Passive kHz lidar for the quantification of insect activity and dispersal View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Samuel Jansson, Mikkel Brydegaard

ABSTRACT

In recent years, our group has developed electro-optical remote sensing methods for the monitoring and classification of aerofauna. These methods include active lidar methods and passive, so-called dark-field methods that measure scattered sunlight. In comparison with satellite- and airborne remote sensing, our methods offer a spatiotemporal resolution several orders of magnitude higher, and unlike radar, they can be employed close to ground. Whereas passive methods are desirable due to lower power consumption and ease of use, they have until now lacked ranging capabilities. In this work, we demonstrate how passive ranging of sparse insects transiting the probe volume can be achieved with quadrant sensors. Insects are simulated in a raytracing model of the probe volume, and a ranging equation is devised based on the simulations. The ranging equation is implemented and validated with field data, and system parameters that vary with range are investigated. A model for estimating insect flight headings with modulation spectroscopy is implemented and tested with inconclusive results. Insect fluxes are retrieved through time-lag correlation of quadrant detector segments, showing that insects flew more with than against the wind during the study period. The presented method demonstrates how ranging can be achieved with quadrant sensors, and how it can be implemented with or without active illumination. A number of insect flight parameters can be extracted from the data produced by the sensor and correlated with complementary information about weather and topography. The approach has the potential to become a widespread and simple tool for monitoring abundances and fluxes of pests and disease vectors in the atmosphere. More... »

PAGES

6

References to SciGraph publications

Journal

TITLE

Animal Biotelemetry

ISSUE

1

VOLUME

6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40317-018-0151-5

DOI

http://dx.doi.org/10.1186/s40317-018-0151-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104302484


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lund University", 
          "id": "https://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Lund Laser Centre, Department of Physics, Lund University, S\u00f6lvegatan 14, 22362, Lund, Sweden", 
            "Center for Animal Movement Research, Department of Biology, Lund University, S\u00f6lvegatan 35, 22362, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jansson", 
        "givenName": "Samuel", 
        "id": "sg:person.016557270147.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016557270147.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lund University", 
          "id": "https://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Lund Laser Centre, Department of Physics, Lund University, S\u00f6lvegatan 14, 22362, Lund, Sweden", 
            "Center for Animal Movement Research, Department of Biology, Lund University, S\u00f6lvegatan 35, 22362, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brydegaard", 
        "givenName": "Mikkel", 
        "id": "sg:person.013447234575.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013447234575.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cropro.2013.10.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006261046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-6666-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007155557", 
          "https://doi.org/10.1007/978-1-4020-6666-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-6666-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007155557", 
          "https://doi.org/10.1007/978-1-4020-6666-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-3305-6-53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009160750", 
          "https://doi.org/10.1186/1756-3305-6-53"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2664.2009.01677.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009827320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2664.2009.01677.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009827320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envint.2016.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012662191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-ento-120709-144820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013617716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0135231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013672398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431161.2016.1204028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016287386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2009.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029621326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10905-014-9454-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038542215", 
          "https://doi.org/10.1007/s10905-014-9454-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheh.2016.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039360292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041901813", 
          "https://doi.org/10.1038/nature13987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep29083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045883904", 
          "https://doi.org/10.1038/srep29083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0003702815620564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046612536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0003702815620564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046612536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.jrs.8.083503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050758033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ecy.1497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051344930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/epjconf/201611922004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056966466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2193827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057845267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2015.2424924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061323937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstqe.2012.2184528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061336478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstqe.2015.2506616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061337381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2013.2272011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061359958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.49.005133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065125585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/opex.13.005853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065244379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1603/0013-8746(2002)095[0001:aioosa]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068115508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2528/pier14101001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070906804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-017-6784-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090577129", 
          "https://doi.org/10.1007/s00340-017-6784-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-017-6784-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090577129", 
          "https://doi.org/10.1007/s00340-017-6784-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/9781845935566.0000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108468543"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "In recent years, our group has developed electro-optical remote sensing methods for the monitoring and classification of aerofauna. These methods include active lidar methods and passive, so-called dark-field methods that measure scattered sunlight. In comparison with satellite- and airborne remote sensing, our methods offer a spatiotemporal resolution several orders of magnitude higher, and unlike radar, they can be employed close to ground. Whereas passive methods are desirable due to lower power consumption and ease of use, they have until now lacked ranging capabilities. In this work, we demonstrate how passive ranging of sparse insects transiting the probe volume can be achieved with quadrant sensors. Insects are simulated in a raytracing model of the probe volume, and a ranging equation is devised based on the simulations. The ranging equation is implemented and validated with field data, and system parameters that vary with range are investigated. A model for estimating insect flight headings with modulation spectroscopy is implemented and tested with inconclusive results. Insect fluxes are retrieved through time-lag correlation of quadrant detector segments, showing that insects flew more with than against the wind during the study period. The presented method demonstrates how ranging can be achieved with quadrant sensors, and how it can be implemented with or without active illumination. A number of insect flight parameters can be extracted from the data produced by the sensor and correlated with complementary information about weather and topography. The approach has the potential to become a widespread and simple tool for monitoring abundances and fluxes of pests and disease vectors in the atmosphere.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40317-018-0151-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1051155", 
        "issn": [
          "2050-3385"
        ], 
        "name": "Animal Biotelemetry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Passive kHz lidar for the quantification of insect activity and dispersal", 
    "pagination": "6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cdcc893b3028c139098eb5c47ae12dfbc08f3b24784c3c5e514aa87b4406d229"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40317-018-0151-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104302484"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40317-018-0151-5", 
      "https://app.dimensions.ai/details/publication/pub.1104302484"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000604.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs40317-018-0151-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40317-018-0151-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40317-018-0151-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40317-018-0151-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40317-018-0151-5'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40317-018-0151-5 schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author Nb1e9fcadb1354a38b84601c0c98e2e7b
4 schema:citation sg:pub.10.1007/978-1-4020-6666-5
5 sg:pub.10.1007/s00340-017-6784-x
6 sg:pub.10.1007/s10905-014-9454-4
7 sg:pub.10.1038/nature13987
8 sg:pub.10.1038/srep29083
9 sg:pub.10.1186/1756-3305-6-53
10 https://doi.org/10.1002/ecy.1497
11 https://doi.org/10.1016/j.cropro.2013.10.022
12 https://doi.org/10.1016/j.envint.2016.01.009
13 https://doi.org/10.1016/j.ijheh.2016.05.001
14 https://doi.org/10.1016/j.rse.2009.03.008
15 https://doi.org/10.1051/epjconf/201611922004
16 https://doi.org/10.1063/1.2193827
17 https://doi.org/10.1079/9781845935566.0000
18 https://doi.org/10.1080/01431161.2016.1204028
19 https://doi.org/10.1109/jsen.2015.2424924
20 https://doi.org/10.1109/jstqe.2012.2184528
21 https://doi.org/10.1109/jstqe.2015.2506616
22 https://doi.org/10.1109/lgrs.2013.2272011
23 https://doi.org/10.1111/j.1365-2664.2009.01677.x
24 https://doi.org/10.1117/1.jrs.8.083503
25 https://doi.org/10.1146/annurev-ento-120709-144820
26 https://doi.org/10.1177/0003702815620564
27 https://doi.org/10.1364/ao.49.005133
28 https://doi.org/10.1364/opex.13.005853
29 https://doi.org/10.1371/journal.pone.0135231
30 https://doi.org/10.1603/0013-8746(2002)095[0001:aioosa]2.0.co;2
31 https://doi.org/10.2528/pier14101001
32 schema:datePublished 2018-12
33 schema:datePublishedReg 2018-12-01
34 schema:description In recent years, our group has developed electro-optical remote sensing methods for the monitoring and classification of aerofauna. These methods include active lidar methods and passive, so-called dark-field methods that measure scattered sunlight. In comparison with satellite- and airborne remote sensing, our methods offer a spatiotemporal resolution several orders of magnitude higher, and unlike radar, they can be employed close to ground. Whereas passive methods are desirable due to lower power consumption and ease of use, they have until now lacked ranging capabilities. In this work, we demonstrate how passive ranging of sparse insects transiting the probe volume can be achieved with quadrant sensors. Insects are simulated in a raytracing model of the probe volume, and a ranging equation is devised based on the simulations. The ranging equation is implemented and validated with field data, and system parameters that vary with range are investigated. A model for estimating insect flight headings with modulation spectroscopy is implemented and tested with inconclusive results. Insect fluxes are retrieved through time-lag correlation of quadrant detector segments, showing that insects flew more with than against the wind during the study period. The presented method demonstrates how ranging can be achieved with quadrant sensors, and how it can be implemented with or without active illumination. A number of insect flight parameters can be extracted from the data produced by the sensor and correlated with complementary information about weather and topography. The approach has the potential to become a widespread and simple tool for monitoring abundances and fluxes of pests and disease vectors in the atmosphere.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N275177f67c9e43e19cdbb3a6908373b0
39 N66877d84b0664f09a9cadf2d97f59fa3
40 sg:journal.1051155
41 schema:name Passive kHz lidar for the quantification of insect activity and dispersal
42 schema:pagination 6
43 schema:productId N0de6a2333d324704bdd50f7653a2f73d
44 N88c345bb07454a30bb25dcd43a108202
45 Nbd19808800064782a90e9baa0c6d534a
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104302484
47 https://doi.org/10.1186/s40317-018-0151-5
48 schema:sdDatePublished 2019-04-11T02:32
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N288323e028064772a349048f5037dd89
51 schema:url https://link.springer.com/10.1186%2Fs40317-018-0151-5
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0de6a2333d324704bdd50f7653a2f73d schema:name doi
56 schema:value 10.1186/s40317-018-0151-5
57 rdf:type schema:PropertyValue
58 N275177f67c9e43e19cdbb3a6908373b0 schema:volumeNumber 6
59 rdf:type schema:PublicationVolume
60 N288323e028064772a349048f5037dd89 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N4c9258f01c584b7eb019c45cd803b9d0 rdf:first sg:person.013447234575.93
63 rdf:rest rdf:nil
64 N66877d84b0664f09a9cadf2d97f59fa3 schema:issueNumber 1
65 rdf:type schema:PublicationIssue
66 N88c345bb07454a30bb25dcd43a108202 schema:name dimensions_id
67 schema:value pub.1104302484
68 rdf:type schema:PropertyValue
69 Nb1e9fcadb1354a38b84601c0c98e2e7b rdf:first sg:person.016557270147.18
70 rdf:rest N4c9258f01c584b7eb019c45cd803b9d0
71 Nbd19808800064782a90e9baa0c6d534a schema:name readcube_id
72 schema:value cdcc893b3028c139098eb5c47ae12dfbc08f3b24784c3c5e514aa87b4406d229
73 rdf:type schema:PropertyValue
74 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
75 schema:name Engineering
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
78 schema:name Geomatic Engineering
79 rdf:type schema:DefinedTerm
80 sg:journal.1051155 schema:issn 2050-3385
81 schema:name Animal Biotelemetry
82 rdf:type schema:Periodical
83 sg:person.013447234575.93 schema:affiliation https://www.grid.ac/institutes/grid.4514.4
84 schema:familyName Brydegaard
85 schema:givenName Mikkel
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013447234575.93
87 rdf:type schema:Person
88 sg:person.016557270147.18 schema:affiliation https://www.grid.ac/institutes/grid.4514.4
89 schema:familyName Jansson
90 schema:givenName Samuel
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016557270147.18
92 rdf:type schema:Person
93 sg:pub.10.1007/978-1-4020-6666-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007155557
94 https://doi.org/10.1007/978-1-4020-6666-5
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s00340-017-6784-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1090577129
97 https://doi.org/10.1007/s00340-017-6784-x
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s10905-014-9454-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038542215
100 https://doi.org/10.1007/s10905-014-9454-4
101 rdf:type schema:CreativeWork
102 sg:pub.10.1038/nature13987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041901813
103 https://doi.org/10.1038/nature13987
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/srep29083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045883904
106 https://doi.org/10.1038/srep29083
107 rdf:type schema:CreativeWork
108 sg:pub.10.1186/1756-3305-6-53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009160750
109 https://doi.org/10.1186/1756-3305-6-53
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1002/ecy.1497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051344930
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.cropro.2013.10.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006261046
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.envint.2016.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012662191
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.ijheh.2016.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039360292
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.rse.2009.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029621326
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1051/epjconf/201611922004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056966466
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1063/1.2193827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057845267
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1079/9781845935566.0000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108468543
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1080/01431161.2016.1204028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016287386
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/jsen.2015.2424924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061323937
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/jstqe.2012.2184528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061336478
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/jstqe.2015.2506616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061337381
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/lgrs.2013.2272011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061359958
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1111/j.1365-2664.2009.01677.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009827320
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1117/1.jrs.8.083503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050758033
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1146/annurev-ento-120709-144820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013617716
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1177/0003702815620564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046612536
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1364/ao.49.005133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065125585
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1364/opex.13.005853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065244379
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1371/journal.pone.0135231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013672398
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1603/0013-8746(2002)095[0001:aioosa]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068115508
152 rdf:type schema:CreativeWork
153 https://doi.org/10.2528/pier14101001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070906804
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.4514.4 schema:alternateName Lund University
156 schema:name Center for Animal Movement Research, Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Sweden
157 Lund Laser Centre, Department of Physics, Lund University, Sölvegatan 14, 22362, Lund, Sweden
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...