Reliability and usability of tourism climate indices View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-04-18

AUTHORS

Ghislain Dubois, Jean Paul Ceron, Clotilde Dubois, Maria Dolores Frias, Sixto Herrera

ABSTRACT

Tourism climate indices (TCI) are commonly used to describe the climate conditions suitable for tourism activities, from the planning, investment or daily operations perspectives. A substantial amount of research has been carried out, in particular with respect to new indices formulae adapted to specific tourism products, and parameters and their weighting, taking into account surveys on the stated preferences of tourists, especially in terms of comfort. This paper illustrates another field of research, which seeks to better understand the different sources of uncertainty associated with indices. Indeed, slight differences in formula thresholds, variations in computation methods, and also the use of multimodel ensembles create nuances that affect the ways in which indices projections are usually presented. Firstly, we assess the impact of differences in preference surveys on the definition of indices thresholds, in particular for thermal comfort. Secondly, we compare computation methods for France, showing the need to better specify detailed data sources and their use to ensure the comparability of results. Thirdly, using multimodel ensembles for the Mediterranean basin, we assess the uncertainty inherent in long-term projections, which are used in modelling the economic impact of climate change. This paper argues in favour of a more cautious use of tourism comfort indices, with more consideration given to the robustness of data (validation, debiasing, uncertainty assessment, etc.) and users’ needs, from the climate services perspective. More... »

PAGES

2

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40322-016-0034-y

DOI

http://dx.doi.org/10.1186/s40322-016-0034-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032399393


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "TEC, 38 rue S\u00e9nac de Meilhan, 13001, Marseille, France", 
          "id": "http://www.grid.ac/institutes/grid.438597.4", 
          "name": [
            "TEC, 38 rue S\u00e9nac de Meilhan, 13001, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dubois", 
        "givenName": "Ghislain", 
        "id": "sg:person.013112025602.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013112025602.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "5 rue de la R\u00e9publique, 19290, Sornac, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "5 rue de la R\u00e9publique, 19290, Sornac, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ceron", 
        "givenName": "Jean Paul", 
        "id": "sg:person.014603176260.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014603176260.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "M\u00e9t\u00e9o France, CNRM, Toulouse, France", 
          "id": "http://www.grid.ac/institutes/grid.423777.2", 
          "name": [
            "M\u00e9t\u00e9o France, CNRM, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dubois", 
        "givenName": "Clotilde", 
        "id": "sg:person.013713555533.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013713555533.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cantabria, Santander Meteorological Group, Instituto de F\u00edsica de Cantabria, IFCA, Avda. de los Castros, s/n, 39005, Santander, Spain", 
          "id": "http://www.grid.ac/institutes/grid.7821.c", 
          "name": [
            "University of Cantabria, Santander Meteorological Group, Instituto de F\u00edsica de Cantabria, IFCA, Avda. de los Castros, s/n, 39005, Santander, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frias", 
        "givenName": "Maria Dolores", 
        "id": "sg:person.012345502765.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012345502765.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Santander Meteorological Group, Instituto de F\u00edsica de Cantabria, IFCA, Avda. de los Castros, s/n, 39005, Santander, Spain", 
          "id": "http://www.grid.ac/institutes/grid.469953.4", 
          "name": [
            "Santander Meteorological Group, Instituto de F\u00edsica de Cantabria, IFCA, Avda. de los Castros, s/n, 39005, Santander, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herrera", 
        "givenName": "Sixto", 
        "id": "sg:person.012622360112.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012622360112.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10584-011-0341-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010827661", 
          "https://doi.org/10.1007/s10584-011-0341-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00484-007-0134-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043355929", 
          "https://doi.org/10.1007/s00484-007-0134-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-04-18", 
    "datePublishedReg": "2016-04-18", 
    "description": "Tourism climate indices (TCI) are commonly used to describe the climate conditions suitable for tourism activities, from the planning, investment or daily operations perspectives. A substantial amount of research has been carried out, in particular with respect to new indices formulae adapted to specific tourism products, and parameters and their weighting, taking into account surveys on the stated preferences of tourists, especially in terms of comfort. This paper illustrates another field of research, which seeks to better understand the different sources of uncertainty associated with indices. Indeed, slight differences in formula thresholds, variations in computation methods, and also the use of multimodel ensembles create nuances that affect the ways in which indices projections are usually presented. Firstly, we assess the impact of differences in preference surveys on the definition of indices thresholds, in particular for thermal comfort. Secondly, we compare computation methods for France, showing the need to better specify detailed data sources and their use to ensure the comparability of results. Thirdly, using multimodel ensembles for the Mediterranean basin, we assess the uncertainty inherent in long-term projections, which are used in modelling the economic impact of climate change. This paper argues in favour of a more cautious use of tourism comfort indices, with more consideration given to the robustness of data (validation, debiasing, uncertainty assessment, etc.) and users\u2019 needs, from the climate services perspective.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s40322-016-0034-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136356", 
        "issn": [
          "2194-6434"
        ], 
        "name": "Earth Perspectives", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "specific tourism products", 
      "preferences of tourists", 
      "multimodel ensemble", 
      "detailed data sources", 
      "tourism products", 
      "tourism activities", 
      "Tourism Climate Index", 
      "preference survey", 
      "operations perspective", 
      "impact of differences", 
      "long-term projections", 
      "service perspective", 
      "tourism climate", 
      "climate indices", 
      "climate conditions", 
      "climate change", 
      "Mediterranean basin", 
      "economic impact", 
      "tourists", 
      "perspective", 
      "more consideration", 
      "investment", 
      "definition of indices", 
      "field of research", 
      "research", 
      "survey", 
      "impact", 
      "different sources", 
      "ensemble", 
      "data sources", 
      "basin", 
      "climate", 
      "need", 
      "uncertainty", 
      "projections", 
      "user needs", 
      "substantial amount", 
      "paper", 
      "source", 
      "comparability", 
      "preferences", 
      "comparability of results", 
      "planning", 
      "nuances", 
      "products", 
      "slight differences", 
      "variation", 
      "comfort index", 
      "index", 
      "way", 
      "terms of comfort", 
      "France", 
      "favor", 
      "definition", 
      "changes", 
      "consideration", 
      "weighting", 
      "terms", 
      "data", 
      "amount", 
      "conditions", 
      "use", 
      "computation method", 
      "field", 
      "differences", 
      "activity", 
      "reliability", 
      "results", 
      "respect", 
      "comfort", 
      "thermal comfort", 
      "usability", 
      "parameters", 
      "method", 
      "cautious use", 
      "formula", 
      "robustness", 
      "index formula", 
      "robustness of data", 
      "account surveys"
    ], 
    "name": "Reliability and usability of tourism climate indices", 
    "pagination": "2", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032399393"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40322-016-0034-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40322-016-0034-y", 
      "https://app.dimensions.ai/details/publication/pub.1032399393"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_696.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s40322-016-0034-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40322-016-0034-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40322-016-0034-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40322-016-0034-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40322-016-0034-y'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      22 PREDICATES      107 URIs      97 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40322-016-0034-y schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author Nc331d460029f40288e5f6b33fa0f1a68
4 schema:citation sg:pub.10.1007/s00484-007-0134-3
5 sg:pub.10.1007/s10584-011-0341-0
6 schema:datePublished 2016-04-18
7 schema:datePublishedReg 2016-04-18
8 schema:description Tourism climate indices (TCI) are commonly used to describe the climate conditions suitable for tourism activities, from the planning, investment or daily operations perspectives. A substantial amount of research has been carried out, in particular with respect to new indices formulae adapted to specific tourism products, and parameters and their weighting, taking into account surveys on the stated preferences of tourists, especially in terms of comfort. This paper illustrates another field of research, which seeks to better understand the different sources of uncertainty associated with indices. Indeed, slight differences in formula thresholds, variations in computation methods, and also the use of multimodel ensembles create nuances that affect the ways in which indices projections are usually presented. Firstly, we assess the impact of differences in preference surveys on the definition of indices thresholds, in particular for thermal comfort. Secondly, we compare computation methods for France, showing the need to better specify detailed data sources and their use to ensure the comparability of results. Thirdly, using multimodel ensembles for the Mediterranean basin, we assess the uncertainty inherent in long-term projections, which are used in modelling the economic impact of climate change. This paper argues in favour of a more cautious use of tourism comfort indices, with more consideration given to the robustness of data (validation, debiasing, uncertainty assessment, etc.) and users’ needs, from the climate services perspective.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N268f0fd9ff1a479d9afee7b4afc4ecfa
13 N46d418059c3248a58098ea8713f6493f
14 sg:journal.1136356
15 schema:keywords France
16 Mediterranean basin
17 Tourism Climate Index
18 account surveys
19 activity
20 amount
21 basin
22 cautious use
23 changes
24 climate
25 climate change
26 climate conditions
27 climate indices
28 comfort
29 comfort index
30 comparability
31 comparability of results
32 computation method
33 conditions
34 consideration
35 data
36 data sources
37 definition
38 definition of indices
39 detailed data sources
40 differences
41 different sources
42 economic impact
43 ensemble
44 favor
45 field
46 field of research
47 formula
48 impact
49 impact of differences
50 index
51 index formula
52 investment
53 long-term projections
54 method
55 more consideration
56 multimodel ensemble
57 need
58 nuances
59 operations perspective
60 paper
61 parameters
62 perspective
63 planning
64 preference survey
65 preferences
66 preferences of tourists
67 products
68 projections
69 reliability
70 research
71 respect
72 results
73 robustness
74 robustness of data
75 service perspective
76 slight differences
77 source
78 specific tourism products
79 substantial amount
80 survey
81 terms
82 terms of comfort
83 thermal comfort
84 tourism activities
85 tourism climate
86 tourism products
87 tourists
88 uncertainty
89 usability
90 use
91 user needs
92 variation
93 way
94 weighting
95 schema:name Reliability and usability of tourism climate indices
96 schema:pagination 2
97 schema:productId N251576bd2c79456880f8df31858a2cce
98 Na6a1bd220fc2429b8f473a70f21936ae
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032399393
100 https://doi.org/10.1186/s40322-016-0034-y
101 schema:sdDatePublished 2022-05-10T10:14
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher Nc714c35750404a74a3393e17407e2082
104 schema:url https://doi.org/10.1186/s40322-016-0034-y
105 sgo:license sg:explorer/license/
106 sgo:sdDataset articles
107 rdf:type schema:ScholarlyArticle
108 N251576bd2c79456880f8df31858a2cce schema:name doi
109 schema:value 10.1186/s40322-016-0034-y
110 rdf:type schema:PropertyValue
111 N268f0fd9ff1a479d9afee7b4afc4ecfa schema:volumeNumber 3
112 rdf:type schema:PublicationVolume
113 N46d418059c3248a58098ea8713f6493f schema:issueNumber 1
114 rdf:type schema:PublicationIssue
115 N731a98e08178470799f56e56b40f913c rdf:first sg:person.014603176260.86
116 rdf:rest Nf6b52553df8141bfa53a2e5727af4c8d
117 Na6a1bd220fc2429b8f473a70f21936ae schema:name dimensions_id
118 schema:value pub.1032399393
119 rdf:type schema:PropertyValue
120 Nc331d460029f40288e5f6b33fa0f1a68 rdf:first sg:person.013112025602.23
121 rdf:rest N731a98e08178470799f56e56b40f913c
122 Nc714c35750404a74a3393e17407e2082 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 Nc820669592aa49d3a091028429c001fa rdf:first sg:person.012622360112.59
125 rdf:rest rdf:nil
126 Nebd1a77042ea4296ad90e4e1bb4d4cdd rdf:first sg:person.012345502765.17
127 rdf:rest Nc820669592aa49d3a091028429c001fa
128 Nf6b52553df8141bfa53a2e5727af4c8d rdf:first sg:person.013713555533.53
129 rdf:rest Nebd1a77042ea4296ad90e4e1bb4d4cdd
130 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
131 schema:name Economics
132 rdf:type schema:DefinedTerm
133 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
134 schema:name Applied Economics
135 rdf:type schema:DefinedTerm
136 sg:journal.1136356 schema:issn 2194-6434
137 schema:name Earth Perspectives
138 schema:publisher Springer Nature
139 rdf:type schema:Periodical
140 sg:person.012345502765.17 schema:affiliation grid-institutes:grid.7821.c
141 schema:familyName Frias
142 schema:givenName Maria Dolores
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012345502765.17
144 rdf:type schema:Person
145 sg:person.012622360112.59 schema:affiliation grid-institutes:grid.469953.4
146 schema:familyName Herrera
147 schema:givenName Sixto
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012622360112.59
149 rdf:type schema:Person
150 sg:person.013112025602.23 schema:affiliation grid-institutes:grid.438597.4
151 schema:familyName Dubois
152 schema:givenName Ghislain
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013112025602.23
154 rdf:type schema:Person
155 sg:person.013713555533.53 schema:affiliation grid-institutes:grid.423777.2
156 schema:familyName Dubois
157 schema:givenName Clotilde
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013713555533.53
159 rdf:type schema:Person
160 sg:person.014603176260.86 schema:affiliation grid-institutes:None
161 schema:familyName Ceron
162 schema:givenName Jean Paul
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014603176260.86
164 rdf:type schema:Person
165 sg:pub.10.1007/s00484-007-0134-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043355929
166 https://doi.org/10.1007/s00484-007-0134-3
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s10584-011-0341-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010827661
169 https://doi.org/10.1007/s10584-011-0341-0
170 rdf:type schema:CreativeWork
171 grid-institutes:None schema:alternateName 5 rue de la République, 19290, Sornac, France
172 schema:name 5 rue de la République, 19290, Sornac, France
173 rdf:type schema:Organization
174 grid-institutes:grid.423777.2 schema:alternateName Météo France, CNRM, Toulouse, France
175 schema:name Météo France, CNRM, Toulouse, France
176 rdf:type schema:Organization
177 grid-institutes:grid.438597.4 schema:alternateName TEC, 38 rue Sénac de Meilhan, 13001, Marseille, France
178 schema:name TEC, 38 rue Sénac de Meilhan, 13001, Marseille, France
179 rdf:type schema:Organization
180 grid-institutes:grid.469953.4 schema:alternateName Santander Meteorological Group, Instituto de Física de Cantabria, IFCA, Avda. de los Castros, s/n, 39005, Santander, Spain
181 schema:name Santander Meteorological Group, Instituto de Física de Cantabria, IFCA, Avda. de los Castros, s/n, 39005, Santander, Spain
182 rdf:type schema:Organization
183 grid-institutes:grid.7821.c schema:alternateName University of Cantabria, Santander Meteorological Group, Instituto de Física de Cantabria, IFCA, Avda. de los Castros, s/n, 39005, Santander, Spain
184 schema:name University of Cantabria, Santander Meteorological Group, Instituto de Física de Cantabria, IFCA, Avda. de los Castros, s/n, 39005, Santander, Spain
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...