Machine learning-aided risk stratification in Philadelphia chromosome-positive acute lymphoblastic leukemia View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-02-18

AUTHORS

Satoshi Nishiwaki, Isamu Sugiura, Daisuke Koyama, Yukiyasu Ozawa, Masahide Osaki, Yuichi Ishikawa, Hitoshi Kiyoi

ABSTRACT

We used the eXtreme Gradient Boosting algorithm, an optimized gradient boosting machine learning library, and established a model to predict events in Philadelphia chromosome-positive acute lymphoblastic leukemia using a machine learning-aided method. A model was constructed using a training set (80%) and prediction was tested using a test set (20%). According to the feature importance score, BCR-ABL lineage, polymerase chain reaction value, age, and white blood cell count were identified as important features. These features were also confirmed by the permutation feature importance for the prediction using the test set. Both event-free survival and overall survival were clearly stratified according to risk groups categorized using these features: 80 and 100% in low risk (two or less factors), 42 and 47% in intermediate risk (three factors), and 0 and 10% in high risk (four factors) at 4 years. Machine learning-aided analysis was able to identify clinically useful prognostic factors using data from a relatively small number of patients. More... »

PAGES

13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40364-021-00268-x

DOI

http://dx.doi.org/10.1186/s40364-021-00268-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1135450921

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/33602341


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Advanced Medicine, Nagoya University Hospital, 65 Tsurumai-cho Showa-ku, 466-8560, Nagoya, Japan", 
          "id": "http://www.grid.ac/institutes/grid.437848.4", 
          "name": [
            "Department of Advanced Medicine, Nagoya University Hospital, 65 Tsurumai-cho Showa-ku, 466-8560, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nishiwaki", 
        "givenName": "Satoshi", 
        "id": "sg:person.01225143610.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225143610.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Hematology and Oncology, Toyohashi Municipal Hospital, Toyohashi, Japan", 
          "id": "http://www.grid.ac/institutes/grid.417241.5", 
          "name": [
            "Division of Hematology and Oncology, Toyohashi Municipal Hospital, Toyohashi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sugiura", 
        "givenName": "Isamu", 
        "id": "sg:person.01004071341.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004071341.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Hematology and Oncology, Toyohashi Municipal Hospital, Toyohashi, Japan", 
          "id": "http://www.grid.ac/institutes/grid.417241.5", 
          "name": [
            "Division of Hematology and Oncology, Toyohashi Municipal Hospital, Toyohashi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koyama", 
        "givenName": "Daisuke", 
        "id": "sg:person.0624647607.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624647607.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Hematology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan", 
          "id": "http://www.grid.ac/institutes/grid.414932.9", 
          "name": [
            "Department of Hematology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ozawa", 
        "givenName": "Yukiyasu", 
        "id": "sg:person.01165712107.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165712107.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Hematology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan", 
          "id": "http://www.grid.ac/institutes/grid.414932.9", 
          "name": [
            "Department of Hematology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Osaki", 
        "givenName": "Masahide", 
        "id": "sg:person.014616002310.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014616002310.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan", 
          "id": "http://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishikawa", 
        "givenName": "Yuichi", 
        "id": "sg:person.01052642300.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052642300.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan", 
          "id": "http://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiyoi", 
        "givenName": "Hitoshi", 
        "id": "sg:person.0577356402.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577356402.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41375-019-0413-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112678788", 
          "https://doi.org/10.1038/s41375-019-0413-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bmt.2015.217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013878219", 
          "https://doi.org/10.1038/bmt.2015.217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s42256-020-0180-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1127592182", 
          "https://doi.org/10.1038/s42256-020-0180-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-02-18", 
    "datePublishedReg": "2021-02-18", 
    "description": "We used the eXtreme Gradient Boosting algorithm, an optimized gradient boosting machine learning library, and established a model to predict events in Philadelphia chromosome-positive acute lymphoblastic leukemia using a machine learning-aided method. A model was constructed using a training set (80%) and prediction was tested using a test set (20%). According to the feature importance score, BCR-ABL lineage, polymerase chain reaction value, age, and white blood cell count were identified as important features. These features were also confirmed by the permutation feature importance for the prediction using the test set. Both event-free survival and overall survival were clearly stratified according to risk groups categorized using these features: 80 and 100% in low risk (two or less factors), 42 and 47% in intermediate risk (three factors), and 0 and 10% in high risk (four factors) at 4\u2009years. Machine learning-aided analysis was able to identify clinically useful prognostic factors using data from a relatively small number of patients.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s40364-021-00268-x", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.9199718", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1048388", 
        "issn": [
          "2050-7771"
        ], 
        "name": "Biomarker Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "Philadelphia chromosome-positive acute lymphoblastic leukemia", 
      "acute lymphoblastic leukemia", 
      "lymphoblastic leukemia", 
      "white blood cell count", 
      "event-free survival", 
      "useful prognostic factor", 
      "blood cell count", 
      "overall survival", 
      "intermediate risk", 
      "prognostic factors", 
      "risk stratification", 
      "risk groups", 
      "high risk", 
      "lower risk", 
      "cell count", 
      "leukemia", 
      "risk", 
      "survival", 
      "patients", 
      "age", 
      "scores", 
      "small number", 
      "count", 
      "group", 
      "stratification", 
      "years", 
      "importance scores", 
      "factors", 
      "permutation feature importance", 
      "features", 
      "eXtreme Gradient Boosting (XGBoost) algorithm", 
      "events", 
      "training", 
      "test", 
      "data", 
      "lineages", 
      "reaction values", 
      "number", 
      "importance", 
      "analysis", 
      "model", 
      "feature importance", 
      "important features", 
      "values", 
      "Gradient Boosting algorithm", 
      "feature importance scores", 
      "library", 
      "method", 
      "test set", 
      "prediction", 
      "gradient", 
      "set", 
      "machine", 
      "boosting algorithm", 
      "algorithm"
    ], 
    "name": "Machine learning-aided risk stratification in Philadelphia chromosome-positive acute lymphoblastic leukemia", 
    "pagination": "13", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1135450921"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40364-021-00268-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "33602341"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40364-021-00268-x", 
      "https://app.dimensions.ai/details/publication/pub.1135450921"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_889.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s40364-021-00268-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40364-021-00268-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40364-021-00268-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40364-021-00268-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40364-021-00268-x'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      21 PREDICATES      83 URIs      72 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40364-021-00268-x schema:about anzsrc-for:11
2 anzsrc-for:1102
3 schema:author N98c19563347042a4a6f0ecd6e89e2f6c
4 schema:citation sg:pub.10.1038/bmt.2015.217
5 sg:pub.10.1038/s41375-019-0413-0
6 sg:pub.10.1038/s42256-020-0180-7
7 schema:datePublished 2021-02-18
8 schema:datePublishedReg 2021-02-18
9 schema:description We used the eXtreme Gradient Boosting algorithm, an optimized gradient boosting machine learning library, and established a model to predict events in Philadelphia chromosome-positive acute lymphoblastic leukemia using a machine learning-aided method. A model was constructed using a training set (80%) and prediction was tested using a test set (20%). According to the feature importance score, BCR-ABL lineage, polymerase chain reaction value, age, and white blood cell count were identified as important features. These features were also confirmed by the permutation feature importance for the prediction using the test set. Both event-free survival and overall survival were clearly stratified according to risk groups categorized using these features: 80 and 100% in low risk (two or less factors), 42 and 47% in intermediate risk (three factors), and 0 and 10% in high risk (four factors) at 4 years. Machine learning-aided analysis was able to identify clinically useful prognostic factors using data from a relatively small number of patients.
10 schema:genre article
11 schema:isAccessibleForFree true
12 schema:isPartOf N80b0f6ec5b40423b984f6e2ac625b575
13 Ne92c48abc319442e842491d5b2e7f464
14 sg:journal.1048388
15 schema:keywords Gradient Boosting algorithm
16 Philadelphia chromosome-positive acute lymphoblastic leukemia
17 acute lymphoblastic leukemia
18 age
19 algorithm
20 analysis
21 blood cell count
22 boosting algorithm
23 cell count
24 count
25 data
26 eXtreme Gradient Boosting (XGBoost) algorithm
27 event-free survival
28 events
29 factors
30 feature importance
31 feature importance scores
32 features
33 gradient
34 group
35 high risk
36 importance
37 importance scores
38 important features
39 intermediate risk
40 leukemia
41 library
42 lineages
43 lower risk
44 lymphoblastic leukemia
45 machine
46 method
47 model
48 number
49 overall survival
50 patients
51 permutation feature importance
52 prediction
53 prognostic factors
54 reaction values
55 risk
56 risk groups
57 risk stratification
58 scores
59 set
60 small number
61 stratification
62 survival
63 test
64 test set
65 training
66 useful prognostic factor
67 values
68 white blood cell count
69 years
70 schema:name Machine learning-aided risk stratification in Philadelphia chromosome-positive acute lymphoblastic leukemia
71 schema:pagination 13
72 schema:productId N4c24db6ec57841b9a9bea415898ed756
73 N64db609eb62441cc99a942065e64da8c
74 Na181ec53e3d04d568ec6c09081721696
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135450921
76 https://doi.org/10.1186/s40364-021-00268-x
77 schema:sdDatePublished 2022-12-01T06:42
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher Nf03ff08bb3d14e498ae3c2be5aad17b8
80 schema:url https://doi.org/10.1186/s40364-021-00268-x
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N112374a8a9f247fda5759321f21b1348 rdf:first sg:person.01004071341.50
85 rdf:rest N950468b779ce4260bcea754c10a90751
86 N4c24db6ec57841b9a9bea415898ed756 schema:name dimensions_id
87 schema:value pub.1135450921
88 rdf:type schema:PropertyValue
89 N5e1227765b7b4975802d7d45929f2164 rdf:first sg:person.01052642300.03
90 rdf:rest N889dc7c6b6c84100ad3e8749f3f17ab6
91 N64db609eb62441cc99a942065e64da8c schema:name pubmed_id
92 schema:value 33602341
93 rdf:type schema:PropertyValue
94 N80b0f6ec5b40423b984f6e2ac625b575 schema:issueNumber 1
95 rdf:type schema:PublicationIssue
96 N889dc7c6b6c84100ad3e8749f3f17ab6 rdf:first sg:person.0577356402.63
97 rdf:rest rdf:nil
98 N8c558d1da0a649d1ac02a9828564a609 rdf:first sg:person.014616002310.63
99 rdf:rest N5e1227765b7b4975802d7d45929f2164
100 N950468b779ce4260bcea754c10a90751 rdf:first sg:person.0624647607.25
101 rdf:rest Nfae7aac08d7e4f3a98e702a6237e7a13
102 N98c19563347042a4a6f0ecd6e89e2f6c rdf:first sg:person.01225143610.34
103 rdf:rest N112374a8a9f247fda5759321f21b1348
104 Na181ec53e3d04d568ec6c09081721696 schema:name doi
105 schema:value 10.1186/s40364-021-00268-x
106 rdf:type schema:PropertyValue
107 Ne92c48abc319442e842491d5b2e7f464 schema:volumeNumber 9
108 rdf:type schema:PublicationVolume
109 Nf03ff08bb3d14e498ae3c2be5aad17b8 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Nfae7aac08d7e4f3a98e702a6237e7a13 rdf:first sg:person.01165712107.72
112 rdf:rest N8c558d1da0a649d1ac02a9828564a609
113 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
114 schema:name Medical and Health Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
117 schema:name Cardiorespiratory Medicine and Haematology
118 rdf:type schema:DefinedTerm
119 sg:grant.9199718 http://pending.schema.org/fundedItem sg:pub.10.1186/s40364-021-00268-x
120 rdf:type schema:MonetaryGrant
121 sg:journal.1048388 schema:issn 2050-7771
122 schema:name Biomarker Research
123 schema:publisher Springer Nature
124 rdf:type schema:Periodical
125 sg:person.01004071341.50 schema:affiliation grid-institutes:grid.417241.5
126 schema:familyName Sugiura
127 schema:givenName Isamu
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004071341.50
129 rdf:type schema:Person
130 sg:person.01052642300.03 schema:affiliation grid-institutes:grid.27476.30
131 schema:familyName Ishikawa
132 schema:givenName Yuichi
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052642300.03
134 rdf:type schema:Person
135 sg:person.01165712107.72 schema:affiliation grid-institutes:grid.414932.9
136 schema:familyName Ozawa
137 schema:givenName Yukiyasu
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165712107.72
139 rdf:type schema:Person
140 sg:person.01225143610.34 schema:affiliation grid-institutes:grid.437848.4
141 schema:familyName Nishiwaki
142 schema:givenName Satoshi
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225143610.34
144 rdf:type schema:Person
145 sg:person.014616002310.63 schema:affiliation grid-institutes:grid.414932.9
146 schema:familyName Osaki
147 schema:givenName Masahide
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014616002310.63
149 rdf:type schema:Person
150 sg:person.0577356402.63 schema:affiliation grid-institutes:grid.27476.30
151 schema:familyName Kiyoi
152 schema:givenName Hitoshi
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577356402.63
154 rdf:type schema:Person
155 sg:person.0624647607.25 schema:affiliation grid-institutes:grid.417241.5
156 schema:familyName Koyama
157 schema:givenName Daisuke
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624647607.25
159 rdf:type schema:Person
160 sg:pub.10.1038/bmt.2015.217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013878219
161 https://doi.org/10.1038/bmt.2015.217
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/s41375-019-0413-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112678788
164 https://doi.org/10.1038/s41375-019-0413-0
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/s42256-020-0180-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127592182
167 https://doi.org/10.1038/s42256-020-0180-7
168 rdf:type schema:CreativeWork
169 grid-institutes:grid.27476.30 schema:alternateName Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
170 schema:name Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
171 rdf:type schema:Organization
172 grid-institutes:grid.414932.9 schema:alternateName Department of Hematology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan
173 schema:name Department of Hematology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan
174 rdf:type schema:Organization
175 grid-institutes:grid.417241.5 schema:alternateName Division of Hematology and Oncology, Toyohashi Municipal Hospital, Toyohashi, Japan
176 schema:name Division of Hematology and Oncology, Toyohashi Municipal Hospital, Toyohashi, Japan
177 rdf:type schema:Organization
178 grid-institutes:grid.437848.4 schema:alternateName Department of Advanced Medicine, Nagoya University Hospital, 65 Tsurumai-cho Showa-ku, 466-8560, Nagoya, Japan
179 schema:name Department of Advanced Medicine, Nagoya University Hospital, 65 Tsurumai-cho Showa-ku, 466-8560, Nagoya, Japan
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...