Reliability and usability of tourism climate indices View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-04-18

AUTHORS

Ghislain Dubois, Jean Paul Ceron, Clotilde Dubois, Maria Dolores Frias, Sixto Herrera

ABSTRACT

Tourism climate indices (TCI) are commonly used to describe the climate conditions suitable for tourism activities, from the planning, investment or daily operations perspectives. A substantial amount of research has been carried out, in particular with respect to new indices formulae adapted to specific tourism products, and parameters and their weighting, taking into account surveys on the stated preferences of tourists, especially in terms of comfort. This paper illustrates another field of research, which seeks to better understand the different sources of uncertainty associated with indices. Indeed, slight differences in formula thresholds, variations in computation methods, and also the use of multimodel ensembles create nuances that affect the ways in which indices projections are usually presented. Firstly, we assess the impact of differences in preference surveys on the definition of indices thresholds, in particular for thermal comfort. Secondly, we compare computation methods for France, showing the need to better specify detailed data sources and their use to ensure the comparability of results. Thirdly, using multimodel ensembles for the Mediterranean basin, we assess the uncertainty inherent in long-term projections, which are used in modelling the economic impact of climate change. This paper argues in favour of a more cautious use of tourism comfort indices, with more consideration given to the robustness of data (validation, debiasing, uncertainty assessment, etc.) and users’ needs, from the climate services perspective. More... »

PAGES

2

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40322-016-0034-y

DOI

http://dx.doi.org/10.1186/s40322-016-0034-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032399393


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "TEC, 38 rue S\u00e9nac de Meilhan, 13001, Marseille, France", 
          "id": "http://www.grid.ac/institutes/grid.438597.4", 
          "name": [
            "TEC, 38 rue S\u00e9nac de Meilhan, 13001, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dubois", 
        "givenName": "Ghislain", 
        "id": "sg:person.013112025602.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013112025602.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "5 rue de la R\u00e9publique, 19290, Sornac, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "5 rue de la R\u00e9publique, 19290, Sornac, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ceron", 
        "givenName": "Jean Paul", 
        "id": "sg:person.014603176260.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014603176260.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "M\u00e9t\u00e9o France, CNRM, Toulouse, France", 
          "id": "http://www.grid.ac/institutes/grid.423777.2", 
          "name": [
            "M\u00e9t\u00e9o France, CNRM, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dubois", 
        "givenName": "Clotilde", 
        "id": "sg:person.013713555533.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013713555533.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cantabria, Santander Meteorological Group, Instituto de F\u00edsica de Cantabria, IFCA, Avda. de los Castros, s/n, 39005, Santander, Spain", 
          "id": "http://www.grid.ac/institutes/grid.7821.c", 
          "name": [
            "University of Cantabria, Santander Meteorological Group, Instituto de F\u00edsica de Cantabria, IFCA, Avda. de los Castros, s/n, 39005, Santander, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frias", 
        "givenName": "Maria Dolores", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Santander Meteorological Group, Instituto de F\u00edsica de Cantabria, IFCA, Avda. de los Castros, s/n, 39005, Santander, Spain", 
          "id": "http://www.grid.ac/institutes/grid.469953.4", 
          "name": [
            "Santander Meteorological Group, Instituto de F\u00edsica de Cantabria, IFCA, Avda. de los Castros, s/n, 39005, Santander, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herrera", 
        "givenName": "Sixto", 
        "id": "sg:person.012622360112.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012622360112.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00484-007-0134-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043355929", 
          "https://doi.org/10.1007/s00484-007-0134-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-011-0341-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010827661", 
          "https://doi.org/10.1007/s10584-011-0341-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-04-18", 
    "datePublishedReg": "2016-04-18", 
    "description": "Tourism climate indices (TCI) are commonly used to describe the climate conditions suitable for tourism activities, from the planning, investment or daily operations perspectives. A substantial amount of research has been carried out, in particular with respect to new indices formulae adapted to specific tourism products, and parameters and their weighting, taking into account surveys on the stated preferences of tourists, especially in terms of comfort. This paper illustrates another field of research, which seeks to better understand the different sources of uncertainty associated with indices. Indeed, slight differences in formula thresholds, variations in computation methods, and also the use of multimodel ensembles create nuances that affect the ways in which indices projections are usually presented. Firstly, we assess the impact of differences in preference surveys on the definition of indices thresholds, in particular for thermal comfort. Secondly, we compare computation methods for France, showing the need to better specify detailed data sources and their use to ensure the comparability of results. Thirdly, using multimodel ensembles for the Mediterranean basin, we assess the uncertainty inherent in long-term projections, which are used in modelling the economic impact of climate change. This paper argues in favour of a more cautious use of tourism comfort indices, with more consideration given to the robustness of data (validation, debiasing, uncertainty assessment, etc.) and users\u2019 needs, from the climate services perspective.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s40322-016-0034-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136356", 
        "issn": [
          "2194-6434"
        ], 
        "name": "Earth Perspectives", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "computation method", 
      "index formula", 
      "multimodel ensemble", 
      "definition of indices", 
      "uncertainty", 
      "formula", 
      "tourism climate", 
      "ensemble", 
      "operations perspective", 
      "robustness", 
      "Tourism Climate Index", 
      "projections", 
      "field of research", 
      "weighting", 
      "climate indices", 
      "parameters", 
      "terms", 
      "reliability", 
      "planning", 
      "definition", 
      "respect", 
      "field", 
      "consideration", 
      "conditions", 
      "different sources", 
      "data sources", 
      "long-term projections", 
      "way", 
      "use", 
      "comparability of results", 
      "results", 
      "index", 
      "data", 
      "comfort index", 
      "perspective", 
      "research", 
      "comfort", 
      "variation", 
      "preference survey", 
      "need", 
      "preferences of tourists", 
      "detailed data sources", 
      "climate conditions", 
      "source", 
      "investment", 
      "survey", 
      "economic impact", 
      "account surveys", 
      "impact of differences", 
      "products", 
      "impact", 
      "usability", 
      "tourism activities", 
      "comparability", 
      "substantial amount", 
      "thermal comfort", 
      "service perspective", 
      "terms of comfort", 
      "amount", 
      "tourism products", 
      "more consideration", 
      "preferences", 
      "basin", 
      "robustness of data", 
      "climate change", 
      "differences", 
      "favor", 
      "cautious use", 
      "user needs", 
      "slight differences", 
      "tourists", 
      "France", 
      "changes", 
      "climate", 
      "nuances", 
      "activity", 
      "method", 
      "Mediterranean basin", 
      "paper", 
      "specific tourism product", 
      "daily operations perspectives", 
      "new indices formulae", 
      "tourism comfort indices", 
      "climate services perspective"
    ], 
    "name": "Reliability and usability of tourism climate indices", 
    "pagination": "2", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032399393"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40322-016-0034-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40322-016-0034-y", 
      "https://app.dimensions.ai/details/publication/pub.1032399393"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_708.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s40322-016-0034-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40322-016-0034-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40322-016-0034-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40322-016-0034-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40322-016-0034-y'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      22 PREDICATES      111 URIs      101 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40322-016-0034-y schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N393905048bae43bd90c2cdf2bb9e7dd7
4 schema:citation sg:pub.10.1007/s00484-007-0134-3
5 sg:pub.10.1007/s10584-011-0341-0
6 schema:datePublished 2016-04-18
7 schema:datePublishedReg 2016-04-18
8 schema:description Tourism climate indices (TCI) are commonly used to describe the climate conditions suitable for tourism activities, from the planning, investment or daily operations perspectives. A substantial amount of research has been carried out, in particular with respect to new indices formulae adapted to specific tourism products, and parameters and their weighting, taking into account surveys on the stated preferences of tourists, especially in terms of comfort. This paper illustrates another field of research, which seeks to better understand the different sources of uncertainty associated with indices. Indeed, slight differences in formula thresholds, variations in computation methods, and also the use of multimodel ensembles create nuances that affect the ways in which indices projections are usually presented. Firstly, we assess the impact of differences in preference surveys on the definition of indices thresholds, in particular for thermal comfort. Secondly, we compare computation methods for France, showing the need to better specify detailed data sources and their use to ensure the comparability of results. Thirdly, using multimodel ensembles for the Mediterranean basin, we assess the uncertainty inherent in long-term projections, which are used in modelling the economic impact of climate change. This paper argues in favour of a more cautious use of tourism comfort indices, with more consideration given to the robustness of data (validation, debiasing, uncertainty assessment, etc.) and users’ needs, from the climate services perspective.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N045d892abcbc4f768bd372e3592ad496
13 Nc429d346047a4f63845727a588de9702
14 sg:journal.1136356
15 schema:keywords France
16 Mediterranean basin
17 Tourism Climate Index
18 account surveys
19 activity
20 amount
21 basin
22 cautious use
23 changes
24 climate
25 climate change
26 climate conditions
27 climate indices
28 climate services perspective
29 comfort
30 comfort index
31 comparability
32 comparability of results
33 computation method
34 conditions
35 consideration
36 daily operations perspectives
37 data
38 data sources
39 definition
40 definition of indices
41 detailed data sources
42 differences
43 different sources
44 economic impact
45 ensemble
46 favor
47 field
48 field of research
49 formula
50 impact
51 impact of differences
52 index
53 index formula
54 investment
55 long-term projections
56 method
57 more consideration
58 multimodel ensemble
59 need
60 new indices formulae
61 nuances
62 operations perspective
63 paper
64 parameters
65 perspective
66 planning
67 preference survey
68 preferences
69 preferences of tourists
70 products
71 projections
72 reliability
73 research
74 respect
75 results
76 robustness
77 robustness of data
78 service perspective
79 slight differences
80 source
81 specific tourism product
82 substantial amount
83 survey
84 terms
85 terms of comfort
86 thermal comfort
87 tourism activities
88 tourism climate
89 tourism comfort indices
90 tourism products
91 tourists
92 uncertainty
93 usability
94 use
95 user needs
96 variation
97 way
98 weighting
99 schema:name Reliability and usability of tourism climate indices
100 schema:pagination 2
101 schema:productId N4738b8fe390c4e4ba4eb03c9d16daff1
102 Nff10f1ee8da746ddb0e1bc4d6a602b38
103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032399393
104 https://doi.org/10.1186/s40322-016-0034-y
105 schema:sdDatePublished 2022-01-01T18:41
106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
107 schema:sdPublisher N6c928906d4ea43f094c8b0726b2001ae
108 schema:url https://doi.org/10.1186/s40322-016-0034-y
109 sgo:license sg:explorer/license/
110 sgo:sdDataset articles
111 rdf:type schema:ScholarlyArticle
112 N045d892abcbc4f768bd372e3592ad496 schema:volumeNumber 3
113 rdf:type schema:PublicationVolume
114 N2d47b8208d0649309bd00e47b7912b37 rdf:first sg:person.014603176260.86
115 rdf:rest N50631bd5ad2a43be8583420b5d6260aa
116 N393905048bae43bd90c2cdf2bb9e7dd7 rdf:first sg:person.013112025602.23
117 rdf:rest N2d47b8208d0649309bd00e47b7912b37
118 N3e9221e20db048f683bf21e999b65445 rdf:first N656d00d5a07d4181bd8680c5700d3682
119 rdf:rest Nd47cdc106ef4442590d869437cf93f83
120 N4738b8fe390c4e4ba4eb03c9d16daff1 schema:name doi
121 schema:value 10.1186/s40322-016-0034-y
122 rdf:type schema:PropertyValue
123 N50631bd5ad2a43be8583420b5d6260aa rdf:first sg:person.013713555533.53
124 rdf:rest N3e9221e20db048f683bf21e999b65445
125 N656d00d5a07d4181bd8680c5700d3682 schema:affiliation grid-institutes:grid.7821.c
126 schema:familyName Frias
127 schema:givenName Maria Dolores
128 rdf:type schema:Person
129 N6c928906d4ea43f094c8b0726b2001ae schema:name Springer Nature - SN SciGraph project
130 rdf:type schema:Organization
131 Nc429d346047a4f63845727a588de9702 schema:issueNumber 1
132 rdf:type schema:PublicationIssue
133 Nd47cdc106ef4442590d869437cf93f83 rdf:first sg:person.012622360112.59
134 rdf:rest rdf:nil
135 Nff10f1ee8da746ddb0e1bc4d6a602b38 schema:name dimensions_id
136 schema:value pub.1032399393
137 rdf:type schema:PropertyValue
138 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
139 schema:name Economics
140 rdf:type schema:DefinedTerm
141 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
142 schema:name Applied Economics
143 rdf:type schema:DefinedTerm
144 sg:journal.1136356 schema:issn 2194-6434
145 schema:name Earth Perspectives
146 schema:publisher Springer Nature
147 rdf:type schema:Periodical
148 sg:person.012622360112.59 schema:affiliation grid-institutes:grid.469953.4
149 schema:familyName Herrera
150 schema:givenName Sixto
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012622360112.59
152 rdf:type schema:Person
153 sg:person.013112025602.23 schema:affiliation grid-institutes:grid.438597.4
154 schema:familyName Dubois
155 schema:givenName Ghislain
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013112025602.23
157 rdf:type schema:Person
158 sg:person.013713555533.53 schema:affiliation grid-institutes:grid.423777.2
159 schema:familyName Dubois
160 schema:givenName Clotilde
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013713555533.53
162 rdf:type schema:Person
163 sg:person.014603176260.86 schema:affiliation grid-institutes:None
164 schema:familyName Ceron
165 schema:givenName Jean Paul
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014603176260.86
167 rdf:type schema:Person
168 sg:pub.10.1007/s00484-007-0134-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043355929
169 https://doi.org/10.1007/s00484-007-0134-3
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s10584-011-0341-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010827661
172 https://doi.org/10.1007/s10584-011-0341-0
173 rdf:type schema:CreativeWork
174 grid-institutes:None schema:alternateName 5 rue de la République, 19290, Sornac, France
175 schema:name 5 rue de la République, 19290, Sornac, France
176 rdf:type schema:Organization
177 grid-institutes:grid.423777.2 schema:alternateName Météo France, CNRM, Toulouse, France
178 schema:name Météo France, CNRM, Toulouse, France
179 rdf:type schema:Organization
180 grid-institutes:grid.438597.4 schema:alternateName TEC, 38 rue Sénac de Meilhan, 13001, Marseille, France
181 schema:name TEC, 38 rue Sénac de Meilhan, 13001, Marseille, France
182 rdf:type schema:Organization
183 grid-institutes:grid.469953.4 schema:alternateName Santander Meteorological Group, Instituto de Física de Cantabria, IFCA, Avda. de los Castros, s/n, 39005, Santander, Spain
184 schema:name Santander Meteorological Group, Instituto de Física de Cantabria, IFCA, Avda. de los Castros, s/n, 39005, Santander, Spain
185 rdf:type schema:Organization
186 grid-institutes:grid.7821.c schema:alternateName University of Cantabria, Santander Meteorological Group, Instituto de Física de Cantabria, IFCA, Avda. de los Castros, s/n, 39005, Santander, Spain
187 schema:name University of Cantabria, Santander Meteorological Group, Instituto de Física de Cantabria, IFCA, Avda. de los Castros, s/n, 39005, Santander, Spain
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...