A focused ultrasound treatment system for moving targets (part I): generic system design and in-silico first-stage evaluation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-07-24

AUTHORS

Michael Schwenke, Jan Strehlow, Daniel Demedts, Sabrina Haase, Diego Barrios Romero, Sven Rothlübbers, Caroline von Dresky, Stephan Zidowitz, Joachim Georgii, Senay Mihcin, Mario Bezzi, Christine Tanner, Giora Sat, Yoav Levy, Jürgen Jenne, Matthias Günther, Andreas Melzer, Tobias Preusser

ABSTRACT

BackgroundFocused ultrasound (FUS) is entering clinical routine as a treatment option. Currently, no clinically available FUS treatment system features automated respiratory motion compensation. The required quality standards make developing such a system challenging.MethodsA novel FUS treatment system with motion compensation is described, developed with the goal of clinical use. The system comprises a clinically available MR device and FUS transducer system. The controller is very generic and could use any suitable MR or FUS device. MR image sequences (echo planar imaging) are acquired for both motion observation and thermometry. Based on anatomical feature tracking, motion predictions are estimated to compensate for processing delays. FUS control parameters are computed repeatedly and sent to the hardware to steer the focus to the (estimated) target position. All involved calculations produce individually known errors, yet their impact on therapy outcome is unclear. This is solved by defining an intuitive quality measure that compares the achieved temperature to the static scenario, resulting in an overall efficiency with respect to temperature rise. To allow for extensive testing of the system over wide ranges of parameters and algorithmic choices, we replace the actual MR and FUS devices by a virtual system. It emulates the hardware and, using numerical simulations of FUS during motion, predicts the local temperature rise in the tissue resulting from the controls it receives.ResultsWith a clinically available monitoring image rate of 6.67 Hz and 20 FUS control updates per second, normal respiratory motion is estimated to be compensable with an estimated efficiency of 80%. This reduces to about 70% for motion scaled by 1.5. Extensive testing (6347 simulated sonications) over wide ranges of parameters shows that the main source of error is the temporal motion prediction. A history-based motion prediction method performs better than a simple linear extrapolator.ConclusionsThe estimated efficiency of the new treatment system is already suited for clinical applications. The simulation-based in-silico testing as a first-stage validation reduces the efforts of real-world testing. Due to the extensible modular design, the described approach might lead to faster translations from research to clinical practice. More... »

PAGES

20

References to SciGraph publications

  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2001. Software Engineering Economics in PIONEERS AND THEIR CONTRIBUTIONS TO SOFTWARE ENGINEERING
  • 2011-12-01. The New Software Testing Standard in ACHIEVING SYSTEMS SAFETY
  • 2016-04-12. In vivo validation of spatio-temporal liver motion prediction from motion tracked on MR thermometry images in INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY
  • 2014-03-05. Magnetic Resonance-Guided Focused Ultrasound Ablation in Abdominal Moving Organs: A Feasibility Study in Selected Cases of Pancreatic and Liver Cancer in CARDIOVASCULAR AND INTERVENTIONAL RADIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40349-017-0098-7

    DOI

    http://dx.doi.org/10.1186/s40349-017-0098-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1085776506

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28748092


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biomedical Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.428590.2", 
              "name": [
                "Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schwenke", 
            "givenName": "Michael", 
            "id": "sg:person.0677065731.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677065731.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.428590.2", 
              "name": [
                "Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Strehlow", 
            "givenName": "Jan", 
            "id": "sg:person.0604076445.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604076445.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.428590.2", 
              "name": [
                "Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Demedts", 
            "givenName": "Daniel", 
            "id": "sg:person.015625213073.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015625213073.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.428590.2", 
              "name": [
                "Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Haase", 
            "givenName": "Sabrina", 
            "id": "sg:person.0652211645.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652211645.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.428590.2", 
              "name": [
                "Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barrios Romero", 
            "givenName": "Diego", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mediri, Heidelberg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.436006.7", 
              "name": [
                "Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany", 
                "Mediri, Heidelberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rothl\u00fcbbers", 
            "givenName": "Sven", 
            "id": "sg:person.0675605701.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675605701.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.428590.2", 
              "name": [
                "Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "von Dresky", 
            "givenName": "Caroline", 
            "id": "sg:person.013241024117.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013241024117.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.428590.2", 
              "name": [
                "Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zidowitz", 
            "givenName": "Stephan", 
            "id": "sg:person.012070714426.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012070714426.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.428590.2", 
              "name": [
                "Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Georgii", 
            "givenName": "Joachim", 
            "id": "sg:person.0752521726.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752521726.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Medical Science and Technology, Dundee, Scotland", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Institute for Medical Science and Technology, Dundee, Scotland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mihcin", 
            "givenName": "Senay", 
            "id": "sg:person.01115420631.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115420631.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universita Degli Studi Di Roma La Sapienza, Rome, Italy", 
              "id": "http://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "Universita Degli Studi Di Roma La Sapienza, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bezzi", 
            "givenName": "Mario", 
            "id": "sg:person.01317446274.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317446274.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Computer Vision Laboratory, Eidgen\u00f6ssische Technische Hochschule, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Computer Vision Laboratory, Eidgen\u00f6ssische Technische Hochschule, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tanner", 
            "givenName": "Christine", 
            "id": "sg:person.01127747065.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127747065.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "GE Medical Systems Israel, Haifa, Israel", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "GE Medical Systems Israel, Haifa, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sat", 
            "givenName": "Giora", 
            "id": "sg:person.01333343645.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333343645.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "InSightec, Tirat Carmel, Israel", 
              "id": "http://www.grid.ac/institutes/grid.435375.3", 
              "name": [
                "InSightec, Tirat Carmel, Israel"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Levy", 
            "givenName": "Yoav", 
            "id": "sg:person.01265230445.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265230445.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mediri, Heidelberg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.436006.7", 
              "name": [
                "Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany", 
                "Mediri, Heidelberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jenne", 
            "givenName": "J\u00fcrgen", 
            "id": "sg:person.0771553562.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771553562.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mediri, Heidelberg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.436006.7", 
              "name": [
                "Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany", 
                "Mediri, Heidelberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "G\u00fcnther", 
            "givenName": "Matthias", 
            "id": "sg:person.0753646310.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753646310.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Innovation Center Computer Assisted Surgery, Leipzig, Germany", 
              "id": "http://www.grid.ac/institutes/grid.9647.c", 
              "name": [
                "Institute for Medical Science and Technology, Dundee, Scotland", 
                "Innovation Center Computer Assisted Surgery, Leipzig, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Melzer", 
            "givenName": "Andreas", 
            "id": "sg:person.01136523253.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136523253.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jacobs University, Bremen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.15078.3b", 
              "name": [
                "Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany", 
                "Jacobs University, Bremen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Preusser", 
            "givenName": "Tobias", 
            "id": "sg:person.01244616343.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244616343.84"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/2050-5736-1-13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039655241", 
              "https://doi.org/10.1186/2050-5736-1-13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4471-2494-8_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010825938", 
              "https://doi.org/10.1007/978-1-4471-2494-8_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-48354-7_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023966788", 
              "https://doi.org/10.1007/978-3-642-48354-7_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11548-016-1405-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003346829", 
              "https://doi.org/10.1007/s11548-016-1405-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00270-014-0861-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011469214", 
              "https://doi.org/10.1007/s00270-014-0861-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-07-24", 
        "datePublishedReg": "2017-07-24", 
        "description": "BackgroundFocused ultrasound (FUS) is entering clinical routine as a treatment option. Currently, no clinically available FUS treatment system features automated respiratory motion compensation. The required quality standards make developing such a system challenging.MethodsA novel FUS treatment system with motion compensation is described, developed with the goal of clinical use. The system comprises a clinically available MR device and FUS transducer system. The controller is very generic and could use any suitable MR or FUS device. MR image sequences (echo planar imaging) are acquired for both motion observation and thermometry. Based on anatomical feature tracking, motion predictions are estimated to compensate for processing delays. FUS control parameters are computed repeatedly and sent to the hardware to steer the focus to the (estimated) target position. All involved calculations produce individually known errors, yet their impact on therapy outcome is unclear. This is solved by defining an intuitive quality measure that compares the achieved temperature to the static scenario, resulting in an overall efficiency with respect to temperature rise. To allow for extensive testing of the system over wide ranges of parameters and algorithmic choices, we replace the actual MR and FUS devices by a virtual system. It emulates the hardware and, using numerical simulations of FUS during motion, predicts the local temperature rise in the tissue resulting from the controls it receives.ResultsWith a clinically available monitoring image rate of 6.67 Hz and 20 FUS control updates per second, normal respiratory motion is estimated to be compensable with an estimated efficiency of 80%. This reduces to about 70% for motion scaled by 1.5. Extensive testing (6347 simulated sonications) over wide ranges of parameters shows that the main source of error is the temporal motion prediction. A history-based motion prediction method performs better than a simple linear extrapolator.ConclusionsThe estimated efficiency of the new treatment system is already suited for clinical applications. The simulation-based in-silico testing as a first-stage validation reduces the efforts of real-world testing. Due to the extensible modular design, the described approach might lead to faster translations from research to clinical practice.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s40349-017-0098-7", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3785876", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3797383", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1049366", 
            "issn": [
              "2050-5736"
            ], 
            "name": "Journal of Therapeutic Ultrasound", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "keywords": [
          "treatment system", 
          "motion compensation", 
          "motion prediction", 
          "local temperature rise", 
          "FUS devices", 
          "generic system design", 
          "temporal motion prediction", 
          "new treatment system", 
          "motion prediction method", 
          "temperature rise", 
          "required quality standards", 
          "normal respiratory motion", 
          "numerical simulations", 
          "MR devices", 
          "respiratory motion compensation", 
          "overall efficiency", 
          "transducer system", 
          "extensive testing", 
          "control parameters", 
          "real-world testing", 
          "system design", 
          "first-stage validation", 
          "suitable MR", 
          "MR image sequences", 
          "modular design", 
          "devices", 
          "prediction method", 
          "image rate", 
          "wide range", 
          "motion observations", 
          "virtual system", 
          "actual MR", 
          "image sequences", 
          "feature tracking", 
          "motion", 
          "efficiency", 
          "algorithmic choices", 
          "static scenarios", 
          "processing delay", 
          "temperature", 
          "respiratory motion", 
          "target position", 
          "parameters", 
          "hardware", 
          "design", 
          "controller", 
          "compensation", 
          "quality standards", 
          "system", 
          "quality measures", 
          "error", 
          "simulations", 
          "fast translation", 
          "prediction", 
          "first stage evaluation", 
          "range", 
          "tracking", 
          "testing", 
          "thermometry", 
          "Hz", 
          "main source", 
          "silico testing", 
          "extrapolator", 
          "applications", 
          "involved calculations", 
          "control", 
          "clinical routine", 
          "calculations", 
          "validation", 
          "method", 
          "scenarios", 
          "source", 
          "routines", 
          "delay", 
          "respect", 
          "approach", 
          "goal", 
          "rate", 
          "position", 
          "ConclusionsThe", 
          "standards", 
          "use", 
          "clinical application", 
          "observations", 
          "evaluation", 
          "impact", 
          "rise", 
          "efforts", 
          "research", 
          "translation", 
          "ultrasound", 
          "sequence", 
          "focus", 
          "options", 
          "choice", 
          "MR", 
          "target", 
          "practice", 
          "clinical use", 
          "measures", 
          "tissue", 
          "ResultsWith", 
          "clinical practice", 
          "FUS", 
          "outcomes", 
          "treatment options", 
          "therapy outcome"
        ], 
        "name": "A focused ultrasound treatment system for moving targets (part I): generic system design and in-silico first-stage evaluation", 
        "pagination": "20", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1085776506"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40349-017-0098-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28748092"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40349-017-0098-7", 
          "https://app.dimensions.ai/details/publication/pub.1085776506"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_726.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s40349-017-0098-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40349-017-0098-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40349-017-0098-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40349-017-0098-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40349-017-0098-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    343 TRIPLES      21 PREDICATES      139 URIs      124 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40349-017-0098-7 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 anzsrc-for:09
    4 anzsrc-for:0903
    5 schema:author Nb4dd1ba523144ffd8bc27e709b9ca1ef
    6 schema:citation sg:pub.10.1007/978-1-4471-2494-8_17
    7 sg:pub.10.1007/978-3-642-48354-7_5
    8 sg:pub.10.1007/s00270-014-0861-x
    9 sg:pub.10.1007/s11548-016-1405-4
    10 sg:pub.10.1186/2050-5736-1-13
    11 schema:datePublished 2017-07-24
    12 schema:datePublishedReg 2017-07-24
    13 schema:description BackgroundFocused ultrasound (FUS) is entering clinical routine as a treatment option. Currently, no clinically available FUS treatment system features automated respiratory motion compensation. The required quality standards make developing such a system challenging.MethodsA novel FUS treatment system with motion compensation is described, developed with the goal of clinical use. The system comprises a clinically available MR device and FUS transducer system. The controller is very generic and could use any suitable MR or FUS device. MR image sequences (echo planar imaging) are acquired for both motion observation and thermometry. Based on anatomical feature tracking, motion predictions are estimated to compensate for processing delays. FUS control parameters are computed repeatedly and sent to the hardware to steer the focus to the (estimated) target position. All involved calculations produce individually known errors, yet their impact on therapy outcome is unclear. This is solved by defining an intuitive quality measure that compares the achieved temperature to the static scenario, resulting in an overall efficiency with respect to temperature rise. To allow for extensive testing of the system over wide ranges of parameters and algorithmic choices, we replace the actual MR and FUS devices by a virtual system. It emulates the hardware and, using numerical simulations of FUS during motion, predicts the local temperature rise in the tissue resulting from the controls it receives.ResultsWith a clinically available monitoring image rate of 6.67 Hz and 20 FUS control updates per second, normal respiratory motion is estimated to be compensable with an estimated efficiency of 80%. This reduces to about 70% for motion scaled by 1.5. Extensive testing (6347 simulated sonications) over wide ranges of parameters shows that the main source of error is the temporal motion prediction. A history-based motion prediction method performs better than a simple linear extrapolator.ConclusionsThe estimated efficiency of the new treatment system is already suited for clinical applications. The simulation-based in-silico testing as a first-stage validation reduces the efforts of real-world testing. Due to the extensible modular design, the described approach might lead to faster translations from research to clinical practice.
    14 schema:genre article
    15 schema:isAccessibleForFree true
    16 schema:isPartOf N17f49e97c66347f1a1fc6619e85765d7
    17 N8f6269fb3fd149e5a9527eb7c6808151
    18 sg:journal.1049366
    19 schema:keywords ConclusionsThe
    20 FUS
    21 FUS devices
    22 Hz
    23 MR
    24 MR devices
    25 MR image sequences
    26 ResultsWith
    27 actual MR
    28 algorithmic choices
    29 applications
    30 approach
    31 calculations
    32 choice
    33 clinical application
    34 clinical practice
    35 clinical routine
    36 clinical use
    37 compensation
    38 control
    39 control parameters
    40 controller
    41 delay
    42 design
    43 devices
    44 efficiency
    45 efforts
    46 error
    47 evaluation
    48 extensive testing
    49 extrapolator
    50 fast translation
    51 feature tracking
    52 first stage evaluation
    53 first-stage validation
    54 focus
    55 generic system design
    56 goal
    57 hardware
    58 image rate
    59 image sequences
    60 impact
    61 involved calculations
    62 local temperature rise
    63 main source
    64 measures
    65 method
    66 modular design
    67 motion
    68 motion compensation
    69 motion observations
    70 motion prediction
    71 motion prediction method
    72 new treatment system
    73 normal respiratory motion
    74 numerical simulations
    75 observations
    76 options
    77 outcomes
    78 overall efficiency
    79 parameters
    80 position
    81 practice
    82 prediction
    83 prediction method
    84 processing delay
    85 quality measures
    86 quality standards
    87 range
    88 rate
    89 real-world testing
    90 required quality standards
    91 research
    92 respect
    93 respiratory motion
    94 respiratory motion compensation
    95 rise
    96 routines
    97 scenarios
    98 sequence
    99 silico testing
    100 simulations
    101 source
    102 standards
    103 static scenarios
    104 suitable MR
    105 system
    106 system design
    107 target
    108 target position
    109 temperature
    110 temperature rise
    111 temporal motion prediction
    112 testing
    113 therapy outcome
    114 thermometry
    115 tissue
    116 tracking
    117 transducer system
    118 translation
    119 treatment options
    120 treatment system
    121 ultrasound
    122 use
    123 validation
    124 virtual system
    125 wide range
    126 schema:name A focused ultrasound treatment system for moving targets (part I): generic system design and in-silico first-stage evaluation
    127 schema:pagination 20
    128 schema:productId N50e4f5736ec14fe0902bbe8c2007d4cd
    129 N6ee000f95eb7436da67f9e2d8997215f
    130 Nb368df4eef3643e49794b06ecff5e713
    131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085776506
    132 https://doi.org/10.1186/s40349-017-0098-7
    133 schema:sdDatePublished 2022-11-24T21:01
    134 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    135 schema:sdPublisher N6c5300d75cd241b48066276b94312c40
    136 schema:url https://doi.org/10.1186/s40349-017-0098-7
    137 sgo:license sg:explorer/license/
    138 sgo:sdDataset articles
    139 rdf:type schema:ScholarlyArticle
    140 N17f49e97c66347f1a1fc6619e85765d7 schema:volumeNumber 5
    141 rdf:type schema:PublicationVolume
    142 N19a9fea2832946aca7133f2e2f538344 rdf:first sg:person.0753646310.13
    143 rdf:rest Ned13edc4ec5b470e8a5d9799c4a2ae47
    144 N2dedec1568cd48bd9944a491c79953b0 rdf:first sg:person.01333343645.83
    145 rdf:rest N5ca52d0773b44510a92b08c5fa2a6b6c
    146 N4d40f3a7f2e746bfa10d60df50b9f34e rdf:first sg:person.013241024117.28
    147 rdf:rest N7b6a692edcfe476794cd6e8b04eb5f40
    148 N50e4f5736ec14fe0902bbe8c2007d4cd schema:name dimensions_id
    149 schema:value pub.1085776506
    150 rdf:type schema:PropertyValue
    151 N5ca52d0773b44510a92b08c5fa2a6b6c rdf:first sg:person.01265230445.99
    152 rdf:rest N9c44b1619d8a4e39b0553115bcb06928
    153 N6c5300d75cd241b48066276b94312c40 schema:name Springer Nature - SN SciGraph project
    154 rdf:type schema:Organization
    155 N6ee000f95eb7436da67f9e2d8997215f schema:name pubmed_id
    156 schema:value 28748092
    157 rdf:type schema:PropertyValue
    158 N7327dd62ce99417490499e3d784f23d2 rdf:first N973e0f5b88f744bd99e6699e02faf147
    159 rdf:rest Nabf82c14cee04c5dbc64646d46c871a0
    160 N7b6a692edcfe476794cd6e8b04eb5f40 rdf:first sg:person.012070714426.11
    161 rdf:rest Nf870ecec901b45a89dcd2bcad1d6aabd
    162 N83eb1ce7135f42e099244a741653661d rdf:first sg:person.01317446274.38
    163 rdf:rest Ndbd3a4f9f7e14deb9daff22ec14448c3
    164 N8f2d6f9822f64d12bdb2310c78551b1f rdf:first sg:person.01244616343.84
    165 rdf:rest rdf:nil
    166 N8f6269fb3fd149e5a9527eb7c6808151 schema:issueNumber 1
    167 rdf:type schema:PublicationIssue
    168 N8f8708a67dd74d4c83f12dfe760e579b rdf:first sg:person.0652211645.64
    169 rdf:rest N7327dd62ce99417490499e3d784f23d2
    170 N973e0f5b88f744bd99e6699e02faf147 schema:affiliation grid-institutes:grid.428590.2
    171 schema:familyName Barrios Romero
    172 schema:givenName Diego
    173 rdf:type schema:Person
    174 N9c44b1619d8a4e39b0553115bcb06928 rdf:first sg:person.0771553562.22
    175 rdf:rest N19a9fea2832946aca7133f2e2f538344
    176 Nabf82c14cee04c5dbc64646d46c871a0 rdf:first sg:person.0675605701.52
    177 rdf:rest N4d40f3a7f2e746bfa10d60df50b9f34e
    178 Nb368df4eef3643e49794b06ecff5e713 schema:name doi
    179 schema:value 10.1186/s40349-017-0098-7
    180 rdf:type schema:PropertyValue
    181 Nb4dd1ba523144ffd8bc27e709b9ca1ef rdf:first sg:person.0677065731.98
    182 rdf:rest Nd9ea4d84e6734d35a368efc0775fb0dc
    183 Nc0575c79dba7495ca852b19f0db34007 rdf:first sg:person.01115420631.38
    184 rdf:rest N83eb1ce7135f42e099244a741653661d
    185 Nd4a1ae9326a944569b03f1f964104a2f rdf:first sg:person.015625213073.23
    186 rdf:rest N8f8708a67dd74d4c83f12dfe760e579b
    187 Nd9ea4d84e6734d35a368efc0775fb0dc rdf:first sg:person.0604076445.47
    188 rdf:rest Nd4a1ae9326a944569b03f1f964104a2f
    189 Ndbd3a4f9f7e14deb9daff22ec14448c3 rdf:first sg:person.01127747065.24
    190 rdf:rest N2dedec1568cd48bd9944a491c79953b0
    191 Ned13edc4ec5b470e8a5d9799c4a2ae47 rdf:first sg:person.01136523253.16
    192 rdf:rest N8f2d6f9822f64d12bdb2310c78551b1f
    193 Nf870ecec901b45a89dcd2bcad1d6aabd rdf:first sg:person.0752521726.30
    194 rdf:rest Nc0575c79dba7495ca852b19f0db34007
    195 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    196 schema:name Information and Computing Sciences
    197 rdf:type schema:DefinedTerm
    198 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    199 schema:name Artificial Intelligence and Image Processing
    200 rdf:type schema:DefinedTerm
    201 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    202 schema:name Engineering
    203 rdf:type schema:DefinedTerm
    204 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
    205 schema:name Biomedical Engineering
    206 rdf:type schema:DefinedTerm
    207 sg:grant.3785876 http://pending.schema.org/fundedItem sg:pub.10.1186/s40349-017-0098-7
    208 rdf:type schema:MonetaryGrant
    209 sg:grant.3797383 http://pending.schema.org/fundedItem sg:pub.10.1186/s40349-017-0098-7
    210 rdf:type schema:MonetaryGrant
    211 sg:journal.1049366 schema:issn 2050-5736
    212 schema:name Journal of Therapeutic Ultrasound
    213 schema:publisher Springer Nature
    214 rdf:type schema:Periodical
    215 sg:person.01115420631.38 schema:affiliation grid-institutes:None
    216 schema:familyName Mihcin
    217 schema:givenName Senay
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115420631.38
    219 rdf:type schema:Person
    220 sg:person.01127747065.24 schema:affiliation grid-institutes:grid.5801.c
    221 schema:familyName Tanner
    222 schema:givenName Christine
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127747065.24
    224 rdf:type schema:Person
    225 sg:person.01136523253.16 schema:affiliation grid-institutes:grid.9647.c
    226 schema:familyName Melzer
    227 schema:givenName Andreas
    228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136523253.16
    229 rdf:type schema:Person
    230 sg:person.012070714426.11 schema:affiliation grid-institutes:grid.428590.2
    231 schema:familyName Zidowitz
    232 schema:givenName Stephan
    233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012070714426.11
    234 rdf:type schema:Person
    235 sg:person.01244616343.84 schema:affiliation grid-institutes:grid.15078.3b
    236 schema:familyName Preusser
    237 schema:givenName Tobias
    238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244616343.84
    239 rdf:type schema:Person
    240 sg:person.01265230445.99 schema:affiliation grid-institutes:grid.435375.3
    241 schema:familyName Levy
    242 schema:givenName Yoav
    243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265230445.99
    244 rdf:type schema:Person
    245 sg:person.01317446274.38 schema:affiliation grid-institutes:grid.7841.a
    246 schema:familyName Bezzi
    247 schema:givenName Mario
    248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317446274.38
    249 rdf:type schema:Person
    250 sg:person.013241024117.28 schema:affiliation grid-institutes:grid.428590.2
    251 schema:familyName von Dresky
    252 schema:givenName Caroline
    253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013241024117.28
    254 rdf:type schema:Person
    255 sg:person.01333343645.83 schema:affiliation grid-institutes:None
    256 schema:familyName Sat
    257 schema:givenName Giora
    258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333343645.83
    259 rdf:type schema:Person
    260 sg:person.015625213073.23 schema:affiliation grid-institutes:grid.428590.2
    261 schema:familyName Demedts
    262 schema:givenName Daniel
    263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015625213073.23
    264 rdf:type schema:Person
    265 sg:person.0604076445.47 schema:affiliation grid-institutes:grid.428590.2
    266 schema:familyName Strehlow
    267 schema:givenName Jan
    268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604076445.47
    269 rdf:type schema:Person
    270 sg:person.0652211645.64 schema:affiliation grid-institutes:grid.428590.2
    271 schema:familyName Haase
    272 schema:givenName Sabrina
    273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652211645.64
    274 rdf:type schema:Person
    275 sg:person.0675605701.52 schema:affiliation grid-institutes:grid.436006.7
    276 schema:familyName Rothlübbers
    277 schema:givenName Sven
    278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675605701.52
    279 rdf:type schema:Person
    280 sg:person.0677065731.98 schema:affiliation grid-institutes:grid.428590.2
    281 schema:familyName Schwenke
    282 schema:givenName Michael
    283 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677065731.98
    284 rdf:type schema:Person
    285 sg:person.0752521726.30 schema:affiliation grid-institutes:grid.428590.2
    286 schema:familyName Georgii
    287 schema:givenName Joachim
    288 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752521726.30
    289 rdf:type schema:Person
    290 sg:person.0753646310.13 schema:affiliation grid-institutes:grid.436006.7
    291 schema:familyName Günther
    292 schema:givenName Matthias
    293 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753646310.13
    294 rdf:type schema:Person
    295 sg:person.0771553562.22 schema:affiliation grid-institutes:grid.436006.7
    296 schema:familyName Jenne
    297 schema:givenName Jürgen
    298 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771553562.22
    299 rdf:type schema:Person
    300 sg:pub.10.1007/978-1-4471-2494-8_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010825938
    301 https://doi.org/10.1007/978-1-4471-2494-8_17
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1007/978-3-642-48354-7_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023966788
    304 https://doi.org/10.1007/978-3-642-48354-7_5
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1007/s00270-014-0861-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011469214
    307 https://doi.org/10.1007/s00270-014-0861-x
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1007/s11548-016-1405-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003346829
    310 https://doi.org/10.1007/s11548-016-1405-4
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1186/2050-5736-1-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039655241
    313 https://doi.org/10.1186/2050-5736-1-13
    314 rdf:type schema:CreativeWork
    315 grid-institutes:None schema:alternateName GE Medical Systems Israel, Haifa, Israel
    316 Institute for Medical Science and Technology, Dundee, Scotland
    317 schema:name GE Medical Systems Israel, Haifa, Israel
    318 Institute for Medical Science and Technology, Dundee, Scotland
    319 rdf:type schema:Organization
    320 grid-institutes:grid.15078.3b schema:alternateName Jacobs University, Bremen, Germany
    321 schema:name Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany
    322 Jacobs University, Bremen, Germany
    323 rdf:type schema:Organization
    324 grid-institutes:grid.428590.2 schema:alternateName Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany
    325 schema:name Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany
    326 rdf:type schema:Organization
    327 grid-institutes:grid.435375.3 schema:alternateName InSightec, Tirat Carmel, Israel
    328 schema:name InSightec, Tirat Carmel, Israel
    329 rdf:type schema:Organization
    330 grid-institutes:grid.436006.7 schema:alternateName Mediri, Heidelberg, Germany
    331 schema:name Fraunhofer Institute for Medical Image Computing MEVIS, Am Fallturm 1, 28359, Bremen, Germany
    332 Mediri, Heidelberg, Germany
    333 rdf:type schema:Organization
    334 grid-institutes:grid.5801.c schema:alternateName Computer Vision Laboratory, Eidgenössische Technische Hochschule, Zurich, Switzerland
    335 schema:name Computer Vision Laboratory, Eidgenössische Technische Hochschule, Zurich, Switzerland
    336 rdf:type schema:Organization
    337 grid-institutes:grid.7841.a schema:alternateName Universita Degli Studi Di Roma La Sapienza, Rome, Italy
    338 schema:name Universita Degli Studi Di Roma La Sapienza, Rome, Italy
    339 rdf:type schema:Organization
    340 grid-institutes:grid.9647.c schema:alternateName Innovation Center Computer Assisted Surgery, Leipzig, Germany
    341 schema:name Innovation Center Computer Assisted Surgery, Leipzig, Germany
    342 Institute for Medical Science and Technology, Dundee, Scotland
    343 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...