Methane and hydrogen sensing properties of catalytic combustion type single-chip micro gas sensors with two different Pt film thicknesses for ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Woongjin Jang, Joon-Shik Park, Ki-Won Lee, Yonghan Roh

ABSTRACT

A catalytic combustible type single-chip micro gas sensor was fabricated by MEMS technology and responses with input powers and methane and hydrogen gas concentrations were characterized. The ranges of responses at Pt thickness of 450 nm and input power of 128 mW were 1.076–2.433 mV for methane concentrations of 2315–5787 ppm, and 0.965–2.514 mV for hydrogen concentrations of 282–706 ppm, respectively. The ranges of responses at Pt thickness of 150 nm and input power of 112 mW were 0.192–0.438 mV for methane concentrations of 2315–5787 ppm and 0.949 mV to 2.496 ppm for hydrogen concentrations of 282–706 ppm, respectively. The responses to H2 concentration ratios were 3.65 mV/103 ppm for a micro gas sensor with a 450 nm thick heater and 3.81 mV/103 ppm for a micro gas sensor with a 150 nm thick heater. But in the case of methane gas response, the response to concentration ratios of the micro gas sensor using the 150 nm thick Pt heater was remarkably different from the case of the 450 nm thick Pt heater. The ratios for CH4 were 3.51 mV/104 ppm for the micro gas sensor with a 450 nm thick heater and 0.6 mV/104 ppm for the micro gas sensor with a 150 nm thick heater, respectively. From these results, the micro gas sensor that has the thicker heater with a thickness of 450 nm showed higher sensitivity to methane gas than the micro gas sensor with a thinner heater with a thickness of 150 nm. More... »

PAGES

7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40486-018-0069-y

DOI

http://dx.doi.org/10.1186/s40486-018-0069-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109914234


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sungkyunkwan University", 
          "id": "https://www.grid.ac/institutes/grid.264381.a", 
          "name": [
            "Smart Sensor Research Center, Korea Electronics Technology Institute, 13509, Seongnam-si, Gyeonggi-do, Republic of Korea", 
            "Department of Electronic and Electrical Engineering, Sungkyunkwan University, 16419, Suwon-si, Gyeonggi-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jang", 
        "givenName": "Woongjin", 
        "id": "sg:person.011236132022.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011236132022.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Electronics Technology Institute", 
          "id": "https://www.grid.ac/institutes/grid.418968.a", 
          "name": [
            "Smart Sensor Research Center, Korea Electronics Technology Institute, 13509, Seongnam-si, Gyeonggi-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Joon-Shik", 
        "id": "sg:person.014127071717.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014127071717.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Shinwoo Electronics Co., Ltd, 18529, Hwaseong-si, Gyeonggi-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Ki-Won", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sungkyunkwan University", 
          "id": "https://www.grid.ac/institutes/grid.264381.a", 
          "name": [
            "Department of Electronic and Electrical Engineering, Sungkyunkwan University, 16419, Suwon-si, Gyeonggi-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roh", 
        "givenName": "Yonghan", 
        "id": "sg:person.01134726076.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134726076.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/493012a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000541867", 
          "https://doi.org/10.1038/493012a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2012.10.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003930773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envpol.2012.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007789056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0925-4005(94)01532-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009081140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2011.07.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009475688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1247828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013796290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10832-013-9810-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015804405", 
          "https://doi.org/10.1007/s10832-013-9810-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2011.06.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017835909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2011.04.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019240786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2012.12.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023303766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2006.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028063376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1247045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028973590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/sr-11-2012-724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032167636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-4247(01)00668-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038797198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2013.08.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044376472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2013.08.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044376472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.36.834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063058616"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "A catalytic combustible type single-chip micro gas sensor was fabricated by MEMS technology and responses with input powers and methane and hydrogen gas concentrations were characterized. The ranges of responses at Pt thickness of 450 nm and input power of 128 mW were 1.076\u20132.433 mV for methane concentrations of 2315\u20135787 ppm, and 0.965\u20132.514 mV for hydrogen concentrations of 282\u2013706 ppm, respectively. The ranges of responses at Pt thickness of 150 nm and input power of 112 mW were 0.192\u20130.438 mV for methane concentrations of 2315\u20135787 ppm and 0.949 mV to 2.496 ppm for hydrogen concentrations of 282\u2013706 ppm, respectively. The responses to H2 concentration ratios were 3.65 mV/103 ppm for a micro gas sensor with a 450 nm thick heater and 3.81 mV/103 ppm for a micro gas sensor with a 150 nm thick heater. But in the case of methane gas response, the response to concentration ratios of the micro gas sensor using the 150 nm thick Pt heater was remarkably different from the case of the 450 nm thick Pt heater. The ratios for CH4 were 3.51 mV/104 ppm for the micro gas sensor with a 450 nm thick heater and 0.6 mV/104 ppm for the micro gas sensor with a 150 nm thick heater, respectively. From these results, the micro gas sensor that has the thicker heater with a thickness of 450 nm showed higher sensitivity to methane gas than the micro gas sensor with a thinner heater with a thickness of 150 nm.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40486-018-0069-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136003", 
        "issn": [
          "2213-9621"
        ], 
        "name": "Micro and Nano Systems Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Methane and hydrogen sensing properties of catalytic combustion type single-chip micro gas sensors with two different Pt film thicknesses for heaters", 
    "pagination": "7", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c9f94adcc6eb5f17e86898cca4313c8c2d450a8af320e1bad0c8f9fc3e79870d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40486-018-0069-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109914234"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40486-018-0069-y", 
      "https://app.dimensions.ai/details/publication/pub.1109914234"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000265_0000000265/records_67354_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs40486-018-0069-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40486-018-0069-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40486-018-0069-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40486-018-0069-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40486-018-0069-y'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40486-018-0069-y schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author Ne5d589c049054c02b08366e372379ddc
4 schema:citation sg:pub.10.1007/s10832-013-9810-3
5 sg:pub.10.1038/493012a
6 https://doi.org/10.1016/0925-4005(94)01532-m
7 https://doi.org/10.1016/j.apenergy.2013.08.063
8 https://doi.org/10.1016/j.envpol.2012.11.003
9 https://doi.org/10.1016/j.snb.2006.11.010
10 https://doi.org/10.1016/j.snb.2011.04.070
11 https://doi.org/10.1016/j.snb.2011.06.041
12 https://doi.org/10.1016/j.snb.2011.07.062
13 https://doi.org/10.1016/j.snb.2012.10.023
14 https://doi.org/10.1016/j.snb.2012.12.027
15 https://doi.org/10.1016/s0924-4247(01)00668-9
16 https://doi.org/10.1108/sr-11-2012-724
17 https://doi.org/10.1126/science.1247045
18 https://doi.org/10.1126/science.1247828
19 https://doi.org/10.1143/jjap.36.834
20 schema:datePublished 2018-12
21 schema:datePublishedReg 2018-12-01
22 schema:description A catalytic combustible type single-chip micro gas sensor was fabricated by MEMS technology and responses with input powers and methane and hydrogen gas concentrations were characterized. The ranges of responses at Pt thickness of 450 nm and input power of 128 mW were 1.076–2.433 mV for methane concentrations of 2315–5787 ppm, and 0.965–2.514 mV for hydrogen concentrations of 282–706 ppm, respectively. The ranges of responses at Pt thickness of 150 nm and input power of 112 mW were 0.192–0.438 mV for methane concentrations of 2315–5787 ppm and 0.949 mV to 2.496 ppm for hydrogen concentrations of 282–706 ppm, respectively. The responses to H2 concentration ratios were 3.65 mV/103 ppm for a micro gas sensor with a 450 nm thick heater and 3.81 mV/103 ppm for a micro gas sensor with a 150 nm thick heater. But in the case of methane gas response, the response to concentration ratios of the micro gas sensor using the 150 nm thick Pt heater was remarkably different from the case of the 450 nm thick Pt heater. The ratios for CH4 were 3.51 mV/104 ppm for the micro gas sensor with a 450 nm thick heater and 0.6 mV/104 ppm for the micro gas sensor with a 150 nm thick heater, respectively. From these results, the micro gas sensor that has the thicker heater with a thickness of 450 nm showed higher sensitivity to methane gas than the micro gas sensor with a thinner heater with a thickness of 150 nm.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N0f43038fd32c49c3ae9e8e6bcd5b6923
27 N433e02699e7d461c9c57759e3cbf449d
28 sg:journal.1136003
29 schema:name Methane and hydrogen sensing properties of catalytic combustion type single-chip micro gas sensors with two different Pt film thicknesses for heaters
30 schema:pagination 7
31 schema:productId N1f83cd10bdf048b0a5aefe91d2e7d58a
32 N2adb6b271eea43508fdb940b97c96f61
33 N7c5c8ca8801741e6ac0982928c47ad83
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109914234
35 https://doi.org/10.1186/s40486-018-0069-y
36 schema:sdDatePublished 2019-04-11T08:06
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Ne7d2bc98f2a7495485d2ad7d09ba37f5
39 schema:url https://link.springer.com/10.1186%2Fs40486-018-0069-y
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N0f43038fd32c49c3ae9e8e6bcd5b6923 schema:volumeNumber 6
44 rdf:type schema:PublicationVolume
45 N1f83cd10bdf048b0a5aefe91d2e7d58a schema:name doi
46 schema:value 10.1186/s40486-018-0069-y
47 rdf:type schema:PropertyValue
48 N2adb6b271eea43508fdb940b97c96f61 schema:name readcube_id
49 schema:value c9f94adcc6eb5f17e86898cca4313c8c2d450a8af320e1bad0c8f9fc3e79870d
50 rdf:type schema:PropertyValue
51 N433e02699e7d461c9c57759e3cbf449d schema:issueNumber 1
52 rdf:type schema:PublicationIssue
53 N7bc21790b45049cb99d0c7d1e8efd09b schema:name Shinwoo Electronics Co., Ltd, 18529, Hwaseong-si, Gyeonggi-do, Republic of Korea
54 rdf:type schema:Organization
55 N7c5c8ca8801741e6ac0982928c47ad83 schema:name dimensions_id
56 schema:value pub.1109914234
57 rdf:type schema:PropertyValue
58 N9d83543d7eae46d6b4cecb64e95a8d66 rdf:first sg:person.01134726076.27
59 rdf:rest rdf:nil
60 Nb2bd155c6b9b48988cf5bbc5014e21b8 schema:affiliation N7bc21790b45049cb99d0c7d1e8efd09b
61 schema:familyName Lee
62 schema:givenName Ki-Won
63 rdf:type schema:Person
64 Nc98bb337c6724322857e7459fcbe02f1 rdf:first Nb2bd155c6b9b48988cf5bbc5014e21b8
65 rdf:rest N9d83543d7eae46d6b4cecb64e95a8d66
66 Ne5d589c049054c02b08366e372379ddc rdf:first sg:person.011236132022.10
67 rdf:rest Nf0db88c817774104aed7684f60ba639d
68 Ne7d2bc98f2a7495485d2ad7d09ba37f5 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Nf0db88c817774104aed7684f60ba639d rdf:first sg:person.014127071717.75
71 rdf:rest Nc98bb337c6724322857e7459fcbe02f1
72 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
73 schema:name Engineering
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
76 schema:name Chemical Engineering
77 rdf:type schema:DefinedTerm
78 sg:journal.1136003 schema:issn 2213-9621
79 schema:name Micro and Nano Systems Letters
80 rdf:type schema:Periodical
81 sg:person.011236132022.10 schema:affiliation https://www.grid.ac/institutes/grid.264381.a
82 schema:familyName Jang
83 schema:givenName Woongjin
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011236132022.10
85 rdf:type schema:Person
86 sg:person.01134726076.27 schema:affiliation https://www.grid.ac/institutes/grid.264381.a
87 schema:familyName Roh
88 schema:givenName Yonghan
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134726076.27
90 rdf:type schema:Person
91 sg:person.014127071717.75 schema:affiliation https://www.grid.ac/institutes/grid.418968.a
92 schema:familyName Park
93 schema:givenName Joon-Shik
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014127071717.75
95 rdf:type schema:Person
96 sg:pub.10.1007/s10832-013-9810-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015804405
97 https://doi.org/10.1007/s10832-013-9810-3
98 rdf:type schema:CreativeWork
99 sg:pub.10.1038/493012a schema:sameAs https://app.dimensions.ai/details/publication/pub.1000541867
100 https://doi.org/10.1038/493012a
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0925-4005(94)01532-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1009081140
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.apenergy.2013.08.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044376472
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.envpol.2012.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007789056
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.snb.2006.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028063376
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.snb.2011.04.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019240786
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.snb.2011.06.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017835909
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.snb.2011.07.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009475688
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.snb.2012.10.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003930773
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.snb.2012.12.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023303766
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/s0924-4247(01)00668-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038797198
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1108/sr-11-2012-724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032167636
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1126/science.1247045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028973590
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1126/science.1247828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013796290
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1143/jjap.36.834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063058616
129 rdf:type schema:CreativeWork
130 https://www.grid.ac/institutes/grid.264381.a schema:alternateName Sungkyunkwan University
131 schema:name Department of Electronic and Electrical Engineering, Sungkyunkwan University, 16419, Suwon-si, Gyeonggi-do, Republic of Korea
132 Smart Sensor Research Center, Korea Electronics Technology Institute, 13509, Seongnam-si, Gyeonggi-do, Republic of Korea
133 rdf:type schema:Organization
134 https://www.grid.ac/institutes/grid.418968.a schema:alternateName Korea Electronics Technology Institute
135 schema:name Smart Sensor Research Center, Korea Electronics Technology Institute, 13509, Seongnam-si, Gyeonggi-do, Republic of Korea
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...