Best theory diagrams for multilayered structures via shell finite elements View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Marco Petrolo, Erasmo Carrera

ABSTRACT

Composite structures are convenient structural solutions for many engineering fields, but their design is challenging and may lead to oversizing due to the significant amount of uncertainties concerning the current modeling capabilities. From a structural analysis standpoint, the finite element method is the most used approach and shell elements are of primary importance in the case of thin structures. Current research efforts aim at improving the accuracy of such elements with limited computational overheads to improve the predictive capabilities and widen the applicability to complex structures and nonlinear cases. The present paper presents shell elements with the minimum number of nodal degrees of freedom and maximum accuracy. Such elements compose the best theory diagram stemming from the combined use of the Carrera Unified Formulation and the Axiomatic/Asymptotic Method. Moreover, this paper provides guidelines on the choice of the proper higher-order terms via the introduction of relevance factor diagrams. The numerical cases consider various sets of design parameters such as the thickness, curvature, stacking sequence, and boundary conditions. The results show that the most relevant set of higher-order terms are third-order and that the thickness plays the primary role in their choice. Moreover, certain terms have very high influence, and their neglect may affect the accuracy of the model significantly. More... »

PAGES

4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40323-019-0129-8

DOI

http://dx.doi.org/10.1186/s40323-019-0129-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112991092


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Polytechnic University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.4800.c", 
          "name": [
            "MUL\u00b2 Group, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petrolo", 
        "givenName": "Marco", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tambov State Technical University", 
          "id": "https://www.grid.ac/institutes/grid.440728.d", 
          "name": [
            "MUL\u00b2 Group, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, Italy", 
            "Laboratory of Intelligent Materials and Structures, Tambov State Technical University, Sovetskaya, 106, 392000, Tambov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carrera", 
        "givenName": "Erasmo", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.compstruct.2016.10.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000295626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1850.40.51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002475798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruc.2016.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007304954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2014.03.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007735005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2016.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010146443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruc.2016.10.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012216824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2016.05.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012718697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15376494.2015.1070304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019434365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2016.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021351967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruc.2016.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027645591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijsolstr.2016.01.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033228301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2015.02.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033695770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.10202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037605802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.j050316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040351927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2016.10.129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043578997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2016.10.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050446709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7683(94)90120-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051274645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7683(94)90120-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051274645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1385512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062069044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1557614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062072032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4002207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062142557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruc.2016.10.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084849082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2017.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090683487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruc.2017.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090897744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01495739.2017.1360165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091345570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruc.2017.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091408436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2017.08.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091431482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2017.09.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091881619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00466-017-1510-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092687626", 
          "https://doi.org/10.1007/s00466-017-1510-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.5730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093058167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tws.2017.12.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100115272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2018.01.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100425611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15376494.2018.1432802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101172012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2018.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103189241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00419-018-1380-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103664966", 
          "https://doi.org/10.1007/s00419-018-1380-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00419-018-1380-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103664966", 
          "https://doi.org/10.1007/s00419-018-1380-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesb.2018.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104553044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1106826723", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118536643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106826723"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Composite structures are convenient structural solutions for many engineering fields, but their design is challenging and may lead to oversizing due to the significant amount of uncertainties concerning the current modeling capabilities. From a structural analysis standpoint, the finite element method is the most used approach and shell elements are of primary importance in the case of thin structures. Current research efforts aim at improving the accuracy of such elements with limited computational overheads to improve the predictive capabilities and widen the applicability to complex structures and nonlinear cases. The present paper presents shell elements with the minimum number of nodal degrees of freedom and maximum accuracy. Such elements compose the best theory diagram stemming from the combined use of the Carrera Unified Formulation and the Axiomatic/Asymptotic Method. Moreover, this paper provides guidelines on the choice of the proper higher-order terms via the introduction of relevance factor diagrams. The numerical cases consider various sets of design parameters such as the thickness, curvature, stacking sequence, and boundary conditions. The results show that the most relevant set of higher-order terms are third-order and that the thickness plays the primary role in their choice. Moreover, certain terms have very high influence, and their neglect may affect the accuracy of the model significantly.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40323-019-0129-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053142", 
        "issn": [
          "2213-7467"
        ], 
        "name": "Advanced Modeling and Simulation in Engineering Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Best theory diagrams for multilayered structures via shell finite elements", 
    "pagination": "4", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e3728b213c76f825710d75516ff801d31c5dbef8969651e778d0ddea81867072"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40323-019-0129-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112991092"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40323-019-0129-8", 
      "https://app.dimensions.ai/details/publication/pub.1112991092"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112051_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs40323-019-0129-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40323-019-0129-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40323-019-0129-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40323-019-0129-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40323-019-0129-8'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      64 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40323-019-0129-8 schema:about anzsrc-for:09
2 anzsrc-for:0905
3 schema:author N63b96d48effe42ecaf4d1c3f2a1df7d3
4 schema:citation sg:pub.10.1007/s00419-018-1380-z
5 sg:pub.10.1007/s00466-017-1510-4
6 https://app.dimensions.ai/details/publication/pub.1106826723
7 https://doi.org/10.1002/9781118536643
8 https://doi.org/10.1002/nme.5730
9 https://doi.org/10.1016/0020-7683(94)90120-1
10 https://doi.org/10.1016/j.cma.2017.08.038
11 https://doi.org/10.1016/j.cma.2018.04.007
12 https://doi.org/10.1016/j.compositesb.2018.06.007
13 https://doi.org/10.1016/j.compstruc.2016.03.002
14 https://doi.org/10.1016/j.compstruc.2016.10.021
15 https://doi.org/10.1016/j.compstruc.2016.10.023
16 https://doi.org/10.1016/j.compstruc.2016.11.004
17 https://doi.org/10.1016/j.compstruc.2017.07.003
18 https://doi.org/10.1016/j.compstruc.2017.08.003
19 https://doi.org/10.1016/j.compstruct.2014.03.039
20 https://doi.org/10.1016/j.compstruct.2015.02.027
21 https://doi.org/10.1016/j.compstruct.2016.03.002
22 https://doi.org/10.1016/j.compstruct.2016.05.030
23 https://doi.org/10.1016/j.compstruct.2016.09.005
24 https://doi.org/10.1016/j.compstruct.2016.10.071
25 https://doi.org/10.1016/j.compstruct.2016.10.078
26 https://doi.org/10.1016/j.compstruct.2016.10.129
27 https://doi.org/10.1016/j.compstruct.2017.07.007
28 https://doi.org/10.1016/j.compstruct.2017.09.051
29 https://doi.org/10.1016/j.compstruct.2018.01.043
30 https://doi.org/10.1016/j.ijsolstr.2016.01.019
31 https://doi.org/10.1016/j.tws.2017.12.027
32 https://doi.org/10.1080/01495739.2017.1360165
33 https://doi.org/10.1080/15376494.2015.1070304
34 https://doi.org/10.1080/15376494.2018.1432802
35 https://doi.org/10.1115/1.1385512
36 https://doi.org/10.1115/1.1557614
37 https://doi.org/10.1115/1.4002207
38 https://doi.org/10.1515/crll.1850.40.51
39 https://doi.org/10.2514/1.j050316
40 https://doi.org/10.2514/3.10202
41 schema:datePublished 2019-12
42 schema:datePublishedReg 2019-12-01
43 schema:description Composite structures are convenient structural solutions for many engineering fields, but their design is challenging and may lead to oversizing due to the significant amount of uncertainties concerning the current modeling capabilities. From a structural analysis standpoint, the finite element method is the most used approach and shell elements are of primary importance in the case of thin structures. Current research efforts aim at improving the accuracy of such elements with limited computational overheads to improve the predictive capabilities and widen the applicability to complex structures and nonlinear cases. The present paper presents shell elements with the minimum number of nodal degrees of freedom and maximum accuracy. Such elements compose the best theory diagram stemming from the combined use of the Carrera Unified Formulation and the Axiomatic/Asymptotic Method. Moreover, this paper provides guidelines on the choice of the proper higher-order terms via the introduction of relevance factor diagrams. The numerical cases consider various sets of design parameters such as the thickness, curvature, stacking sequence, and boundary conditions. The results show that the most relevant set of higher-order terms are third-order and that the thickness plays the primary role in their choice. Moreover, certain terms have very high influence, and their neglect may affect the accuracy of the model significantly.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf N69baebfd2e774f8395db4446961c792c
48 N8d7336941f2b475da70e06e8efcec74f
49 sg:journal.1053142
50 schema:name Best theory diagrams for multilayered structures via shell finite elements
51 schema:pagination 4
52 schema:productId N7af890e2f5454b6898490e763c31cbf3
53 N8aa6b52b75f84b86b8475bd500c6de70
54 N99f3d17c44614ad1b2c4bcdc38825833
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112991092
56 https://doi.org/10.1186/s40323-019-0129-8
57 schema:sdDatePublished 2019-04-11T13:05
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Ndf225008420243338590ef89df7c0994
60 schema:url https://link.springer.com/10.1186%2Fs40323-019-0129-8
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N63b96d48effe42ecaf4d1c3f2a1df7d3 rdf:first N6ef08a402edb4e3e883038636a4e9596
65 rdf:rest Ndd811190f4654025a31d236e37cfeff8
66 N69baebfd2e774f8395db4446961c792c schema:volumeNumber 6
67 rdf:type schema:PublicationVolume
68 N6ef08a402edb4e3e883038636a4e9596 schema:affiliation https://www.grid.ac/institutes/grid.4800.c
69 schema:familyName Petrolo
70 schema:givenName Marco
71 rdf:type schema:Person
72 N719aaef54b99435ebbe6a610237af4cc schema:affiliation https://www.grid.ac/institutes/grid.440728.d
73 schema:familyName Carrera
74 schema:givenName Erasmo
75 rdf:type schema:Person
76 N7af890e2f5454b6898490e763c31cbf3 schema:name dimensions_id
77 schema:value pub.1112991092
78 rdf:type schema:PropertyValue
79 N8aa6b52b75f84b86b8475bd500c6de70 schema:name doi
80 schema:value 10.1186/s40323-019-0129-8
81 rdf:type schema:PropertyValue
82 N8d7336941f2b475da70e06e8efcec74f schema:issueNumber 1
83 rdf:type schema:PublicationIssue
84 N99f3d17c44614ad1b2c4bcdc38825833 schema:name readcube_id
85 schema:value e3728b213c76f825710d75516ff801d31c5dbef8969651e778d0ddea81867072
86 rdf:type schema:PropertyValue
87 Ndd811190f4654025a31d236e37cfeff8 rdf:first N719aaef54b99435ebbe6a610237af4cc
88 rdf:rest rdf:nil
89 Ndf225008420243338590ef89df7c0994 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
92 schema:name Engineering
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
95 schema:name Civil Engineering
96 rdf:type schema:DefinedTerm
97 sg:journal.1053142 schema:issn 2213-7467
98 schema:name Advanced Modeling and Simulation in Engineering Sciences
99 rdf:type schema:Periodical
100 sg:pub.10.1007/s00419-018-1380-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1103664966
101 https://doi.org/10.1007/s00419-018-1380-z
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s00466-017-1510-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092687626
104 https://doi.org/10.1007/s00466-017-1510-4
105 rdf:type schema:CreativeWork
106 https://app.dimensions.ai/details/publication/pub.1106826723 schema:CreativeWork
107 https://doi.org/10.1002/9781118536643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106826723
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1002/nme.5730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093058167
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0020-7683(94)90120-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051274645
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.cma.2017.08.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091431482
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.cma.2018.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103189241
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.compositesb.2018.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104553044
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.compstruc.2016.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027645591
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.compstruc.2016.10.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012216824
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.compstruc.2016.10.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084849082
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.compstruc.2016.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007304954
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.compstruc.2017.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090897744
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.compstruc.2017.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091408436
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.compstruct.2014.03.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007735005
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.compstruct.2015.02.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033695770
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.compstruct.2016.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021351967
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.compstruct.2016.05.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012718697
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.compstruct.2016.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010146443
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.compstruct.2016.10.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000295626
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.compstruct.2016.10.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050446709
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.compstruct.2016.10.129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043578997
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.compstruct.2017.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090683487
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.compstruct.2017.09.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091881619
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.compstruct.2018.01.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100425611
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.ijsolstr.2016.01.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033228301
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.tws.2017.12.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100115272
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1080/01495739.2017.1360165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091345570
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1080/15376494.2015.1070304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019434365
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1080/15376494.2018.1432802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101172012
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1115/1.1385512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062069044
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1115/1.1557614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062072032
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1115/1.4002207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062142557
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1515/crll.1850.40.51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002475798
170 rdf:type schema:CreativeWork
171 https://doi.org/10.2514/1.j050316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040351927
172 rdf:type schema:CreativeWork
173 https://doi.org/10.2514/3.10202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037605802
174 rdf:type schema:CreativeWork
175 https://www.grid.ac/institutes/grid.440728.d schema:alternateName Tambov State Technical University
176 schema:name Laboratory of Intelligent Materials and Structures, Tambov State Technical University, Sovetskaya, 106, 392000, Tambov, Russia
177 MUL² Group, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, Italy
178 rdf:type schema:Organization
179 https://www.grid.ac/institutes/grid.4800.c schema:alternateName Polytechnic University of Turin
180 schema:name MUL² Group, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, Italy
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...