An automated A-value measurement tool for accurate cochlear duct length estimation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

John E. Iyaniwura, Mai Elfarnawany, Hanif M. Ladak, Sumit K. Agrawal

ABSTRACT

BACKGROUND: There has been renewed interest in the cochlear duct length (CDL) for preoperative cochlear implant electrode selection and postoperative generation of patient-specific frequency maps. The CDL can be estimated by measuring the A-value, which is defined as the length between the round window and the furthest point on the basal turn. Unfortunately, there is significant intra- and inter-observer variability when these measurements are made clinically. The objective of this study was to develop an automated A-value measurement algorithm to improve accuracy and eliminate observer variability. METHOD: Clinical and micro-CT images of 20 cadaveric cochleae specimens were acquired. The micro-CT of one sample was chosen as the atlas, and A-value fiducials were placed onto that image. Image registration (rigid affine and non-rigid B-spline) was applied between the atlas and the 19 remaining clinical CT images. The registration transform was applied to the A-value fiducials, and the A-value was then automatically calculated for each specimen. High resolution micro-CT images of the same 19 specimens were used to measure the gold standard A-values for comparison against the manual and automated methods. RESULTS: The registration algorithm had excellent qualitative overlap between the atlas and target images. The automated method eliminated the observer variability and the systematic underestimation by experts. Manual measurement of the A-value on clinical CT had a mean error of 9.5 ± 4.3% compared to micro-CT, and this improved to an error of 2.7 ± 2.1% using the automated algorithm. Both the automated and manual methods correlated significantly with the gold standard micro-CT A-values (r = 0.70, p < 0.01 and r = 0.69, p < 0.01, respectively). CONCLUSION: An automated A-value measurement tool using atlas-based registration methods was successfully developed and validated. The automated method eliminated the observer variability and improved accuracy as compared to manual measurements by experts. This open-source tool has the potential to benefit cochlear implant recipients in the future. More... »

PAGES

5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40463-018-0253-3

DOI

http://dx.doi.org/10.1186/s40463-018-0253-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100556528

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29357924


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Automation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cadaver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Canada", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cochlear Duct", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cochlear Implantation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cochlear Implants", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dissection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Western University", 
          "id": "https://www.grid.ac/institutes/grid.39381.30", 
          "name": [
            "Biomedical Engineering Graduate Program, Western University, 1151 Richmond Street, N6A 3K7, London, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iyaniwura", 
        "givenName": "John E.", 
        "id": "sg:person.010404572633.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010404572633.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Western University", 
          "id": "https://www.grid.ac/institutes/grid.39381.30", 
          "name": [
            "Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elfarnawany", 
        "givenName": "Mai", 
        "id": "sg:person.01207524637.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207524637.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Western University", 
          "id": "https://www.grid.ac/institutes/grid.39381.30", 
          "name": [
            "Biomedical Engineering Graduate Program, Western University, 1151 Richmond Street, N6A 3K7, London, ON, Canada", 
            "Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada", 
            "Department of Medical Biophysics, Western University, London, ON, Canada", 
            "Department of Electrical and Computer Engineering, Western University, London, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ladak", 
        "givenName": "Hanif M.", 
        "id": "sg:person.01371305031.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371305031.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.449710.f", 
          "name": [
            "Biomedical Engineering Graduate Program, Western University, 1151 Richmond Street, N6A 3K7, London, ON, Canada", 
            "Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada", 
            "Department of Electrical and Computer Engineering, Western University, London, ON, Canada", 
            "London Health Science Centre, Room B1-333, University Hospital, 339 Windermere Rd., London, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agrawal", 
        "givenName": "Sumit K.", 
        "id": "sg:person.01364426421.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364426421.60"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.mri.2012.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003426949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/000348949810700101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005528378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/000348949810700101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005528378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.1.000612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007332160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2082229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007350518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.heares.2014.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007558633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aja.1000620204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008531446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/thc-161200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012340784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0000000000001189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012350759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0000000000001189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012350759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2016.11.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013539418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-5955(87)90045-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013654991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-5955(87)90045-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013654991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000095611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013836287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0000000000000620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013913628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0000000000000620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013913628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0000000000000620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013913628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-73858-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013914842", 
          "https://doi.org/10.1007/978-0-387-73858-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-73858-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013914842", 
          "https://doi.org/10.1007/978-0-387-73858-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aud.0000000000000252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022295118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aud.0000000000000252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022295118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00405-010-1335-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023408532", 
          "https://doi.org/10.1007/s00405-010-1335-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00405-010-1335-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023408532", 
          "https://doi.org/10.1007/s00405-010-1335-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.anorl.2016.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029550144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0000000000000932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029569110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0000000000000932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029569110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-016-1551-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031330967", 
          "https://doi.org/10.1007/s10439-016-1551-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0000000000000909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031533956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0000000000000909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031533956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000369333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032625634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/00016489.2010.506652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033559225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-015-9844-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034342654", 
          "https://doi.org/10.1007/s10278-015-9844-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.heares.2016.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036273818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0b013e31818a08e8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041900192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0b013e31818a08e8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041900192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0000000000001060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043563619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0000000000001060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043563619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1076-6332(03)00121-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045507716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1076-6332(03)00121-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045507716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.heares.2010.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049129139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0b013e318184f492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051908092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0b013e318184f492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051908092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2007-963124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057497453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/000164803100001844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058255834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2945.620490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061146266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.796284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.1502901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062267299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.1603765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062268953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.2710746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062313672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.3158821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062321558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.399052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062350344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.4820889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062401683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.4862875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062403301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.4908221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062406101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.jmi.4.1.014001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074186181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0038-1633882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076948554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/rnn-2010-0535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078147721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14639/0392-100x-1279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079323661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083351540", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0000000000001329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083401340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0000000000001329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083401340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0000000000001393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084195072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0000000000001393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084195072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40463-017-0194-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084252961", 
          "https://doi.org/10.1186/s40463-017-0194-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40463-017-0194-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084252961", 
          "https://doi.org/10.1186/s40463-017-0194-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0000000000001411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084603317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0000000000001411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084603317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2254040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084687494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0000000000001410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084740857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0000000000001410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084740857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mao.0000000000001410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084740857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12880-017-0202-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085130635", 
          "https://doi.org/10.1186/s12880-017-0202-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12880-017-0202-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085130635", 
          "https://doi.org/10.1186/s12880-017-0202-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mp.12303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085210538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14992027.2017.1346302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090619344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sdata.2017.132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091836098", 
          "https://doi.org/10.1038/sdata.2017.132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2015.7179092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095710871"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: There has been renewed interest in the cochlear duct length (CDL) for preoperative cochlear implant electrode selection and postoperative generation of patient-specific frequency maps. The CDL can be estimated by measuring the A-value, which is defined as the length between the round window and the furthest point on the basal turn. Unfortunately, there is significant intra- and inter-observer variability when these measurements are made clinically. The objective of this study was to develop an automated A-value measurement algorithm to improve accuracy and eliminate observer variability.\nMETHOD: Clinical and micro-CT images of 20 cadaveric cochleae specimens were acquired. The micro-CT of one sample was chosen as the atlas, and A-value fiducials were placed onto that image. Image registration (rigid affine and non-rigid B-spline) was applied between the atlas and the 19 remaining clinical CT images. The registration transform was applied to the A-value fiducials, and the A-value was then automatically calculated for each specimen. High resolution micro-CT images of the same 19 specimens were used to measure the gold standard A-values for comparison against the manual and automated methods.\nRESULTS: The registration algorithm had excellent qualitative overlap between the atlas and target images. The automated method eliminated the observer variability and the systematic underestimation by experts. Manual measurement of the A-value on clinical CT had a mean error of 9.5\u2009\u00b1\u20094.3% compared to micro-CT, and this improved to an error of 2.7\u2009\u00b1\u20092.1% using the automated algorithm. Both the automated and manual methods correlated significantly with the gold standard micro-CT A-values (r\u2009=\u20090.70, p\u2009<\u20090.01 and r\u2009=\u20090.69, p\u2009<\u20090.01, respectively).\nCONCLUSION: An automated A-value measurement tool using atlas-based registration methods was successfully developed and validated. The automated method eliminated the observer variability and improved accuracy as compared to manual measurements by experts. This open-source tool has the potential to benefit cochlear implant recipients in the future.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40463-018-0253-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1295041", 
        "issn": [
          "1916-0208", 
          "1916-0216"
        ], 
        "name": "Journal of Otolaryngology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "An automated A-value measurement tool for accurate cochlear duct length estimation", 
    "pagination": "5", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2bb946b91608be16d178388445f54d692c9310318d5e370bfc7e9b124db55273"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29357924"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101479544"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40463-018-0253-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100556528"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40463-018-0253-3", 
      "https://app.dimensions.ai/details/publication/pub.1100556528"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000603.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/s40463-018-0253-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40463-018-0253-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40463-018-0253-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40463-018-0253-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40463-018-0253-3'


 

This table displays all metadata directly associated to this object as RDF triples.

313 TRIPLES      21 PREDICATES      95 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40463-018-0253-3 schema:about N0d0de1fe3c3c4add8c67e2b752104f7a
2 N2708f62936394cfcaa2d82caa3f6d887
3 N279bc3a82c70481fb4f2b4a6fde814b8
4 N39b729bf6818485992a34dff787e7286
5 N57721d820a844198b671d584827221cc
6 N6d850358e67644d18774ecba18126ad1
7 N982d5c20d1a04dd3a7426e5eaae7428e
8 Ncf4076f51af14c6ab940b584a6e06770
9 Ne2f1c9eef237425ab5f53cb6d012dcb8
10 Nf6fa064c281c4cb09128b9160c727951
11 anzsrc-for:08
12 anzsrc-for:0801
13 schema:author N45357819559c41ae90050abf2cc97160
14 schema:citation sg:pub.10.1007/978-0-387-73858-1
15 sg:pub.10.1007/s00405-010-1335-7
16 sg:pub.10.1007/s10278-015-9844-y
17 sg:pub.10.1007/s10439-016-1551-4
18 sg:pub.10.1038/sdata.2017.132
19 sg:pub.10.1186/s12880-017-0202-z
20 sg:pub.10.1186/s40463-017-0194-2
21 https://app.dimensions.ai/details/publication/pub.1083351540
22 https://doi.org/10.1002/aja.1000620204
23 https://doi.org/10.1002/mp.12303
24 https://doi.org/10.1016/0378-5955(87)90045-1
25 https://doi.org/10.1016/j.anorl.2016.05.001
26 https://doi.org/10.1016/j.heares.2010.09.005
27 https://doi.org/10.1016/j.heares.2014.10.006
28 https://doi.org/10.1016/j.heares.2016.06.013
29 https://doi.org/10.1016/j.ijrobp.2016.11.053
30 https://doi.org/10.1016/j.mri.2012.05.001
31 https://doi.org/10.1016/s1076-6332(03)00121-1
32 https://doi.org/10.1055/s-0038-1633882
33 https://doi.org/10.1055/s-2007-963124
34 https://doi.org/10.1080/000164803100001844
35 https://doi.org/10.1080/14992027.2017.1346302
36 https://doi.org/10.1097/aud.0000000000000252
37 https://doi.org/10.1097/mao.0000000000000620
38 https://doi.org/10.1097/mao.0000000000000909
39 https://doi.org/10.1097/mao.0000000000000932
40 https://doi.org/10.1097/mao.0000000000001060
41 https://doi.org/10.1097/mao.0000000000001189
42 https://doi.org/10.1097/mao.0000000000001329
43 https://doi.org/10.1097/mao.0000000000001393
44 https://doi.org/10.1097/mao.0000000000001410
45 https://doi.org/10.1097/mao.0000000000001411
46 https://doi.org/10.1097/mao.0b013e318184f492
47 https://doi.org/10.1097/mao.0b013e31818a08e8
48 https://doi.org/10.1109/2945.620490
49 https://doi.org/10.1109/42.796284
50 https://doi.org/10.1109/icassp.2015.7179092
51 https://doi.org/10.1117/1.jmi.4.1.014001
52 https://doi.org/10.1117/12.2082229
53 https://doi.org/10.1117/12.2254040
54 https://doi.org/10.1121/1.1502901
55 https://doi.org/10.1121/1.1603765
56 https://doi.org/10.1121/1.2710746
57 https://doi.org/10.1121/1.3158821
58 https://doi.org/10.1121/1.399052
59 https://doi.org/10.1121/1.4820889
60 https://doi.org/10.1121/1.4862875
61 https://doi.org/10.1121/1.4908221
62 https://doi.org/10.1159/000095611
63 https://doi.org/10.1159/000369333
64 https://doi.org/10.1177/000348949810700101
65 https://doi.org/10.1364/josaa.1.000612
66 https://doi.org/10.14639/0392-100x-1279
67 https://doi.org/10.3109/00016489.2010.506652
68 https://doi.org/10.3233/rnn-2010-0535
69 https://doi.org/10.3233/thc-161200
70 schema:datePublished 2018-12
71 schema:datePublishedReg 2018-12-01
72 schema:description BACKGROUND: There has been renewed interest in the cochlear duct length (CDL) for preoperative cochlear implant electrode selection and postoperative generation of patient-specific frequency maps. The CDL can be estimated by measuring the A-value, which is defined as the length between the round window and the furthest point on the basal turn. Unfortunately, there is significant intra- and inter-observer variability when these measurements are made clinically. The objective of this study was to develop an automated A-value measurement algorithm to improve accuracy and eliminate observer variability. METHOD: Clinical and micro-CT images of 20 cadaveric cochleae specimens were acquired. The micro-CT of one sample was chosen as the atlas, and A-value fiducials were placed onto that image. Image registration (rigid affine and non-rigid B-spline) was applied between the atlas and the 19 remaining clinical CT images. The registration transform was applied to the A-value fiducials, and the A-value was then automatically calculated for each specimen. High resolution micro-CT images of the same 19 specimens were used to measure the gold standard A-values for comparison against the manual and automated methods. RESULTS: The registration algorithm had excellent qualitative overlap between the atlas and target images. The automated method eliminated the observer variability and the systematic underestimation by experts. Manual measurement of the A-value on clinical CT had a mean error of 9.5 ± 4.3% compared to micro-CT, and this improved to an error of 2.7 ± 2.1% using the automated algorithm. Both the automated and manual methods correlated significantly with the gold standard micro-CT A-values (r = 0.70, p < 0.01 and r = 0.69, p < 0.01, respectively). CONCLUSION: An automated A-value measurement tool using atlas-based registration methods was successfully developed and validated. The automated method eliminated the observer variability and improved accuracy as compared to manual measurements by experts. This open-source tool has the potential to benefit cochlear implant recipients in the future.
73 schema:genre research_article
74 schema:inLanguage en
75 schema:isAccessibleForFree true
76 schema:isPartOf N652cf18161d841d6aee0e346ec51be17
77 N6db2604f15b5423bbce8a6c44a82fad4
78 sg:journal.1295041
79 schema:name An automated A-value measurement tool for accurate cochlear duct length estimation
80 schema:pagination 5
81 schema:productId N165fabf2b38c465fb6affb30d9e259c9
82 N1b1fd58d68644c2e87515595f8dcac65
83 N48df8165b6164f15b0e5b07a136c6216
84 Nc7b617b4162046ac8ca4a8618c13992e
85 Ne9924f349f8141ce9e3f9bbb36b9b719
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100556528
87 https://doi.org/10.1186/s40463-018-0253-3
88 schema:sdDatePublished 2019-04-10T16:05
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher Nb6033f0a9e824284a4c9f6a95dee2bf4
91 schema:url http://link.springer.com/10.1186/s40463-018-0253-3
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N0d0de1fe3c3c4add8c67e2b752104f7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Canada
97 rdf:type schema:DefinedTerm
98 N165fabf2b38c465fb6affb30d9e259c9 schema:name nlm_unique_id
99 schema:value 101479544
100 rdf:type schema:PropertyValue
101 N1b1fd58d68644c2e87515595f8dcac65 schema:name pubmed_id
102 schema:value 29357924
103 rdf:type schema:PropertyValue
104 N2708f62936394cfcaa2d82caa3f6d887 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Humans
106 rdf:type schema:DefinedTerm
107 N279bc3a82c70481fb4f2b4a6fde814b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Cochlear Implantation
109 rdf:type schema:DefinedTerm
110 N39b729bf6818485992a34dff787e7286 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Tomography, X-Ray Computed
112 rdf:type schema:DefinedTerm
113 N3f74bf5f7d5a448ea1872144b7610cbb rdf:first sg:person.01207524637.57
114 rdf:rest Na76e3400d24743e1a50d54dfc2c1f63b
115 N45357819559c41ae90050abf2cc97160 rdf:first sg:person.010404572633.20
116 rdf:rest N3f74bf5f7d5a448ea1872144b7610cbb
117 N48df8165b6164f15b0e5b07a136c6216 schema:name dimensions_id
118 schema:value pub.1100556528
119 rdf:type schema:PropertyValue
120 N57721d820a844198b671d584827221cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Cadaver
122 rdf:type schema:DefinedTerm
123 N652cf18161d841d6aee0e346ec51be17 schema:volumeNumber 47
124 rdf:type schema:PublicationVolume
125 N6d850358e67644d18774ecba18126ad1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Cochlear Implants
127 rdf:type schema:DefinedTerm
128 N6db2604f15b5423bbce8a6c44a82fad4 schema:issueNumber 1
129 rdf:type schema:PublicationIssue
130 N8cde9ae56ba14cf5b55276c524e72330 rdf:first sg:person.01364426421.60
131 rdf:rest rdf:nil
132 N982d5c20d1a04dd3a7426e5eaae7428e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Cochlear Duct
134 rdf:type schema:DefinedTerm
135 Na76e3400d24743e1a50d54dfc2c1f63b rdf:first sg:person.01371305031.51
136 rdf:rest N8cde9ae56ba14cf5b55276c524e72330
137 Nb6033f0a9e824284a4c9f6a95dee2bf4 schema:name Springer Nature - SN SciGraph project
138 rdf:type schema:Organization
139 Nc7b617b4162046ac8ca4a8618c13992e schema:name readcube_id
140 schema:value 2bb946b91608be16d178388445f54d692c9310318d5e370bfc7e9b124db55273
141 rdf:type schema:PropertyValue
142 Ncf4076f51af14c6ab940b584a6e06770 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Algorithms
144 rdf:type schema:DefinedTerm
145 Ne2f1c9eef237425ab5f53cb6d012dcb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Automation
147 rdf:type schema:DefinedTerm
148 Ne9924f349f8141ce9e3f9bbb36b9b719 schema:name doi
149 schema:value 10.1186/s40463-018-0253-3
150 rdf:type schema:PropertyValue
151 Nf6fa064c281c4cb09128b9160c727951 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Dissection
153 rdf:type schema:DefinedTerm
154 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
155 schema:name Information and Computing Sciences
156 rdf:type schema:DefinedTerm
157 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
158 schema:name Artificial Intelligence and Image Processing
159 rdf:type schema:DefinedTerm
160 sg:journal.1295041 schema:issn 1916-0208
161 1916-0216
162 schema:name Journal of Otolaryngology
163 rdf:type schema:Periodical
164 sg:person.010404572633.20 schema:affiliation https://www.grid.ac/institutes/grid.39381.30
165 schema:familyName Iyaniwura
166 schema:givenName John E.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010404572633.20
168 rdf:type schema:Person
169 sg:person.01207524637.57 schema:affiliation https://www.grid.ac/institutes/grid.39381.30
170 schema:familyName Elfarnawany
171 schema:givenName Mai
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207524637.57
173 rdf:type schema:Person
174 sg:person.01364426421.60 schema:affiliation https://www.grid.ac/institutes/grid.449710.f
175 schema:familyName Agrawal
176 schema:givenName Sumit K.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364426421.60
178 rdf:type schema:Person
179 sg:person.01371305031.51 schema:affiliation https://www.grid.ac/institutes/grid.39381.30
180 schema:familyName Ladak
181 schema:givenName Hanif M.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371305031.51
183 rdf:type schema:Person
184 sg:pub.10.1007/978-0-387-73858-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013914842
185 https://doi.org/10.1007/978-0-387-73858-1
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s00405-010-1335-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023408532
188 https://doi.org/10.1007/s00405-010-1335-7
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/s10278-015-9844-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1034342654
191 https://doi.org/10.1007/s10278-015-9844-y
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s10439-016-1551-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031330967
194 https://doi.org/10.1007/s10439-016-1551-4
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/sdata.2017.132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091836098
197 https://doi.org/10.1038/sdata.2017.132
198 rdf:type schema:CreativeWork
199 sg:pub.10.1186/s12880-017-0202-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1085130635
200 https://doi.org/10.1186/s12880-017-0202-z
201 rdf:type schema:CreativeWork
202 sg:pub.10.1186/s40463-017-0194-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084252961
203 https://doi.org/10.1186/s40463-017-0194-2
204 rdf:type schema:CreativeWork
205 https://app.dimensions.ai/details/publication/pub.1083351540 schema:CreativeWork
206 https://doi.org/10.1002/aja.1000620204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008531446
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1002/mp.12303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085210538
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/0378-5955(87)90045-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013654991
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.anorl.2016.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029550144
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.heares.2010.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049129139
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.heares.2014.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007558633
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.heares.2016.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036273818
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.ijrobp.2016.11.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013539418
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.mri.2012.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003426949
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/s1076-6332(03)00121-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045507716
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1055/s-0038-1633882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076948554
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1055/s-2007-963124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057497453
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1080/000164803100001844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058255834
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1080/14992027.2017.1346302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090619344
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1097/aud.0000000000000252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022295118
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1097/mao.0000000000000620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013913628
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1097/mao.0000000000000909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031533956
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1097/mao.0000000000000932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029569110
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1097/mao.0000000000001060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043563619
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1097/mao.0000000000001189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012350759
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1097/mao.0000000000001329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083401340
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1097/mao.0000000000001393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084195072
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1097/mao.0000000000001410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084740857
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1097/mao.0000000000001411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084603317
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1097/mao.0b013e318184f492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051908092
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1097/mao.0b013e31818a08e8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041900192
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1109/2945.620490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146266
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1109/42.796284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170839
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1109/icassp.2015.7179092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095710871
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1117/1.jmi.4.1.014001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074186181
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1117/12.2082229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007350518
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1117/12.2254040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084687494
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1121/1.1502901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062267299
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1121/1.1603765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062268953
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1121/1.2710746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062313672
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1121/1.3158821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062321558
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1121/1.399052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062350344
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1121/1.4820889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062401683
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1121/1.4862875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062403301
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1121/1.4908221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062406101
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1159/000095611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013836287
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1159/000369333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032625634
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1177/000348949810700101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005528378
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1364/josaa.1.000612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007332160
293 rdf:type schema:CreativeWork
294 https://doi.org/10.14639/0392-100x-1279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079323661
295 rdf:type schema:CreativeWork
296 https://doi.org/10.3109/00016489.2010.506652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033559225
297 rdf:type schema:CreativeWork
298 https://doi.org/10.3233/rnn-2010-0535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078147721
299 rdf:type schema:CreativeWork
300 https://doi.org/10.3233/thc-161200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012340784
301 rdf:type schema:CreativeWork
302 https://www.grid.ac/institutes/grid.39381.30 schema:alternateName Western University
303 schema:name Biomedical Engineering Graduate Program, Western University, 1151 Richmond Street, N6A 3K7, London, ON, Canada
304 Department of Electrical and Computer Engineering, Western University, London, ON, Canada
305 Department of Medical Biophysics, Western University, London, ON, Canada
306 Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
307 rdf:type schema:Organization
308 https://www.grid.ac/institutes/grid.449710.f schema:alternateName University Hospital
309 schema:name Biomedical Engineering Graduate Program, Western University, 1151 Richmond Street, N6A 3K7, London, ON, Canada
310 Department of Electrical and Computer Engineering, Western University, London, ON, Canada
311 Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
312 London Health Science Centre, Room B1-333, University Hospital, 339 Windermere Rd., London, ON, Canada
313 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...