Genetic instability as a driver for immune surveillance View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12-11

AUTHORS

Guim Aguadé-Gorgorió, Ricard Solé

ABSTRACT

*BackgroundGenetic instability is known to relate with carcinogenesis by providing tumors with a mechanism for fast adaptation. However, mounting evidence also indicates causal relation between genetic instability and improved cancer prognosis resulting from efficient immune response. Highly unstable tumors seem to accumulate mutational burdens that result in dynamical landscapes of neoantigen production, eventually inducing acute immune recognition. How are tumor instability and enhanced immune response related? An important step towards future developments involving combined therapies would benefit from unraveling this connection.*MethodsIn this paper we present a minimal mathematical model to describe the ecological interactions that couple tumor adaptation and immune recognition while making use of available experimental estimates of relevant parameters. The possible evolutionary trade-offs associated to both cancer replication and T cell response are analysed, and the roles of mutational load and immune activation in governing prognosis are studied.*ResultsModeling and available data indicate that cancer-clearance states become attainable when both mutational load and immune migration are enhanced. Furthermore, the model predicts the presence of well-defined transitions towards tumor control and eradication after increases in genetic instability numerically consistent with recent experiments of tumor control after Mismatch Repair knockout in mice.*ConclusionsThese two main results indicate a potential role of genetic instability as a driver of transitions towards immune control of tumors, as well as the effectiveness of increasing mutational loads prior to adoptive cell therapies. This mathematical framework is therefore a quantitative step towards predicting the outcomes of combined therapies where genetic instability might play a key role. More... »

PAGES

345

References to SciGraph publications

  • 2013-08-14. Signatures of mutational processes in human cancer in NATURE
  • 2019-06-13. Combination of CTLA-4 and PD-1 blockers for treatment of cancer in JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH
  • 1994-03. Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis in BULLETIN OF MATHEMATICAL BIOLOGY
  • 1998-09. Modeling immunotherapy of the tumor – immune interaction in JOURNAL OF MATHEMATICAL BIOLOGY
  • 2019-04-15. Therapeutic challenges and current immunomodulatory strategies in targeting the immunosuppressive pancreatic tumor microenvironment in JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH
  • 2012-01-18. Clonal evolution in cancer in NATURE
  • 2010-03. Genomic instability — an evolving hallmark of cancer in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2017-11-01. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy in NATURE
  • 2017-11-29. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth in NATURE
  • 2017-01-18. Elements of cancer immunity and the cancer–immune set point in NATURE
  • 2008-01. A microenvironmental model of carcinogenesis in NATURE REVIEWS CANCER
  • 2007-08. The distribution of fitness effects of new mutations in NATURE REVIEWS GENETICS
  • 2015-02-09. A Big Bang model of human colorectal tumor growth in NATURE GENETICS
  • 2010-03-12. Interactions Between the Immune System and Cancer: A Brief Review of Non-spatial Mathematical Models in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2007-11-18. Adaptive immunity maintains occult cancer in an equilibrium state in NATURE
  • 2006-01. Paradoxical roles of the immune system during cancer development in NATURE REVIEWS CANCER
  • 1998-12. Genetic instabilities in human cancers in NATURE
  • 2001-09-13. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity in NATURE
  • 2016-07-04. Computational genomics tools for dissecting tumour–immune cell interactions in NATURE REVIEWS GENETICS
  • 1994-03. Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis in BULLETIN OF MATHEMATICAL BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40425-019-0795-6

    DOI

    http://dx.doi.org/10.1186/s40425-019-0795-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1123292334

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/31829285


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Immunology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Antigens, Neoplasm", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Mismatch Repair", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease Susceptibility", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Predisposition to Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomic Instability", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Immunologic Surveillance", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Theoretical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutation Rate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tumor Microenvironment", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut de Biologia Evolutiva (CSIC-UPF), Psg Maritim Barceloneta, 37, 08003, Barcelona, Spain", 
              "id": "http://www.grid.ac/institutes/grid.507636.1", 
              "name": [
                "ICREA-Complex Systems Lab, Universitat Pompeu Fabra, 08003, Barcelona, Spain", 
                "Institut de Biologia Evolutiva (CSIC-UPF), Psg Maritim Barceloneta, 37, 08003, Barcelona, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aguad\u00e9-Gorgori\u00f3", 
            "givenName": "Guim", 
            "id": "sg:person.012744111644.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012744111644.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Santa Fe Institute, 399 Hyde Park Road, 87501, Santa Fe, NM, USA", 
              "id": "http://www.grid.ac/institutes/grid.209665.e", 
              "name": [
                "ICREA-Complex Systems Lab, Universitat Pompeu Fabra, 08003, Barcelona, Spain", 
                "Institut de Biologia Evolutiva (CSIC-UPF), Psg Maritim Barceloneta, 37, 08003, Barcelona, Spain", 
                "Santa Fe Institute, 399 Hyde Park Road, 87501, Santa Fe, NM, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sol\u00e9", 
            "givenName": "Ricard", 
            "id": "sg:person.011622065365.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011622065365.60"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature10762", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053038796", 
              "https://doi.org/10.1038/nature10762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm2858", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028912859", 
              "https://doi.org/10.1038/nrm2858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13046-019-1153-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113483179", 
              "https://doi.org/10.1186/s13046-019-1153-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002850050127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026059371", 
              "https://doi.org/10.1007/s002850050127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc1782", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018519640", 
              "https://doi.org/10.1038/nrc1782"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35093109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046651752", 
              "https://doi.org/10.1038/35093109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050004918", 
              "https://doi.org/10.1038/nature12477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2146", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022243201", 
              "https://doi.org/10.1038/nrg2146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008423455", 
              "https://doi.org/10.1038/ng.3214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11538-010-9526-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043635698", 
              "https://doi.org/10.1007/s11538-010-9526-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature21349", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000326025", 
              "https://doi.org/10.1038/nature21349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000116337", 
              "https://doi.org/10.1038/nature06309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13046-019-1259-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117154927", 
              "https://doi.org/10.1186/s13046-019-1259-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2016.67", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035567352", 
              "https://doi.org/10.1038/nrg.2016.67"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/s0092-8240(05)80260-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054613765", 
              "https://doi.org/10.1016/s0092-8240(05)80260-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc2255", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031460595", 
              "https://doi.org/10.1038/nrc2255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature24473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092574574", 
              "https://doi.org/10.1038/nature24473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature24673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093056161", 
              "https://doi.org/10.1038/nature24673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/25292", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033871070", 
              "https://doi.org/10.1038/25292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02460644", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009760289", 
              "https://doi.org/10.1007/bf02460644"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12-11", 
        "datePublishedReg": "2019-12-11", 
        "description": "Abstract*BackgroundGenetic instability is known to relate with carcinogenesis by providing tumors with a mechanism for fast adaptation. However, mounting evidence also indicates causal relation between genetic instability and improved cancer prognosis resulting from efficient immune response. Highly unstable tumors seem to accumulate mutational burdens that result in dynamical landscapes of neoantigen production, eventually inducing acute immune recognition. How are tumor instability and enhanced immune response related? An important step towards future developments involving combined therapies would benefit from unraveling this connection.*MethodsIn this paper we present a minimal mathematical model to describe the ecological interactions that couple tumor adaptation and immune recognition while making use of available experimental estimates of relevant parameters. The possible evolutionary trade-offs associated to both cancer replication and T cell response are analysed, and the roles of mutational load and immune activation in governing prognosis are studied.*ResultsModeling and available data indicate that cancer-clearance states become attainable when both mutational load and immune migration are enhanced. Furthermore, the model predicts the presence of well-defined transitions towards tumor control and eradication after increases in genetic instability numerically consistent with recent experiments of tumor control after Mismatch Repair knockout in mice.*ConclusionsThese two main results indicate a potential role of genetic instability as a driver of transitions towards immune control of tumors, as well as the effectiveness of increasing mutational loads prior to adoptive cell therapies. This mathematical framework is therefore a quantitative step towards predicting the outcomes of combined therapies where genetic instability might play a key role.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s40425-019-0795-6", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1049249", 
            "issn": [
              "2051-1426"
            ], 
            "name": "Journal for ImmunoTherapy of Cancer", 
            "publisher": "BMJ", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "tumor control", 
          "immune response", 
          "immune recognition", 
          "T cell responses", 
          "adoptive cell therapy", 
          "efficient immune response", 
          "mutational load", 
          "immune migration", 
          "genetic instability", 
          "immune control", 
          "immune activation", 
          "immune surveillance", 
          "mutational burden", 
          "cancer prognosis", 
          "neoantigen production", 
          "cell responses", 
          "cell therapy", 
          "therapy", 
          "tumors", 
          "unstable tumors", 
          "tumor adaptation", 
          "potential role", 
          "prognosis", 
          "tumor instability", 
          "response", 
          "available data", 
          "MethodsIn", 
          "mice", 
          "control", 
          "carcinogenesis", 
          "role", 
          "key role", 
          "eradication", 
          "outcomes", 
          "burden", 
          "surveillance", 
          "activation", 
          "knockout", 
          "main results", 
          "evidence", 
          "causal relations", 
          "replication", 
          "increase", 
          "drivers of transitions", 
          "adaptation", 
          "important step", 
          "migration", 
          "presence", 
          "mechanism", 
          "recognition", 
          "use", 
          "instability", 
          "dynamical landscape", 
          "future development", 
          "data", 
          "development", 
          "effectiveness", 
          "production", 
          "model", 
          "results", 
          "load", 
          "minimal mathematical model", 
          "fast adaptation", 
          "relation", 
          "drivers", 
          "quantitative step", 
          "step", 
          "estimates", 
          "interaction", 
          "parameters", 
          "relevant parameters", 
          "state", 
          "connection", 
          "experiments", 
          "transition", 
          "recent experiments", 
          "mathematical model", 
          "landscape", 
          "framework", 
          "paper", 
          "mathematical framework", 
          "ecological interactions", 
          "available experimental estimates", 
          "experimental estimates"
        ], 
        "name": "Genetic instability as a driver for immune surveillance", 
        "pagination": "345", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1123292334"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40425-019-0795-6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "31829285"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40425-019-0795-6", 
          "https://app.dimensions.ai/details/publication/pub.1123292334"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_824.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s40425-019-0795-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40425-019-0795-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40425-019-0795-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40425-019-0795-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40425-019-0795-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    290 TRIPLES      22 PREDICATES      143 URIs      114 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40425-019-0795-6 schema:about N0f020bff136f43e18405ba68141612a5
    2 N13f40329306b41d689193110fff3dfc3
    3 N18b4429dbd754ff1bc8ceead4ab29362
    4 N29c5fc73d5db42468e230afacca2bf35
    5 N2d6f97abba2248bcbf444e353e70e053
    6 N4068f23806f94c29aa5a2b4d719df776
    7 N65edd1cfef8542729cc6656a34ceeb73
    8 N94da799c20874ce0b4c3c2d3c8fa3d5f
    9 N96ed1c8a4a6c473792b97b0ad1c26a2a
    10 Nc0beb7e4cbb04ad3a1d16816663c3ddd
    11 Ne4feb56ecc9c4d0e9ded192308248d6c
    12 Nf13ce126ac2544b48682f66b66077fca
    13 anzsrc-for:11
    14 anzsrc-for:1107
    15 anzsrc-for:1112
    16 schema:author N233dcb3226824550b914414b48811c78
    17 schema:citation sg:pub.10.1007/bf02460644
    18 sg:pub.10.1007/s002850050127
    19 sg:pub.10.1007/s11538-010-9526-3
    20 sg:pub.10.1016/s0092-8240(05)80260-5
    21 sg:pub.10.1038/25292
    22 sg:pub.10.1038/35093109
    23 sg:pub.10.1038/nature06309
    24 sg:pub.10.1038/nature10762
    25 sg:pub.10.1038/nature12477
    26 sg:pub.10.1038/nature21349
    27 sg:pub.10.1038/nature24473
    28 sg:pub.10.1038/nature24673
    29 sg:pub.10.1038/ng.3214
    30 sg:pub.10.1038/nrc1782
    31 sg:pub.10.1038/nrc2255
    32 sg:pub.10.1038/nrg.2016.67
    33 sg:pub.10.1038/nrg2146
    34 sg:pub.10.1038/nrm2858
    35 sg:pub.10.1186/s13046-019-1153-8
    36 sg:pub.10.1186/s13046-019-1259-z
    37 schema:datePublished 2019-12-11
    38 schema:datePublishedReg 2019-12-11
    39 schema:description Abstract*BackgroundGenetic instability is known to relate with carcinogenesis by providing tumors with a mechanism for fast adaptation. However, mounting evidence also indicates causal relation between genetic instability and improved cancer prognosis resulting from efficient immune response. Highly unstable tumors seem to accumulate mutational burdens that result in dynamical landscapes of neoantigen production, eventually inducing acute immune recognition. How are tumor instability and enhanced immune response related? An important step towards future developments involving combined therapies would benefit from unraveling this connection.*MethodsIn this paper we present a minimal mathematical model to describe the ecological interactions that couple tumor adaptation and immune recognition while making use of available experimental estimates of relevant parameters. The possible evolutionary trade-offs associated to both cancer replication and T cell response are analysed, and the roles of mutational load and immune activation in governing prognosis are studied.*ResultsModeling and available data indicate that cancer-clearance states become attainable when both mutational load and immune migration are enhanced. Furthermore, the model predicts the presence of well-defined transitions towards tumor control and eradication after increases in genetic instability numerically consistent with recent experiments of tumor control after Mismatch Repair knockout in mice.*ConclusionsThese two main results indicate a potential role of genetic instability as a driver of transitions towards immune control of tumors, as well as the effectiveness of increasing mutational loads prior to adoptive cell therapies. This mathematical framework is therefore a quantitative step towards predicting the outcomes of combined therapies where genetic instability might play a key role.
    40 schema:genre article
    41 schema:inLanguage en
    42 schema:isAccessibleForFree true
    43 schema:isPartOf N70813e634cfe4dedb88538a65eb6fd53
    44 Nd5ef4d2687474da4b77c547fa582d636
    45 sg:journal.1049249
    46 schema:keywords MethodsIn
    47 T cell responses
    48 activation
    49 adaptation
    50 adoptive cell therapy
    51 available data
    52 available experimental estimates
    53 burden
    54 cancer prognosis
    55 carcinogenesis
    56 causal relations
    57 cell responses
    58 cell therapy
    59 connection
    60 control
    61 data
    62 development
    63 drivers
    64 drivers of transitions
    65 dynamical landscape
    66 ecological interactions
    67 effectiveness
    68 efficient immune response
    69 eradication
    70 estimates
    71 evidence
    72 experimental estimates
    73 experiments
    74 fast adaptation
    75 framework
    76 future development
    77 genetic instability
    78 immune activation
    79 immune control
    80 immune migration
    81 immune recognition
    82 immune response
    83 immune surveillance
    84 important step
    85 increase
    86 instability
    87 interaction
    88 key role
    89 knockout
    90 landscape
    91 load
    92 main results
    93 mathematical framework
    94 mathematical model
    95 mechanism
    96 mice
    97 migration
    98 minimal mathematical model
    99 model
    100 mutational burden
    101 mutational load
    102 neoantigen production
    103 outcomes
    104 paper
    105 parameters
    106 potential role
    107 presence
    108 production
    109 prognosis
    110 quantitative step
    111 recent experiments
    112 recognition
    113 relation
    114 relevant parameters
    115 replication
    116 response
    117 results
    118 role
    119 state
    120 step
    121 surveillance
    122 therapy
    123 transition
    124 tumor adaptation
    125 tumor control
    126 tumor instability
    127 tumors
    128 unstable tumors
    129 use
    130 schema:name Genetic instability as a driver for immune surveillance
    131 schema:pagination 345
    132 schema:productId N5366d08d1a4845029fbfc5789f61418d
    133 N8acdd723c7fc4a59ac8458d1b59d33fb
    134 Ne4f6d756c77f42aa9b206f2a41c61969
    135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123292334
    136 https://doi.org/10.1186/s40425-019-0795-6
    137 schema:sdDatePublished 2022-06-01T22:20
    138 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    139 schema:sdPublisher N9ff0e61ab0ab42609219075b471e896a
    140 schema:url https://doi.org/10.1186/s40425-019-0795-6
    141 sgo:license sg:explorer/license/
    142 sgo:sdDataset articles
    143 rdf:type schema:ScholarlyArticle
    144 N0f020bff136f43e18405ba68141612a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Mutation
    146 rdf:type schema:DefinedTerm
    147 N13f40329306b41d689193110fff3dfc3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Disease Susceptibility
    149 rdf:type schema:DefinedTerm
    150 N18b4429dbd754ff1bc8ceead4ab29362 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Genomic Instability
    152 rdf:type schema:DefinedTerm
    153 N233dcb3226824550b914414b48811c78 rdf:first sg:person.012744111644.63
    154 rdf:rest N5a79411e3b4e49459772f0fdfae24fd2
    155 N29c5fc73d5db42468e230afacca2bf35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Neoplasms
    157 rdf:type schema:DefinedTerm
    158 N2d6f97abba2248bcbf444e353e70e053 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name DNA Mismatch Repair
    160 rdf:type schema:DefinedTerm
    161 N4068f23806f94c29aa5a2b4d719df776 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Tumor Microenvironment
    163 rdf:type schema:DefinedTerm
    164 N5366d08d1a4845029fbfc5789f61418d schema:name dimensions_id
    165 schema:value pub.1123292334
    166 rdf:type schema:PropertyValue
    167 N5a79411e3b4e49459772f0fdfae24fd2 rdf:first sg:person.011622065365.60
    168 rdf:rest rdf:nil
    169 N65edd1cfef8542729cc6656a34ceeb73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Mutation Rate
    171 rdf:type schema:DefinedTerm
    172 N70813e634cfe4dedb88538a65eb6fd53 schema:volumeNumber 7
    173 rdf:type schema:PublicationVolume
    174 N8acdd723c7fc4a59ac8458d1b59d33fb schema:name pubmed_id
    175 schema:value 31829285
    176 rdf:type schema:PropertyValue
    177 N94da799c20874ce0b4c3c2d3c8fa3d5f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Immunologic Surveillance
    179 rdf:type schema:DefinedTerm
    180 N96ed1c8a4a6c473792b97b0ad1c26a2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Models, Theoretical
    182 rdf:type schema:DefinedTerm
    183 N9ff0e61ab0ab42609219075b471e896a schema:name Springer Nature - SN SciGraph project
    184 rdf:type schema:Organization
    185 Nc0beb7e4cbb04ad3a1d16816663c3ddd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Genetic Predisposition to Disease
    187 rdf:type schema:DefinedTerm
    188 Nd5ef4d2687474da4b77c547fa582d636 schema:issueNumber 1
    189 rdf:type schema:PublicationIssue
    190 Ne4f6d756c77f42aa9b206f2a41c61969 schema:name doi
    191 schema:value 10.1186/s40425-019-0795-6
    192 rdf:type schema:PropertyValue
    193 Ne4feb56ecc9c4d0e9ded192308248d6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name Antigens, Neoplasm
    195 rdf:type schema:DefinedTerm
    196 Nf13ce126ac2544b48682f66b66077fca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    197 schema:name Algorithms
    198 rdf:type schema:DefinedTerm
    199 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    200 schema:name Medical and Health Sciences
    201 rdf:type schema:DefinedTerm
    202 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
    203 schema:name Immunology
    204 rdf:type schema:DefinedTerm
    205 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    206 schema:name Oncology and Carcinogenesis
    207 rdf:type schema:DefinedTerm
    208 sg:journal.1049249 schema:issn 2051-1426
    209 schema:name Journal for ImmunoTherapy of Cancer
    210 schema:publisher BMJ
    211 rdf:type schema:Periodical
    212 sg:person.011622065365.60 schema:affiliation grid-institutes:grid.209665.e
    213 schema:familyName Solé
    214 schema:givenName Ricard
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011622065365.60
    216 rdf:type schema:Person
    217 sg:person.012744111644.63 schema:affiliation grid-institutes:grid.507636.1
    218 schema:familyName Aguadé-Gorgorió
    219 schema:givenName Guim
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012744111644.63
    221 rdf:type schema:Person
    222 sg:pub.10.1007/bf02460644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009760289
    223 https://doi.org/10.1007/bf02460644
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/s002850050127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026059371
    226 https://doi.org/10.1007/s002850050127
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/s11538-010-9526-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043635698
    229 https://doi.org/10.1007/s11538-010-9526-3
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1016/s0092-8240(05)80260-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054613765
    232 https://doi.org/10.1016/s0092-8240(05)80260-5
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/25292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033871070
    235 https://doi.org/10.1038/25292
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/35093109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046651752
    238 https://doi.org/10.1038/35093109
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/nature06309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000116337
    241 https://doi.org/10.1038/nature06309
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/nature10762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053038796
    244 https://doi.org/10.1038/nature10762
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/nature12477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050004918
    247 https://doi.org/10.1038/nature12477
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/nature21349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000326025
    250 https://doi.org/10.1038/nature21349
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/nature24473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092574574
    253 https://doi.org/10.1038/nature24473
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/nature24673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093056161
    256 https://doi.org/10.1038/nature24673
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/ng.3214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008423455
    259 https://doi.org/10.1038/ng.3214
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1038/nrc1782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018519640
    262 https://doi.org/10.1038/nrc1782
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1038/nrc2255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031460595
    265 https://doi.org/10.1038/nrc2255
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1038/nrg.2016.67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035567352
    268 https://doi.org/10.1038/nrg.2016.67
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1038/nrg2146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022243201
    271 https://doi.org/10.1038/nrg2146
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1038/nrm2858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028912859
    274 https://doi.org/10.1038/nrm2858
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1186/s13046-019-1153-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113483179
    277 https://doi.org/10.1186/s13046-019-1153-8
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1186/s13046-019-1259-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1117154927
    280 https://doi.org/10.1186/s13046-019-1259-z
    281 rdf:type schema:CreativeWork
    282 grid-institutes:grid.209665.e schema:alternateName Santa Fe Institute, 399 Hyde Park Road, 87501, Santa Fe, NM, USA
    283 schema:name ICREA-Complex Systems Lab, Universitat Pompeu Fabra, 08003, Barcelona, Spain
    284 Institut de Biologia Evolutiva (CSIC-UPF), Psg Maritim Barceloneta, 37, 08003, Barcelona, Spain
    285 Santa Fe Institute, 399 Hyde Park Road, 87501, Santa Fe, NM, USA
    286 rdf:type schema:Organization
    287 grid-institutes:grid.507636.1 schema:alternateName Institut de Biologia Evolutiva (CSIC-UPF), Psg Maritim Barceloneta, 37, 08003, Barcelona, Spain
    288 schema:name ICREA-Complex Systems Lab, Universitat Pompeu Fabra, 08003, Barcelona, Spain
    289 Institut de Biologia Evolutiva (CSIC-UPF), Psg Maritim Barceloneta, 37, 08003, Barcelona, Spain
    290 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...