The sensitivity of present-time electricity demand on past climate change: a case study for Italy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-06-14

AUTHORS

Simone Scapin, Francesco Apadula, Michele Brunetti, Maurizio Maugeri

ABSTRACT

A methodology for estimating secular daily minimum, mean and maximum (Tn, Tm and Tx) temperature records for any urbanised point of a 30-arc-second-resolution grid covering Italy is presented. It is based on the superimposition of 1961–1990 climatologies and departures from them (anomalies). The anomalies are obtained by applying inverse distance weighting to 143 Italian high-quality records, whereas the climatologies are based on a larger dataset and on the application of local weighted linear regression of temperature versus elevation.The grid-point Tn, Tm and Tx records are then used to set up secular records (period 1801–2013) of temperature-derived variables that influence Italy present-time national electricity demand. They are national averages over Italian urbanised areas of cooling degree-days (CDD), heating degree-days (HDD) and solar radiation deficit with respect to a defined threshold (S), with solar radiation estimated using daily temperature range as a proxy.The monthly and yearly sums of the daily CDD, HDD and S records are then used, alongside with a model allowing to link these variables to present-time Italy electricity demand, in order to understand the impact of climate variability and change on present-time Italian electricity demand. We find that temperature changes as the ones observed in the last two centuries are capable of altering significantly the present-time monthly profile of the electricity demand, raising (lowering) summer (winter) months contributions. The impact is higher in summer months where it exceeds 5 % of present-time Italy average monthly electricity demand, whereas the decrease of the winter demand is rather low because of a very limited use of electricity for heating. The summer and winter opposite-sign changes result globally in an increase of the yearly demand of about 5 TWh, corresponding to about 1.5-2.0 % of present-time Italy yearly electricity demand. More... »

PAGES

4

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40322-015-0030-7

DOI

http://dx.doi.org/10.1186/s40322-015-0030-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020576138


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dipartimento di Fisica, Universit\u00e0 degli Studi di Milano, Via Celoria, 16, 20133, Milan, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Ricerca sul Sistema Energetico, RSE Spa. Via Rubattino, 54, 20134, Milan, Italy", 
            "Istituto di Scienze dell\u2019Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti, 101, 40129, Bologna, Italy", 
            "Dipartimento di Fisica, Universit\u00e0 degli Studi di Milano, Via Celoria, 16, 20133, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scapin", 
        "givenName": "Simone", 
        "id": "sg:person.011210031601.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011210031601.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ricerca sul Sistema Energetico, RSE Spa. Via Rubattino, 54, 20134, Milan, Italy", 
          "id": "http://www.grid.ac/institutes/grid.79546.39", 
          "name": [
            "Ricerca sul Sistema Energetico, RSE Spa. Via Rubattino, 54, 20134, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Apadula", 
        "givenName": "Francesco", 
        "id": "sg:person.014120154345.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120154345.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Scienze dell\u2019Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti, 101, 40129, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.435667.5", 
          "name": [
            "Istituto di Scienze dell\u2019Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti, 101, 40129, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brunetti", 
        "givenName": "Michele", 
        "id": "sg:person.010575201043.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575201043.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Fisica, Universit\u00e0 degli Studi di Milano, Via Celoria, 16, 20133, Milan, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Istituto di Scienze dell\u2019Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti, 101, 40129, Bologna, Italy", 
            "Dipartimento di Fisica, Universit\u00e0 degli Studi di Milano, Via Celoria, 16, 20133, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maugeri", 
        "givenName": "Maurizio", 
        "id": "sg:person.010566335047.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010566335047.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature02300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006979406", 
          "https://doi.org/10.1038/nature02300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-23471-3_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005043019", 
          "https://doi.org/10.1007/0-387-23471-3_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-015-1536-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016212496", 
          "https://doi.org/10.1007/s00704-015-1536-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0679-176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056556478", 
          "https://doi.org/10.1038/scientificamerican0679-176"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-06-14", 
    "datePublishedReg": "2015-06-14", 
    "description": "A methodology for estimating secular daily minimum, mean and maximum (Tn, Tm and Tx) temperature records for any urbanised point of a 30-arc-second-resolution grid covering Italy is presented. It is based on the superimposition of 1961\u20131990 climatologies and departures from them (anomalies). The anomalies are obtained by applying inverse distance weighting to 143 Italian high-quality records, whereas the climatologies are based on a larger dataset and on the application of local weighted linear regression of temperature versus elevation.The grid-point Tn, Tm and Tx records are then used to set up secular records (period 1801\u20132013) of temperature-derived variables that influence Italy present-time national electricity demand. They are national averages over Italian urbanised areas of cooling degree-days (CDD), heating degree-days (HDD) and solar radiation deficit with respect to a defined threshold (S), with solar radiation estimated using daily temperature range as a proxy.The monthly and yearly sums of the daily CDD, HDD and S records are then used, alongside with a model allowing to link these variables to present-time Italy electricity demand, in order to understand the impact of climate variability and change on present-time Italian electricity demand. We find that temperature changes as the ones observed in the last two centuries are capable of altering significantly the present-time monthly profile of the electricity demand, raising (lowering) summer (winter) months contributions. The impact is higher in summer months where it exceeds 5\u00a0% of present-time Italy average monthly electricity demand, whereas the decrease of the winter demand is rather low because of a very limited use of electricity for heating. The summer and winter opposite-sign changes result globally in an increase of the yearly demand of about 5 TWh, corresponding to about 1.5-2.0\u00a0% of present-time Italy yearly electricity demand.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s40322-015-0030-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3788036", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136356", 
        "issn": [
          "2194-6434"
        ], 
        "name": "Earth Perspectives", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "electricity demand", 
      "yearly electricity demand", 
      "national electricity demand", 
      "winter demand", 
      "yearly demand", 
      "monthly electricity demand", 
      "maximum temperature", 
      "solar radiation", 
      "temperature range", 
      "temperature changes", 
      "temperature", 
      "yearly sum", 
      "monthly profiles", 
      "electricity", 
      "radiation deficit", 
      "TWh", 
      "demand", 
      "heating", 
      "grid", 
      "urbanised areas", 
      "HDD", 
      "case study", 
      "inverse distance", 
      "high-quality records", 
      "applications", 
      "climatology", 
      "methodology", 
      "range", 
      "order", 
      "summer months", 
      "Tm", 
      "radiation", 
      "model", 
      "impact", 
      "TN", 
      "profile", 
      "point", 
      "distance", 
      "respect", 
      "increase", 
      "minimum", 
      "area", 
      "variables", 
      "changes", 
      "climate change", 
      "one", 
      "superimposition", 
      "decrease", 
      "use", 
      "limited use", 
      "sensitivity", 
      "daily minimum", 
      "threshold", 
      "summer", 
      "contribution", 
      "departure", 
      "study", 
      "variability", 
      "sum", 
      "anomalies", 
      "daily temperature range", 
      "Italy", 
      "linear regression", 
      "average", 
      "datasets", 
      "elevation", 
      "secular records", 
      "large datasets", 
      "climate variability", 
      "CDD", 
      "records", 
      "proxy", 
      "regression", 
      "century", 
      "past climate change", 
      "national average", 
      "months", 
      "deficits", 
      "opposite-sign changes", 
      "secular daily minimum", 
      "urbanised point", 
      "Italian high-quality records", 
      "grid-point Tn", 
      "Tx records", 
      "temperature-derived variables", 
      "Italy present-time national electricity demand", 
      "present-time national electricity demand", 
      "Italian urbanised areas", 
      "solar radiation deficit", 
      "daily CDD", 
      "present-time Italy electricity demand", 
      "Italy electricity demand", 
      "present-time Italian electricity demand", 
      "Italian electricity demand", 
      "present-time monthly profile", 
      "summer (winter) months contributions", 
      "months contributions", 
      "present-time Italy", 
      "winter opposite-sign changes", 
      "present-time Italy yearly electricity demand", 
      "Italy yearly electricity demand", 
      "present-time electricity demand"
    ], 
    "name": "The sensitivity of present-time electricity demand on past climate change: a case study for Italy", 
    "pagination": "4", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020576138"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40322-015-0030-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40322-015-0030-7", 
      "https://app.dimensions.ai/details/publication/pub.1020576138"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_673.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s40322-015-0030-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40322-015-0030-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40322-015-0030-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40322-015-0030-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40322-015-0030-7'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      22 PREDICATES      131 URIs      119 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40322-015-0030-7 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N59392039770842df8f40f5e8f564e8ec
4 schema:citation sg:pub.10.1007/0-387-23471-3_12
5 sg:pub.10.1007/s00704-015-1536-5
6 sg:pub.10.1038/nature02300
7 sg:pub.10.1038/scientificamerican0679-176
8 schema:datePublished 2015-06-14
9 schema:datePublishedReg 2015-06-14
10 schema:description A methodology for estimating secular daily minimum, mean and maximum (Tn, Tm and Tx) temperature records for any urbanised point of a 30-arc-second-resolution grid covering Italy is presented. It is based on the superimposition of 1961–1990 climatologies and departures from them (anomalies). The anomalies are obtained by applying inverse distance weighting to 143 Italian high-quality records, whereas the climatologies are based on a larger dataset and on the application of local weighted linear regression of temperature versus elevation.The grid-point Tn, Tm and Tx records are then used to set up secular records (period 1801–2013) of temperature-derived variables that influence Italy present-time national electricity demand. They are national averages over Italian urbanised areas of cooling degree-days (CDD), heating degree-days (HDD) and solar radiation deficit with respect to a defined threshold (S), with solar radiation estimated using daily temperature range as a proxy.The monthly and yearly sums of the daily CDD, HDD and S records are then used, alongside with a model allowing to link these variables to present-time Italy electricity demand, in order to understand the impact of climate variability and change on present-time Italian electricity demand. We find that temperature changes as the ones observed in the last two centuries are capable of altering significantly the present-time monthly profile of the electricity demand, raising (lowering) summer (winter) months contributions. The impact is higher in summer months where it exceeds 5 % of present-time Italy average monthly electricity demand, whereas the decrease of the winter demand is rather low because of a very limited use of electricity for heating. The summer and winter opposite-sign changes result globally in an increase of the yearly demand of about 5 TWh, corresponding to about 1.5-2.0 % of present-time Italy yearly electricity demand.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N2293a7ac18e0448f9d65cba1af36ba7b
15 Na613bf8f7d2b41f495dd94db6cbe62e0
16 sg:journal.1136356
17 schema:keywords CDD
18 HDD
19 Italian electricity demand
20 Italian high-quality records
21 Italian urbanised areas
22 Italy
23 Italy electricity demand
24 Italy present-time national electricity demand
25 Italy yearly electricity demand
26 TN
27 TWh
28 Tm
29 Tx records
30 anomalies
31 applications
32 area
33 average
34 case study
35 century
36 changes
37 climate change
38 climate variability
39 climatology
40 contribution
41 daily CDD
42 daily minimum
43 daily temperature range
44 datasets
45 decrease
46 deficits
47 demand
48 departure
49 distance
50 electricity
51 electricity demand
52 elevation
53 grid
54 grid-point Tn
55 heating
56 high-quality records
57 impact
58 increase
59 inverse distance
60 large datasets
61 limited use
62 linear regression
63 maximum temperature
64 methodology
65 minimum
66 model
67 monthly electricity demand
68 monthly profiles
69 months
70 months contributions
71 national average
72 national electricity demand
73 one
74 opposite-sign changes
75 order
76 past climate change
77 point
78 present-time Italian electricity demand
79 present-time Italy
80 present-time Italy electricity demand
81 present-time Italy yearly electricity demand
82 present-time electricity demand
83 present-time monthly profile
84 present-time national electricity demand
85 profile
86 proxy
87 radiation
88 radiation deficit
89 range
90 records
91 regression
92 respect
93 secular daily minimum
94 secular records
95 sensitivity
96 solar radiation
97 solar radiation deficit
98 study
99 sum
100 summer
101 summer (winter) months contributions
102 summer months
103 superimposition
104 temperature
105 temperature changes
106 temperature range
107 temperature-derived variables
108 threshold
109 urbanised areas
110 urbanised point
111 use
112 variability
113 variables
114 winter demand
115 winter opposite-sign changes
116 yearly demand
117 yearly electricity demand
118 yearly sum
119 schema:name The sensitivity of present-time electricity demand on past climate change: a case study for Italy
120 schema:pagination 4
121 schema:productId N7994ae4d0f11497a958755fdf1ff59dc
122 Ncd07e229719649cfa6e68a4899847a60
123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020576138
124 https://doi.org/10.1186/s40322-015-0030-7
125 schema:sdDatePublished 2022-01-01T18:37
126 schema:sdLicense https://scigraph.springernature.com/explorer/license/
127 schema:sdPublisher Nccddd11c641e429c8105c5804a7817f6
128 schema:url https://doi.org/10.1186/s40322-015-0030-7
129 sgo:license sg:explorer/license/
130 sgo:sdDataset articles
131 rdf:type schema:ScholarlyArticle
132 N13ecdd5b620b45798210c9d5fe163189 rdf:first sg:person.010575201043.36
133 rdf:rest Nce4ee872a7ae42fbb559b8a09588d2d6
134 N2293a7ac18e0448f9d65cba1af36ba7b schema:volumeNumber 2
135 rdf:type schema:PublicationVolume
136 N59392039770842df8f40f5e8f564e8ec rdf:first sg:person.011210031601.72
137 rdf:rest Na7750f900c664828a083a9b2ba2f5b43
138 N7994ae4d0f11497a958755fdf1ff59dc schema:name doi
139 schema:value 10.1186/s40322-015-0030-7
140 rdf:type schema:PropertyValue
141 Na613bf8f7d2b41f495dd94db6cbe62e0 schema:issueNumber 1
142 rdf:type schema:PublicationIssue
143 Na7750f900c664828a083a9b2ba2f5b43 rdf:first sg:person.014120154345.18
144 rdf:rest N13ecdd5b620b45798210c9d5fe163189
145 Nccddd11c641e429c8105c5804a7817f6 schema:name Springer Nature - SN SciGraph project
146 rdf:type schema:Organization
147 Ncd07e229719649cfa6e68a4899847a60 schema:name dimensions_id
148 schema:value pub.1020576138
149 rdf:type schema:PropertyValue
150 Nce4ee872a7ae42fbb559b8a09588d2d6 rdf:first sg:person.010566335047.75
151 rdf:rest rdf:nil
152 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
153 schema:name Engineering
154 rdf:type schema:DefinedTerm
155 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
156 schema:name Electrical and Electronic Engineering
157 rdf:type schema:DefinedTerm
158 sg:grant.3788036 http://pending.schema.org/fundedItem sg:pub.10.1186/s40322-015-0030-7
159 rdf:type schema:MonetaryGrant
160 sg:journal.1136356 schema:issn 2194-6434
161 schema:name Earth Perspectives
162 schema:publisher Springer Nature
163 rdf:type schema:Periodical
164 sg:person.010566335047.75 schema:affiliation grid-institutes:grid.4708.b
165 schema:familyName Maugeri
166 schema:givenName Maurizio
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010566335047.75
168 rdf:type schema:Person
169 sg:person.010575201043.36 schema:affiliation grid-institutes:grid.435667.5
170 schema:familyName Brunetti
171 schema:givenName Michele
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575201043.36
173 rdf:type schema:Person
174 sg:person.011210031601.72 schema:affiliation grid-institutes:grid.4708.b
175 schema:familyName Scapin
176 schema:givenName Simone
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011210031601.72
178 rdf:type schema:Person
179 sg:person.014120154345.18 schema:affiliation grid-institutes:grid.79546.39
180 schema:familyName Apadula
181 schema:givenName Francesco
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120154345.18
183 rdf:type schema:Person
184 sg:pub.10.1007/0-387-23471-3_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005043019
185 https://doi.org/10.1007/0-387-23471-3_12
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s00704-015-1536-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016212496
188 https://doi.org/10.1007/s00704-015-1536-5
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nature02300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006979406
191 https://doi.org/10.1038/nature02300
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/scientificamerican0679-176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056556478
194 https://doi.org/10.1038/scientificamerican0679-176
195 rdf:type schema:CreativeWork
196 grid-institutes:grid.435667.5 schema:alternateName Istituto di Scienze dell’Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti, 101, 40129, Bologna, Italy
197 schema:name Istituto di Scienze dell’Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti, 101, 40129, Bologna, Italy
198 rdf:type schema:Organization
199 grid-institutes:grid.4708.b schema:alternateName Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria, 16, 20133, Milan, Italy
200 schema:name Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria, 16, 20133, Milan, Italy
201 Istituto di Scienze dell’Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti, 101, 40129, Bologna, Italy
202 Ricerca sul Sistema Energetico, RSE Spa. Via Rubattino, 54, 20134, Milan, Italy
203 rdf:type schema:Organization
204 grid-institutes:grid.79546.39 schema:alternateName Ricerca sul Sistema Energetico, RSE Spa. Via Rubattino, 54, 20134, Milan, Italy
205 schema:name Ricerca sul Sistema Energetico, RSE Spa. Via Rubattino, 54, 20134, Milan, Italy
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...