Chromosomal instability in the prediction of pituitary neuroendocrine tumors prognosis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-11-10

AUTHORS

Hélène Lasolle, Mad-Hélénie Elsensohn, Anne Wierinckx, Eudeline Alix, Clément Bonnefille, Alexandre Vasiljevic, Christine Cortet, Bénédicte Decoudier, Nathalie Sturm, Stephan Gaillard, Amandine Ferrière, Pascal Roy, Emmanuel Jouanneau, Philippe Bertolino, Claire Bardel, Damien Sanlaville, Gérald Raverot

ABSTRACT

The purpose of this study was to analyze the impact of copy number variations (CNV) on sporadic pituitary neuroendocrine tumors (PitNETs) prognosis, to identify specific prognosis markers according to the known clinico-pathological classification. CGH array analysis was performed on 195 fresh-frozen PitNETs (56 gonadotroph, 11 immunonegative, 56 somatotroph, 39 lactotroph and 33 corticotroph), with 5 years post-surgery follow-up (124 recurrences), classified according to the five-tiered grading classification (invasion, Ki-67, mitotic index and p53 positivity). Effect of alterations on recurrence was studied using logistic regression models. Transcriptomic analysis of 32 lactotroph tumors was performed. The quantity of CNV was dependent on tumor type: higher in lactotroph (median(min–max) = 38% (0–97) of probes) compared to corticotroph (11% (0–77)), somatotroph (5% (0–99)), gonadotroph (0% (0–10)) and immunonegative tumors (0% (0–17). It was not predictive of recurrence in the whole cohort. In lactotroph tumors, genome instability, especially quantity of gains, significantly predicted recurrence independently of invasion and proliferation (p-value = 0.02, OR = 1.2). However, no specific CNV was found as a prognostic marker. Transcriptomic analysis of the genes included in the CNV and associated with prognosis didn’t show significantly overrepresented pathway. In somatotroph and corticotroph tumors, USP8 and GNAS mutations were not associated with genome disruption or recurrence respectively. To conclude, CGH array analysis showed genome instability was dependent on PitNET type. Lactotroph tumors were highly altered and the quantity of altered genome was associated with poorer prognosis though the mechanism is unclear, whereas gonadotroph and immunonegative tumors showed the same ‘quiet’ profile, leaving the mechanism underlying tumorigenesis open to question. More... »

PAGES

190

Journal

TITLE

Acta Neuropathologica Communications

ISSUE

1

VOLUME

8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40478-020-01067-5

DOI

http://dx.doi.org/10.1186/s40478-020-01067-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1132463880

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/33168091


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ACTH-Secreting Pituitary Adenoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromogranins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosomal Instability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Comparative Genomic Hybridization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Copy Number Variations", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endopeptidases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endosomal Sorting Complexes Required for Transport", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "GTP-Binding Protein alpha Subunits, Gs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomic Instability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gonadotrophs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Growth Hormone-Secreting Pituitary Adenoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Loss of Heterozygosity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Recurrence, Local", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuroendocrine Tumors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pituitary Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prolactinoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ubiquitin Thiolesterase", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon, 69372, Lyon, France", 
          "id": "http://www.grid.ac/institutes/grid.462282.8", 
          "name": [
            "F\u00e9d\u00e9ration d\u2019endocrinologie, Centre de R\u00e9f\u00e9rence des Maladies Rares Hypophysaires, Groupement Hospitalier Est, Hospices Civils de Lyon, 8 av Doyen Lepine, 69677, Bron Cedex, France", 
            "Universit\u00e9 Lyon 1, Lyon, France", 
            "INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon, 69372, Lyon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lasolle", 
        "givenName": "H\u00e9l\u00e8ne", 
        "id": "sg:person.015626163301.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015626163301.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9quipe Biostatistique-Sant\u00e9, Laboratoire de Biom\u00e9trie et Biologie \u00c9volutive, CNRS UMR 5558, Villeurbanne, France", 
          "id": "http://www.grid.ac/institutes/grid.462854.9", 
          "name": [
            "Universit\u00e9 Lyon 1, Lyon, France", 
            "Service de Biostatistique-Bioinformatique, Hospices Civils de Lyon, Lyon, France", 
            "\u00c9quipe Biostatistique-Sant\u00e9, Laboratoire de Biom\u00e9trie et Biologie \u00c9volutive, CNRS UMR 5558, Villeurbanne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elsensohn", 
        "givenName": "Mad-H\u00e9l\u00e9nie", 
        "id": "sg:person.0724441045.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724441045.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France", 
          "id": "http://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Universit\u00e9 Lyon 1, Lyon, France", 
            "Service de Biostatistique-Bioinformatique, Hospices Civils de Lyon, Lyon, France", 
            "ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wierinckx", 
        "givenName": "Anne", 
        "id": "sg:person.0576176611.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576176611.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Service de Cytog\u00e9n\u00e9tique, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France", 
          "id": "http://www.grid.ac/institutes/grid.413852.9", 
          "name": [
            "Service de Cytog\u00e9n\u00e9tique, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alix", 
        "givenName": "Eudeline", 
        "id": "sg:person.01306504271.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306504271.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Service de Cytog\u00e9n\u00e9tique, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France", 
          "id": "http://www.grid.ac/institutes/grid.413852.9", 
          "name": [
            "Service de Cytog\u00e9n\u00e9tique, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonnefille", 
        "givenName": "Cl\u00e9ment", 
        "id": "sg:person.010500206240.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010500206240.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre de Pathologie Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France", 
          "id": "http://www.grid.ac/institutes/grid.413852.9", 
          "name": [
            "Universit\u00e9 Lyon 1, Lyon, France", 
            "INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon, 69372, Lyon, France", 
            "Centre de Pathologie Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasiljevic", 
        "givenName": "Alexandre", 
        "id": "sg:person.01112301071.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112301071.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Service d\u2019Endocrinologie, CHRU de Lille, Hopital Huriez, 59037, Lille Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.413875.c", 
          "name": [
            "Service d\u2019Endocrinologie, CHRU de Lille, Hopital Huriez, 59037, Lille Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cortet", 
        "givenName": "Christine", 
        "id": "sg:person.01315550771.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315550771.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Service d\u2019Endocrinologie - Diab\u00e8te \u2013 Nutrition, Centre Hospitalier Universitaire de Reims, Reims, Champagne-Ardenne, France", 
          "id": "http://www.grid.ac/institutes/grid.139510.f", 
          "name": [
            "Service d\u2019Endocrinologie - Diab\u00e8te \u2013 Nutrition, Centre Hospitalier Universitaire de Reims, Reims, Champagne-Ardenne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Decoudier", 
        "givenName": "B\u00e9n\u00e9dicte", 
        "id": "sg:person.0663702043.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663702043.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "D\u00e9partement d\u2019Anatomie et cytologie pathologique, CHU Grenoble Alpes, Grenoble, France", 
          "id": "http://www.grid.ac/institutes/grid.410529.b", 
          "name": [
            "D\u00e9partement d\u2019Anatomie et cytologie pathologique, CHU Grenoble Alpes, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sturm", 
        "givenName": "Nathalie", 
        "id": "sg:person.0754654275.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754654275.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Foch Hospital, 92151, Suresnes, France", 
          "id": "http://www.grid.ac/institutes/grid.414106.6", 
          "name": [
            "Department of Neurosurgery, Foch Hospital, 92151, Suresnes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaillard", 
        "givenName": "Stephan", 
        "id": "sg:person.01362626353.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362626353.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bordeaux, 146 R Leo saignat, 33000, Bordeaux, France", 
          "id": "http://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "Department of Endocrinology, Diabetes and Nutrition, CHU de Bordeaux, Bordeaux, France", 
            "University of Bordeaux, 146 R Leo saignat, 33000, Bordeaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferri\u00e8re", 
        "givenName": "Amandine", 
        "id": "sg:person.012665661154.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012665661154.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9quipe Biostatistique-Sant\u00e9, Laboratoire de Biom\u00e9trie et Biologie \u00c9volutive, CNRS UMR 5558, Villeurbanne, France", 
          "id": "http://www.grid.ac/institutes/grid.462854.9", 
          "name": [
            "Universit\u00e9 Lyon 1, Lyon, France", 
            "Service de Biostatistique-Bioinformatique, Hospices Civils de Lyon, Lyon, France", 
            "\u00c9quipe Biostatistique-Sant\u00e9, Laboratoire de Biom\u00e9trie et Biologie \u00c9volutive, CNRS UMR 5558, Villeurbanne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roy", 
        "givenName": "Pascal", 
        "id": "sg:person.01040447451.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040447451.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Service de Neurochirurgie, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France", 
          "id": "http://www.grid.ac/institutes/grid.413852.9", 
          "name": [
            "Universit\u00e9 Lyon 1, Lyon, France", 
            "INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon, 69372, Lyon, France", 
            "Service de Neurochirurgie, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jouanneau", 
        "givenName": "Emmanuel", 
        "id": "sg:person.01346664471.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346664471.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon, 69372, Lyon, France", 
          "id": "http://www.grid.ac/institutes/grid.462282.8", 
          "name": [
            "INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon, 69372, Lyon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bertolino", 
        "givenName": "Philippe", 
        "id": "sg:person.01276255155.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276255155.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Plateforme de s\u00e9quen\u00e7age haut d\u00e9bit, Hospices Civils de Lyon, Bron, France", 
          "id": "http://www.grid.ac/institutes/grid.413852.9", 
          "name": [
            "Universit\u00e9 Lyon 1, Lyon, France", 
            "Service de Biostatistique-Bioinformatique, Hospices Civils de Lyon, Lyon, France", 
            "\u00c9quipe Biostatistique-Sant\u00e9, Laboratoire de Biom\u00e9trie et Biologie \u00c9volutive, CNRS UMR 5558, Villeurbanne, France", 
            "Plateforme de s\u00e9quen\u00e7age haut d\u00e9bit, Hospices Civils de Lyon, Bron, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bardel", 
        "givenName": "Claire", 
        "id": "sg:person.01343567560.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343567560.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Plateforme de s\u00e9quen\u00e7age haut d\u00e9bit, Hospices Civils de Lyon, Bron, France", 
          "id": "http://www.grid.ac/institutes/grid.413852.9", 
          "name": [
            "Universit\u00e9 Lyon 1, Lyon, France", 
            "Service de Cytog\u00e9n\u00e9tique, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France", 
            "Plateforme de s\u00e9quen\u00e7age haut d\u00e9bit, Hospices Civils de Lyon, Bron, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanlaville", 
        "givenName": "Damien", 
        "id": "sg:person.0674535670.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674535670.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon, 69372, Lyon, France", 
          "id": "http://www.grid.ac/institutes/grid.462282.8", 
          "name": [
            "F\u00e9d\u00e9ration d\u2019endocrinologie, Centre de R\u00e9f\u00e9rence des Maladies Rares Hypophysaires, Groupement Hospitalier Est, Hospices Civils de Lyon, 8 av Doyen Lepine, 69677, Bron Cedex, France", 
            "Universit\u00e9 Lyon 1, Lyon, France", 
            "INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon, 69372, Lyon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raverot", 
        "givenName": "G\u00e9rald", 
        "id": "sg:person.01300551271.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300551271.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1025313214951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049636069", 
          "https://doi.org/10.1023/a:1025313214951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027553209", 
          "https://doi.org/10.1038/ng.3166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-05275-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105993561", 
          "https://doi.org/10.1038/s41467-018-05275-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12022-007-9006-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038133168", 
          "https://doi.org/10.1007/s12022-007-9006-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10014-018-0314-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103601811", 
          "https://doi.org/10.1007/s10014-018-0314-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11102-007-0058-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049115547", 
          "https://doi.org/10.1007/s11102-007-0058-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41576-019-0171-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1121184577", 
          "https://doi.org/10.1038/s41576-019-0171-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00401-013-1084-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026078572", 
          "https://doi.org/10.1007/s00401-013-1084-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11060-009-0107-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012887812", 
          "https://doi.org/10.1007/s11060-009-0107-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12022-019-09587-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1120744189", 
          "https://doi.org/10.1007/s12022-019-09587-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/cr.2016.114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033997339", 
          "https://doi.org/10.1038/cr.2016.114"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-11-10", 
    "datePublishedReg": "2020-11-10", 
    "description": "The purpose of this study was to analyze the impact of copy number variations (CNV) on sporadic pituitary neuroendocrine tumors (PitNETs) prognosis, to identify specific prognosis markers according to the known clinico-pathological classification. CGH array analysis was performed on 195 fresh-frozen PitNETs (56 gonadotroph, 11 immunonegative, 56 somatotroph, 39 lactotroph and 33 corticotroph), with 5\u00a0years post-surgery follow-up (124 recurrences), classified according to the five-tiered grading classification (invasion, Ki-67, mitotic index and p53 positivity). Effect of alterations on recurrence was studied using logistic regression models. Transcriptomic analysis of 32 lactotroph tumors was performed. The quantity of CNV was dependent on tumor type: higher in lactotroph (median(min\u2013max)\u2009=\u200938% (0\u201397) of probes) compared to corticotroph (11% (0\u201377)), somatotroph (5% (0\u201399)), gonadotroph (0% (0\u201310)) and immunonegative tumors (0% (0\u201317). It was not predictive of recurrence in the whole cohort. In lactotroph tumors, genome instability, especially quantity of gains, significantly predicted recurrence independently of invasion and proliferation (p-value\u2009=\u20090.02, OR\u2009=\u20091.2). However, no specific CNV was found as a prognostic marker. Transcriptomic analysis of the genes included in the CNV and associated with prognosis didn\u2019t show significantly overrepresented pathway. In somatotroph and corticotroph tumors, USP8 and GNAS mutations were not associated with genome disruption or recurrence respectively. To conclude, CGH array analysis showed genome instability was dependent on PitNET type. Lactotroph tumors were highly altered and the quantity of altered genome was associated with poorer prognosis though the mechanism is unclear, whereas gonadotroph and immunonegative tumors showed the same \u2018quiet\u2019 profile, leaving the mechanism underlying tumorigenesis open to question.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s40478-020-01067-5", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1048594", 
        "issn": [
          "2051-5960"
        ], 
        "name": "Acta Neuropathologica Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "clinico-pathological classification", 
      "logistic regression models", 
      "CGH array analysis", 
      "copy number variations", 
      "tumor prognosis", 
      "prognosis marker", 
      "immunonegative tumours", 
      "tumor types", 
      "lactotroph tumors", 
      "grading classification", 
      "effects of alterations", 
      "tumors", 
      "array analysis", 
      "regression models", 
      "prognosis", 
      "recurrence", 
      "transcriptomic analysis", 
      "gonadotrophs", 
      "corticotrophs", 
      "somatotrophs", 
      "PitNETs", 
      "lactotrophs", 
      "number variations", 
      "markers", 
      "alterations", 
      "years", 
      "study", 
      "classification", 
      "analysis", 
      "effect", 
      "purpose", 
      "types", 
      "impact", 
      "model", 
      "variation", 
      "quantity"
    ], 
    "name": "Chromosomal instability in the prediction of pituitary neuroendocrine tumors prognosis", 
    "pagination": "190", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1132463880"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40478-020-01067-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "33168091"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40478-020-01067-5", 
      "https://app.dimensions.ai/details/publication/pub.1132463880"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_863.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s40478-020-01067-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40478-020-01067-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40478-020-01067-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40478-020-01067-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40478-020-01067-5'


 

This table displays all metadata directly associated to this object as RDF triples.

397 TRIPLES      21 PREDICATES      98 URIs      79 LITERALS      33 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40478-020-01067-5 schema:about N00892390f7774b588294386ff24e1b7a
2 N06bd3c8f67c04cc185b490ee75fed928
3 N1976c865171f44fd928b10ce1c5fb103
4 N27defaf8f2fd43ef8fcceef32f6686bc
5 N2841c075c0b9416a8103b2a3262c6ddb
6 N28bdee7bdd8b4e68a193275d3cc955d4
7 N40706e37c84645909f2bd04dcdaf7f68
8 N496674c93f1d48429a88d642741e8648
9 N541bd131a92d4738ba69b6b6f6dd8b8b
10 N56bf2df6cb8f43d09cb1504ab49e8431
11 N6a3eb085d2ef49ee8320b9a1b96b3724
12 N70604418a62547a982c5f062db313574
13 N78296df3a82d43949ae82d91d0e247b4
14 N8581f572cacc484782a95b645dfab849
15 N8a6b05b530b54f6e867b6d6421ae9808
16 N8f0d72b236394bec8c6561d5b2a6b753
17 N96cf3a401d89467f8ed999dcdffa5d0c
18 Nae892ea820bb472cafe4b789210e951d
19 Nb6eefb5522b24465adb97e6f0e6d0605
20 Nb9195977961044cea8dbecd2abf859cd
21 Nc2a16a68297140af9035bd809a6a940a
22 Nc58f073cfff84b8fad28a1d4ab2ad1a6
23 Ne66dc6e646e94551aedd774a6b7838a2
24 Nf94d25dec08d4447b70e41da8d660f79
25 Nfd8a3a66e1324951b2c47e65ffe4866c
26 Nffef99b6bb7e4549a4dd080e0edafc00
27 anzsrc-for:06
28 anzsrc-for:0604
29 schema:author N09df80477c7740658c8105717265c1c4
30 schema:citation sg:pub.10.1007/s00401-013-1084-y
31 sg:pub.10.1007/s10014-018-0314-3
32 sg:pub.10.1007/s11060-009-0107-y
33 sg:pub.10.1007/s11102-007-0058-2
34 sg:pub.10.1007/s12022-007-9006-y
35 sg:pub.10.1007/s12022-019-09587-0
36 sg:pub.10.1023/a:1025313214951
37 sg:pub.10.1038/cr.2016.114
38 sg:pub.10.1038/ng.3166
39 sg:pub.10.1038/s41467-018-05275-5
40 sg:pub.10.1038/s41576-019-0171-x
41 schema:datePublished 2020-11-10
42 schema:datePublishedReg 2020-11-10
43 schema:description The purpose of this study was to analyze the impact of copy number variations (CNV) on sporadic pituitary neuroendocrine tumors (PitNETs) prognosis, to identify specific prognosis markers according to the known clinico-pathological classification. CGH array analysis was performed on 195 fresh-frozen PitNETs (56 gonadotroph, 11 immunonegative, 56 somatotroph, 39 lactotroph and 33 corticotroph), with 5 years post-surgery follow-up (124 recurrences), classified according to the five-tiered grading classification (invasion, Ki-67, mitotic index and p53 positivity). Effect of alterations on recurrence was studied using logistic regression models. Transcriptomic analysis of 32 lactotroph tumors was performed. The quantity of CNV was dependent on tumor type: higher in lactotroph (median(min–max) = 38% (0–97) of probes) compared to corticotroph (11% (0–77)), somatotroph (5% (0–99)), gonadotroph (0% (0–10)) and immunonegative tumors (0% (0–17). It was not predictive of recurrence in the whole cohort. In lactotroph tumors, genome instability, especially quantity of gains, significantly predicted recurrence independently of invasion and proliferation (p-value = 0.02, OR = 1.2). However, no specific CNV was found as a prognostic marker. Transcriptomic analysis of the genes included in the CNV and associated with prognosis didn’t show significantly overrepresented pathway. In somatotroph and corticotroph tumors, USP8 and GNAS mutations were not associated with genome disruption or recurrence respectively. To conclude, CGH array analysis showed genome instability was dependent on PitNET type. Lactotroph tumors were highly altered and the quantity of altered genome was associated with poorer prognosis though the mechanism is unclear, whereas gonadotroph and immunonegative tumors showed the same ‘quiet’ profile, leaving the mechanism underlying tumorigenesis open to question.
44 schema:genre article
45 schema:isAccessibleForFree true
46 schema:isPartOf N30a91ff5e3d746a097682c0c82984bd0
47 N55ce4806d25c465d87f731f6c836b229
48 sg:journal.1048594
49 schema:keywords CGH array analysis
50 PitNETs
51 alterations
52 analysis
53 array analysis
54 classification
55 clinico-pathological classification
56 copy number variations
57 corticotrophs
58 effect
59 effects of alterations
60 gonadotrophs
61 grading classification
62 immunonegative tumours
63 impact
64 lactotroph tumors
65 lactotrophs
66 logistic regression models
67 markers
68 model
69 number variations
70 prognosis
71 prognosis marker
72 purpose
73 quantity
74 recurrence
75 regression models
76 somatotrophs
77 study
78 transcriptomic analysis
79 tumor prognosis
80 tumor types
81 tumors
82 types
83 variation
84 years
85 schema:name Chromosomal instability in the prediction of pituitary neuroendocrine tumors prognosis
86 schema:pagination 190
87 schema:productId N901945d138cd4306be1f530bef412875
88 Naa3083c4fc314fee9ba9f16b4d9ea89a
89 Nfadace551ef14ea7b6ac28f5b110f958
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132463880
91 https://doi.org/10.1186/s40478-020-01067-5
92 schema:sdDatePublished 2022-08-04T17:10
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher Nf9c6276f8e12423584f076aae33ca9ae
95 schema:url https://doi.org/10.1186/s40478-020-01067-5
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N00892390f7774b588294386ff24e1b7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Prognosis
101 rdf:type schema:DefinedTerm
102 N06bd3c8f67c04cc185b490ee75fed928 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Chromosomal Instability
104 rdf:type schema:DefinedTerm
105 N09df80477c7740658c8105717265c1c4 rdf:first sg:person.015626163301.70
106 rdf:rest Nf71b2c62b82044a19d1dde391920e7a9
107 N1976c865171f44fd928b10ce1c5fb103 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Male
109 rdf:type schema:DefinedTerm
110 N1b209fb787fa48869dc3a94d0246c39e rdf:first sg:person.01300551271.16
111 rdf:rest rdf:nil
112 N21b6f63b883c45279ec1732303081779 rdf:first sg:person.01276255155.49
113 rdf:rest Nbb807ee899b4458fa54205b587766c1f
114 N27defaf8f2fd43ef8fcceef32f6686bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Endopeptidases
116 rdf:type schema:DefinedTerm
117 N2841c075c0b9416a8103b2a3262c6ddb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Humans
119 rdf:type schema:DefinedTerm
120 N28bdee7bdd8b4e68a193275d3cc955d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name ACTH-Secreting Pituitary Adenoma
122 rdf:type schema:DefinedTerm
123 N2988d183d0544a38bc7fbbd2e480acd8 rdf:first sg:person.0576176611.09
124 rdf:rest N9f52f74cb06b49c0a932f4beec714c7c
125 N30a91ff5e3d746a097682c0c82984bd0 schema:issueNumber 1
126 rdf:type schema:PublicationIssue
127 N40706e37c84645909f2bd04dcdaf7f68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Prolactinoma
129 rdf:type schema:DefinedTerm
130 N440e3401a2a94dc8ab9b0775ea42ebf2 rdf:first sg:person.01040447451.94
131 rdf:rest N77741b6c462e43faad1c14aa1ff40e44
132 N44afb07206eb4f5face56adb38391c0d rdf:first sg:person.01112301071.13
133 rdf:rest N93414cf5e74c43ff86b91fa54bfc30cd
134 N493e4c372ce74237b970df9d093a36e4 rdf:first sg:person.01362626353.52
135 rdf:rest N8dcb8933afd840ec84e6385e9171a562
136 N496674c93f1d48429a88d642741e8648 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Gene Expression Profiling
138 rdf:type schema:DefinedTerm
139 N541bd131a92d4738ba69b6b6f6dd8b8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Loss of Heterozygosity
141 rdf:type schema:DefinedTerm
142 N55ce4806d25c465d87f731f6c836b229 schema:volumeNumber 8
143 rdf:type schema:PublicationVolume
144 N56bf2df6cb8f43d09cb1504ab49e8431 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Neuroendocrine Tumors
146 rdf:type schema:DefinedTerm
147 N6a3eb085d2ef49ee8320b9a1b96b3724 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name GTP-Binding Protein alpha Subunits, Gs
149 rdf:type schema:DefinedTerm
150 N70604418a62547a982c5f062db313574 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name DNA Copy Number Variations
152 rdf:type schema:DefinedTerm
153 N77741b6c462e43faad1c14aa1ff40e44 rdf:first sg:person.01346664471.47
154 rdf:rest N21b6f63b883c45279ec1732303081779
155 N78296df3a82d43949ae82d91d0e247b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Growth Hormone-Secreting Pituitary Adenoma
157 rdf:type schema:DefinedTerm
158 N82125a714c4f4302a8a0892a437628e5 rdf:first sg:person.010500206240.33
159 rdf:rest N44afb07206eb4f5face56adb38391c0d
160 N8581f572cacc484782a95b645dfab849 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Middle Aged
162 rdf:type schema:DefinedTerm
163 N8a6b05b530b54f6e867b6d6421ae9808 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Comparative Genomic Hybridization
165 rdf:type schema:DefinedTerm
166 N8dcb8933afd840ec84e6385e9171a562 rdf:first sg:person.012665661154.82
167 rdf:rest N440e3401a2a94dc8ab9b0775ea42ebf2
168 N8f0d72b236394bec8c6561d5b2a6b753 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Adenoma
170 rdf:type schema:DefinedTerm
171 N901945d138cd4306be1f530bef412875 schema:name doi
172 schema:value 10.1186/s40478-020-01067-5
173 rdf:type schema:PropertyValue
174 N91709843f6c6428d80700bc51f349d0e rdf:first sg:person.0663702043.71
175 rdf:rest Nf7f0f546fb5c437b94c5138b6e51d69a
176 N93414cf5e74c43ff86b91fa54bfc30cd rdf:first sg:person.01315550771.17
177 rdf:rest N91709843f6c6428d80700bc51f349d0e
178 N96cf3a401d89467f8ed999dcdffa5d0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Adult
180 rdf:type schema:DefinedTerm
181 N9f52f74cb06b49c0a932f4beec714c7c rdf:first sg:person.01306504271.46
182 rdf:rest N82125a714c4f4302a8a0892a437628e5
183 Na65a651306004bdebdd7d2e5af9de509 rdf:first sg:person.0674535670.11
184 rdf:rest N1b209fb787fa48869dc3a94d0246c39e
185 Naa3083c4fc314fee9ba9f16b4d9ea89a schema:name dimensions_id
186 schema:value pub.1132463880
187 rdf:type schema:PropertyValue
188 Nae892ea820bb472cafe4b789210e951d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Endosomal Sorting Complexes Required for Transport
190 rdf:type schema:DefinedTerm
191 Nb6eefb5522b24465adb97e6f0e6d0605 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Chromogranins
193 rdf:type schema:DefinedTerm
194 Nb9195977961044cea8dbecd2abf859cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Female
196 rdf:type schema:DefinedTerm
197 Nbb807ee899b4458fa54205b587766c1f rdf:first sg:person.01343567560.27
198 rdf:rest Na65a651306004bdebdd7d2e5af9de509
199 Nc2a16a68297140af9035bd809a6a940a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Neoplasm Recurrence, Local
201 rdf:type schema:DefinedTerm
202 Nc58f073cfff84b8fad28a1d4ab2ad1a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Genomic Instability
204 rdf:type schema:DefinedTerm
205 Ne66dc6e646e94551aedd774a6b7838a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Ubiquitin Thiolesterase
207 rdf:type schema:DefinedTerm
208 Nf71b2c62b82044a19d1dde391920e7a9 rdf:first sg:person.0724441045.49
209 rdf:rest N2988d183d0544a38bc7fbbd2e480acd8
210 Nf7f0f546fb5c437b94c5138b6e51d69a rdf:first sg:person.0754654275.89
211 rdf:rest N493e4c372ce74237b970df9d093a36e4
212 Nf94d25dec08d4447b70e41da8d660f79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
213 schema:name Gonadotrophs
214 rdf:type schema:DefinedTerm
215 Nf9c6276f8e12423584f076aae33ca9ae schema:name Springer Nature - SN SciGraph project
216 rdf:type schema:Organization
217 Nfadace551ef14ea7b6ac28f5b110f958 schema:name pubmed_id
218 schema:value 33168091
219 rdf:type schema:PropertyValue
220 Nfd8a3a66e1324951b2c47e65ffe4866c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
221 schema:name Mutation
222 rdf:type schema:DefinedTerm
223 Nffef99b6bb7e4549a4dd080e0edafc00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
224 schema:name Pituitary Neoplasms
225 rdf:type schema:DefinedTerm
226 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
227 schema:name Biological Sciences
228 rdf:type schema:DefinedTerm
229 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
230 schema:name Genetics
231 rdf:type schema:DefinedTerm
232 sg:journal.1048594 schema:issn 2051-5960
233 schema:name Acta Neuropathologica Communications
234 schema:publisher Springer Nature
235 rdf:type schema:Periodical
236 sg:person.01040447451.94 schema:affiliation grid-institutes:grid.462854.9
237 schema:familyName Roy
238 schema:givenName Pascal
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040447451.94
240 rdf:type schema:Person
241 sg:person.010500206240.33 schema:affiliation grid-institutes:grid.413852.9
242 schema:familyName Bonnefille
243 schema:givenName Clément
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010500206240.33
245 rdf:type schema:Person
246 sg:person.01112301071.13 schema:affiliation grid-institutes:grid.413852.9
247 schema:familyName Vasiljevic
248 schema:givenName Alexandre
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112301071.13
250 rdf:type schema:Person
251 sg:person.012665661154.82 schema:affiliation grid-institutes:grid.412041.2
252 schema:familyName Ferrière
253 schema:givenName Amandine
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012665661154.82
255 rdf:type schema:Person
256 sg:person.01276255155.49 schema:affiliation grid-institutes:grid.462282.8
257 schema:familyName Bertolino
258 schema:givenName Philippe
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276255155.49
260 rdf:type schema:Person
261 sg:person.01300551271.16 schema:affiliation grid-institutes:grid.462282.8
262 schema:familyName Raverot
263 schema:givenName Gérald
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300551271.16
265 rdf:type schema:Person
266 sg:person.01306504271.46 schema:affiliation grid-institutes:grid.413852.9
267 schema:familyName Alix
268 schema:givenName Eudeline
269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306504271.46
270 rdf:type schema:Person
271 sg:person.01315550771.17 schema:affiliation grid-institutes:grid.413875.c
272 schema:familyName Cortet
273 schema:givenName Christine
274 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315550771.17
275 rdf:type schema:Person
276 sg:person.01343567560.27 schema:affiliation grid-institutes:grid.413852.9
277 schema:familyName Bardel
278 schema:givenName Claire
279 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343567560.27
280 rdf:type schema:Person
281 sg:person.01346664471.47 schema:affiliation grid-institutes:grid.413852.9
282 schema:familyName Jouanneau
283 schema:givenName Emmanuel
284 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346664471.47
285 rdf:type schema:Person
286 sg:person.01362626353.52 schema:affiliation grid-institutes:grid.414106.6
287 schema:familyName Gaillard
288 schema:givenName Stephan
289 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362626353.52
290 rdf:type schema:Person
291 sg:person.015626163301.70 schema:affiliation grid-institutes:grid.462282.8
292 schema:familyName Lasolle
293 schema:givenName Hélène
294 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015626163301.70
295 rdf:type schema:Person
296 sg:person.0576176611.09 schema:affiliation grid-institutes:grid.4444.0
297 schema:familyName Wierinckx
298 schema:givenName Anne
299 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576176611.09
300 rdf:type schema:Person
301 sg:person.0663702043.71 schema:affiliation grid-institutes:grid.139510.f
302 schema:familyName Decoudier
303 schema:givenName Bénédicte
304 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663702043.71
305 rdf:type schema:Person
306 sg:person.0674535670.11 schema:affiliation grid-institutes:grid.413852.9
307 schema:familyName Sanlaville
308 schema:givenName Damien
309 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674535670.11
310 rdf:type schema:Person
311 sg:person.0724441045.49 schema:affiliation grid-institutes:grid.462854.9
312 schema:familyName Elsensohn
313 schema:givenName Mad-Hélénie
314 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724441045.49
315 rdf:type schema:Person
316 sg:person.0754654275.89 schema:affiliation grid-institutes:grid.410529.b
317 schema:familyName Sturm
318 schema:givenName Nathalie
319 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754654275.89
320 rdf:type schema:Person
321 sg:pub.10.1007/s00401-013-1084-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1026078572
322 https://doi.org/10.1007/s00401-013-1084-y
323 rdf:type schema:CreativeWork
324 sg:pub.10.1007/s10014-018-0314-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103601811
325 https://doi.org/10.1007/s10014-018-0314-3
326 rdf:type schema:CreativeWork
327 sg:pub.10.1007/s11060-009-0107-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1012887812
328 https://doi.org/10.1007/s11060-009-0107-y
329 rdf:type schema:CreativeWork
330 sg:pub.10.1007/s11102-007-0058-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049115547
331 https://doi.org/10.1007/s11102-007-0058-2
332 rdf:type schema:CreativeWork
333 sg:pub.10.1007/s12022-007-9006-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1038133168
334 https://doi.org/10.1007/s12022-007-9006-y
335 rdf:type schema:CreativeWork
336 sg:pub.10.1007/s12022-019-09587-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120744189
337 https://doi.org/10.1007/s12022-019-09587-0
338 rdf:type schema:CreativeWork
339 sg:pub.10.1023/a:1025313214951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049636069
340 https://doi.org/10.1023/a:1025313214951
341 rdf:type schema:CreativeWork
342 sg:pub.10.1038/cr.2016.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033997339
343 https://doi.org/10.1038/cr.2016.114
344 rdf:type schema:CreativeWork
345 sg:pub.10.1038/ng.3166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027553209
346 https://doi.org/10.1038/ng.3166
347 rdf:type schema:CreativeWork
348 sg:pub.10.1038/s41467-018-05275-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105993561
349 https://doi.org/10.1038/s41467-018-05275-5
350 rdf:type schema:CreativeWork
351 sg:pub.10.1038/s41576-019-0171-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1121184577
352 https://doi.org/10.1038/s41576-019-0171-x
353 rdf:type schema:CreativeWork
354 grid-institutes:grid.139510.f schema:alternateName Service d’Endocrinologie - Diabète – Nutrition, Centre Hospitalier Universitaire de Reims, Reims, Champagne-Ardenne, France
355 schema:name Service d’Endocrinologie - Diabète – Nutrition, Centre Hospitalier Universitaire de Reims, Reims, Champagne-Ardenne, France
356 rdf:type schema:Organization
357 grid-institutes:grid.410529.b schema:alternateName Département d’Anatomie et cytologie pathologique, CHU Grenoble Alpes, Grenoble, France
358 schema:name Département d’Anatomie et cytologie pathologique, CHU Grenoble Alpes, Grenoble, France
359 rdf:type schema:Organization
360 grid-institutes:grid.412041.2 schema:alternateName University of Bordeaux, 146 R Leo saignat, 33000, Bordeaux, France
361 schema:name Department of Endocrinology, Diabetes and Nutrition, CHU de Bordeaux, Bordeaux, France
362 University of Bordeaux, 146 R Leo saignat, 33000, Bordeaux, France
363 rdf:type schema:Organization
364 grid-institutes:grid.413852.9 schema:alternateName Centre de Pathologie Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
365 Plateforme de séquençage haut débit, Hospices Civils de Lyon, Bron, France
366 Service de Cytogénétique, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France
367 Service de Neurochirurgie, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
368 schema:name Centre de Pathologie Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
369 INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon, 69372, Lyon, France
370 Plateforme de séquençage haut débit, Hospices Civils de Lyon, Bron, France
371 Service de Biostatistique-Bioinformatique, Hospices Civils de Lyon, Lyon, France
372 Service de Cytogénétique, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France
373 Service de Neurochirurgie, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
374 Université Lyon 1, Lyon, France
375 Équipe Biostatistique-Santé, Laboratoire de Biométrie et Biologie Évolutive, CNRS UMR 5558, Villeurbanne, France
376 rdf:type schema:Organization
377 grid-institutes:grid.413875.c schema:alternateName Service d’Endocrinologie, CHRU de Lille, Hopital Huriez, 59037, Lille Cedex, France
378 schema:name Service d’Endocrinologie, CHRU de Lille, Hopital Huriez, 59037, Lille Cedex, France
379 rdf:type schema:Organization
380 grid-institutes:grid.414106.6 schema:alternateName Department of Neurosurgery, Foch Hospital, 92151, Suresnes, France
381 schema:name Department of Neurosurgery, Foch Hospital, 92151, Suresnes, France
382 rdf:type schema:Organization
383 grid-institutes:grid.4444.0 schema:alternateName ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France
384 schema:name ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France
385 Service de Biostatistique-Bioinformatique, Hospices Civils de Lyon, Lyon, France
386 Université Lyon 1, Lyon, France
387 rdf:type schema:Organization
388 grid-institutes:grid.462282.8 schema:alternateName INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon, 69372, Lyon, France
389 schema:name Fédération d’endocrinologie, Centre de Référence des Maladies Rares Hypophysaires, Groupement Hospitalier Est, Hospices Civils de Lyon, 8 av Doyen Lepine, 69677, Bron Cedex, France
390 INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon, 69372, Lyon, France
391 Université Lyon 1, Lyon, France
392 rdf:type schema:Organization
393 grid-institutes:grid.462854.9 schema:alternateName Équipe Biostatistique-Santé, Laboratoire de Biométrie et Biologie Évolutive, CNRS UMR 5558, Villeurbanne, France
394 schema:name Service de Biostatistique-Bioinformatique, Hospices Civils de Lyon, Lyon, France
395 Université Lyon 1, Lyon, France
396 Équipe Biostatistique-Santé, Laboratoire de Biométrie et Biologie Évolutive, CNRS UMR 5558, Villeurbanne, France
397 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...