 
      "representation", 
      "distribution", 
      "disintegration method", 
      "applications", 
      "disintegration", 
      "method", 
      "geometric disintegration method", 
      "general star-shaped distributions", 
      "Geometric disintegration"
    ], 
    "name": "Geometric disintegration and star-shaped distributions", 
    "pagination": "20", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049781277"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40488-014-0020-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40488-014-0020-6", 
      "https://app.dimensions.ai/details/publication/pub.1049781277"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_634.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s40488-014-0020-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40488-014-0020-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40488-014-0020-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40488-014-0020-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40488-014-0020-6'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      22 PREDICATES      51 URIs      32 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40488-014-0020-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf2c2a83989404c1f8f7dc8be0d05d144
4 schema:citation sg:pub.10.1007/978-1-4612-3682-5
5 sg:pub.10.1007/978-1-4613-0045-8
6 sg:pub.10.1007/978-1-4613-8528-8
7 sg:pub.10.1007/978-1-4899-2937-2
8 sg:pub.10.1007/978-1-4899-3019-4
9 sg:pub.10.1007/b80163
10 sg:pub.10.1007/bf01095082
11 sg:pub.10.1007/bfb0079663
12 sg:pub.10.1007/s001840100174
13 sg:pub.10.1007/s10986-009-9030-3
14 sg:pub.10.1007/s10986-011-9138-0
15 schema:datePublished 2014-10-01
16 schema:datePublishedReg 2014-10-01
17 schema:description Geometric and stochastic representations are derived for the big class of p-generalized elliptically contoured distributions, and (generalizing Cavalieri’s and Torricelli’s method of indivisibles in a non-Euclidean sense) a geometric disintegration method is established for deriving even more general star-shaped distributions. Applications to constructing non-concentric elliptically contoured and generalized von Mises distributions are presented.AMS subject classification Primary 60E05; 60D05; secondary 28A50; 28A75; 51F99
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N63dd866ac0bc46ffa323b81a1389bc21
22 Nd70ae820af7f47d5b85d7e6ac3324ff2
23 sg:journal.1051646
24 schema:keywords Geometric disintegration
25 Mises distribution
26 applications
27 big class
28 class
29 disintegration
30 disintegration method
31 distribution
32 general star-shaped distributions
33 geometric disintegration method
34 method
35 representation
36 star-shaped distributions
37 stochastic representation
38 von Mises distribution
39 schema:name Geometric disintegration and star-shaped distributions
40 schema:pagination 20
41 schema:productId N06ed673fbfe44d3f99fbf90983c00447
42 Nba571531cf6c4d57aa915637ab02b7cd
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049781277
44 https://doi.org/10.1186/s40488-014-0020-6
45 schema:sdDatePublished 2022-01-01T18:33
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N7e85d610785249298a5793ffc065b45f
48 schema:url https://doi.org/10.1186/s40488-014-0020-6
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N06ed673fbfe44d3f99fbf90983c00447 schema:name dimensions_id
53 schema:value pub.1049781277
54 rdf:type schema:PropertyValue
55 N63dd866ac0bc46ffa323b81a1389bc21 schema:volumeNumber 1
56 rdf:type schema:PublicationVolume
57 N7e85d610785249298a5793ffc065b45f schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Nba571531cf6c4d57aa915637ab02b7cd schema:name doi
60 schema:value 10.1186/s40488-014-0020-6
61 rdf:type schema:PropertyValue
62 Nd70ae820af7f47d5b85d7e6ac3324ff2 schema:issueNumber 1
63 rdf:type schema:PublicationIssue
64 Nf2c2a83989404c1f8f7dc8be0d05d144 rdf:first sg:person.016265453773.81
65 rdf:rest rdf:nil
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
70 schema:name Pure Mathematics
71 rdf:type schema:DefinedTerm
72 sg:journal.1051646 schema:issn 2195-5832
73 schema:name Journal of Statistical Distributions and Applications
74 schema:publisher Springer Nature
75 rdf:type schema:Periodical
76 sg:person.016265453773.81 schema:affiliation grid-institutes:None
77 schema:familyName Richter
78 schema:givenName Wolf-Dieter
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016265453773.81
80 rdf:type schema:Person
81 sg:pub.10.1007/978-1-4612-3682-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011120608
82 https://doi.org/10.1007/978-1-4612-3682-5
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/978-1-4613-0045-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007589130
85 https://doi.org/10.1007/978-1-4613-0045-8
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/978-1-4613-8528-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052088082
88 https://doi.org/10.1007/978-1-4613-8528-8
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/978-1-4899-2937-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705827
91 https://doi.org/10.1007/978-1-4899-2937-2
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/978-1-4899-3019-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108488388
94 https://doi.org/10.1007/978-1-4899-3019-4
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/b80163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022585272
97 https://doi.org/10.1007/b80163
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf01095082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049727028
100 https://doi.org/10.1007/bf01095082
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bfb0079663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021054248
103 https://doi.org/10.1007/bfb0079663
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s001840100174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001044494
106 https://doi.org/10.1007/s001840100174
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s10986-009-9030-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013789965
109 https://doi.org/10.1007/s10986-009-9030-3
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s10986-011-9138-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036777534
112 https://doi.org/10.1007/s10986-011-9138-0
113 rdf:type schema:CreativeWork
114 grid-institutes:None schema:alternateName Institute of Mathematics, University of Rostock, Ulmenstraße 69, Haus 3, 18057, Rostock, Germany
115 schema:name Institute of Mathematics, University of Rostock, Ulmenstraße 69, Haus 3, 18057, Rostock, Germany
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...