Will vehicle data be shared to address the how, where, and who of traffic accidents? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

J. C. F. de Winter, D. Dodou, R. Happee, Y. B. Eisma

ABSTRACT

Vehicles are increasingly equipped with sensors that measure the state of the vehicle and surrounding road users. Although most of these sensor data currently remain local to the vehicle, the data could be shared with the aim to improve road safety. We postulate that there is a range of scenarios regarding data sharing, with two extremes: In scenario 1, the acquired shared data will be analysed regarding the how, where, and who of road traffic errors, violations, and accidents; actions can then be taken to improve automated driving systems, manage accident hotspots, and provide personalised feedback, rewards, or penalties to road users. In scenario 2, the recorded data will not be shared, because of privacy concerns. We conclude that there exists a tension between a position of utilitarian use of data and a position of privacy. More... »

PAGES

2

References to SciGraph publications

  • 2011. Behavioral, Cognitive and Virtual Biometrics in COMPUTER ANALYSIS OF HUMAN BEHAVIOR
  • 2019-03. Context-Based Path Prediction for Targets with Switching Dynamics in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2016-05-17. The Truth about “Self-Driving” Cars in SCIENTIFIC AMERICAN
  • 2009-06. Transparency rights, technology, and trust in ETHICS AND INFORMATION TECHNOLOGY
  • 2017-09. Analysis of Accident Risks from Driving Behaviors in INTERNATIONAL JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS RESEARCH
  • 2014. Telemetric Policing in ENCYCLOPEDIA OF CRIMINOLOGY AND CRIMINAL JUSTICE
  • 2018-05. Multi-polygenic score approach to trait prediction in MOLECULAR PSYCHIATRY
  • 2005-04. Personalization versus Privacy: An Empirical Examination of the Online Consumer’s Dilemma in INFORMATION TECHNOLOGY AND MANAGEMENT
  • 2016. The Need for Safety and Cyber-Security Co-engineering and Standardization for Highly Automated Automotive Vehicles in ADVANCED MICROSYSTEMS FOR AUTOMOTIVE APPLICATIONS 2015
  • 2019. Towards a Privacy-Preserving Way of Vehicle Data Sharing – A Case for Blockchain Technology? in ADVANCED MICROSYSTEMS FOR AUTOMOTIVE APPLICATIONS 2018
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40309-019-0154-3

    DOI

    http://dx.doi.org/10.1186/s40309-019-0154-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112858581


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Delft University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.5292.c", 
              "name": [
                "Department of BioMechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, the Netherlands", 
                "Department of Cognitive Robotics, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, the Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "de Winter", 
            "givenName": "J. C. F.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Delft University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.5292.c", 
              "name": [
                "Department of BioMechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, the Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dodou", 
            "givenName": "D.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Delft University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.5292.c", 
              "name": [
                "Department of Cognitive Robotics, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, the Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Happee", 
            "givenName": "R.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Delft University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.5292.c", 
              "name": [
                "Department of Control and Operations, Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eisma", 
            "givenName": "Y. B.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.4067/s0718-18762011000200009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001492855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4614-5690-2_262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001960872", 
              "https://doi.org/10.1007/978-1-4614-5690-2_262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aap.2010.06.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002169278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.proeng.2015.01.436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005291966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/1463922x.2013.856494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006357957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-85729-994-9_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007519404", 
              "https://doi.org/10.1007/978-0-85729-994-9_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10799-005-5879-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017296741", 
              "https://doi.org/10.1007/s10799-005-5879-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aap.2014.11.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025933423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tra.2015.04.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026916604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13177-016-0132-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031618879", 
              "https://doi.org/10.1007/s13177-016-0132-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13177-016-0132-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031618879", 
              "https://doi.org/10.1007/s13177-016-0132-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/scientificamerican0616-52", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035978325", 
              "https://doi.org/10.1038/scientificamerican0616-52"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10676-009-9192-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037241308", 
              "https://doi.org/10.1007/s10676-009-9192-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10676-009-9192-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037241308", 
              "https://doi.org/10.1007/s10676-009-9192-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aap.2012.12.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038008113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-4575(94)90051-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039126587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00140130601032721", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039294829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.347.6221.492", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040179160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsta.2016.0115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040934447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aap.2010.12.032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044504263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ssci.2011.01.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045178497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.clsr.2016.01.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045219174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aap.2005.07.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051268938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-20855-8_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052720087", 
              "https://doi.org/10.1007/978-3-319-20855-8_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mits.2014.2328673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061407707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tiv.2016.2571067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061659212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4067/s0718-18762014000300007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072195789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5465/ambpp.2015.11235abstract", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072889943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mcom.2017.1600238cm", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084203991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/idpl/ipw026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084602250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0174959", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084776601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/mp.2017.163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091086471", 
              "https://doi.org/10.1038/mp.2017.163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/mp.2017.163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091086471", 
              "https://doi.org/10.1038/mp.2017.163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0184952", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091883036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/wf-iot.2014.6803166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094302431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/itsc.2011.6083078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094437403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2017.100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094444272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.15439/2014f503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095560898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7208/chicago/9780226081199.001.0001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099475838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2017/8241545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099648648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2139/ssrn.2029201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1102336289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2139/ssrn.2157659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1102356260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/25148854", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1102515475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tra.2018.05.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104330022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aap.2018.05.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104352172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aap.2018.05.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104352172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aap.2018.05.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104352172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-018-1104-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105270501", 
              "https://doi.org/10.1007/s11263-018-1104-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-018-1104-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105270501", 
              "https://doi.org/10.1007/s11263-018-1104-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-018-1104-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105270501", 
              "https://doi.org/10.1007/s11263-018-1104-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-99762-9_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106184933", 
              "https://doi.org/10.1007/978-3-319-99762-9_10"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Vehicles are increasingly equipped with sensors that measure the state of the vehicle and surrounding road users. Although most of these sensor data currently remain local to the vehicle, the data could be shared with the aim to improve road safety. We postulate that there is a range of scenarios regarding data sharing, with two extremes: In scenario 1, the acquired shared data will be analysed regarding the how, where, and who of road traffic errors, violations, and accidents; actions can then be taken to improve automated driving systems, manage accident hotspots, and provide personalised feedback, rewards, or penalties to road users. In scenario 2, the recorded data will not be shared, because of privacy concerns. We conclude that there exists a tension between a position of utilitarian use of data and a position of privacy.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s40309-019-0154-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136395", 
            "issn": [
              "2195-4194", 
              "2195-2248"
            ], 
            "name": "European Journal of Futures Research", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "Will vehicle data be shared to address the how, where, and who of traffic accidents?", 
        "pagination": "2", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f2a57f64c3b347d05da5f658af311b19a6200815b259169016dddd2b86de3f60"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40309-019-0154-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112858581"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40309-019-0154-3", 
          "https://app.dimensions.ai/details/publication/pub.1112858581"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53993_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs40309-019-0154-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40309-019-0154-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40309-019-0154-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40309-019-0154-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40309-019-0154-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    222 TRIPLES      21 PREDICATES      71 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40309-019-0154-3 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N8657a3eff8e6421d9bfb7d9b2258d1e3
    4 schema:citation sg:pub.10.1007/978-0-85729-994-9_13
    5 sg:pub.10.1007/978-1-4614-5690-2_262
    6 sg:pub.10.1007/978-3-319-20855-8_20
    7 sg:pub.10.1007/978-3-319-99762-9_10
    8 sg:pub.10.1007/s10676-009-9192-z
    9 sg:pub.10.1007/s10799-005-5879-y
    10 sg:pub.10.1007/s11263-018-1104-4
    11 sg:pub.10.1007/s13177-016-0132-0
    12 sg:pub.10.1038/mp.2017.163
    13 sg:pub.10.1038/scientificamerican0616-52
    14 https://doi.org/10.1016/0001-4575(94)90051-5
    15 https://doi.org/10.1016/j.aap.2005.07.004
    16 https://doi.org/10.1016/j.aap.2010.06.007
    17 https://doi.org/10.1016/j.aap.2010.12.032
    18 https://doi.org/10.1016/j.aap.2012.12.018
    19 https://doi.org/10.1016/j.aap.2014.11.017
    20 https://doi.org/10.1016/j.aap.2018.05.009
    21 https://doi.org/10.1016/j.clsr.2016.01.012
    22 https://doi.org/10.1016/j.proeng.2015.01.436
    23 https://doi.org/10.1016/j.ssci.2011.01.011
    24 https://doi.org/10.1016/j.tra.2015.04.003
    25 https://doi.org/10.1016/j.tra.2018.05.004
    26 https://doi.org/10.1080/00140130601032721
    27 https://doi.org/10.1080/1463922x.2013.856494
    28 https://doi.org/10.1093/idpl/ipw026
    29 https://doi.org/10.1098/rsta.2016.0115
    30 https://doi.org/10.1109/cvpr.2017.100
    31 https://doi.org/10.1109/itsc.2011.6083078
    32 https://doi.org/10.1109/mcom.2017.1600238cm
    33 https://doi.org/10.1109/mits.2014.2328673
    34 https://doi.org/10.1109/tiv.2016.2571067
    35 https://doi.org/10.1109/wf-iot.2014.6803166
    36 https://doi.org/10.1126/science.347.6221.492
    37 https://doi.org/10.1155/2017/8241545
    38 https://doi.org/10.1371/journal.pone.0174959
    39 https://doi.org/10.1371/journal.pone.0184952
    40 https://doi.org/10.15439/2014f503
    41 https://doi.org/10.2139/ssrn.2029201
    42 https://doi.org/10.2139/ssrn.2157659
    43 https://doi.org/10.2307/25148854
    44 https://doi.org/10.4067/s0718-18762011000200009
    45 https://doi.org/10.4067/s0718-18762014000300007
    46 https://doi.org/10.5465/ambpp.2015.11235abstract
    47 https://doi.org/10.7208/chicago/9780226081199.001.0001
    48 schema:datePublished 2019-12
    49 schema:datePublishedReg 2019-12-01
    50 schema:description Vehicles are increasingly equipped with sensors that measure the state of the vehicle and surrounding road users. Although most of these sensor data currently remain local to the vehicle, the data could be shared with the aim to improve road safety. We postulate that there is a range of scenarios regarding data sharing, with two extremes: In scenario 1, the acquired shared data will be analysed regarding the how, where, and who of road traffic errors, violations, and accidents; actions can then be taken to improve automated driving systems, manage accident hotspots, and provide personalised feedback, rewards, or penalties to road users. In scenario 2, the recorded data will not be shared, because of privacy concerns. We conclude that there exists a tension between a position of utilitarian use of data and a position of privacy.
    51 schema:genre research_article
    52 schema:inLanguage en
    53 schema:isAccessibleForFree false
    54 schema:isPartOf Nc4400986ad5a4e749e13f3b1506a45f3
    55 Ne897097c8df84861a397c6bf5a8c6256
    56 sg:journal.1136395
    57 schema:name Will vehicle data be shared to address the how, where, and who of traffic accidents?
    58 schema:pagination 2
    59 schema:productId Nb1da595979d143c8ba8da40843d54c2b
    60 Nbeee92ada7914610b4c753703b131590
    61 Nf69287d64f7643a48edde0117e77c101
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112858581
    63 https://doi.org/10.1186/s40309-019-0154-3
    64 schema:sdDatePublished 2019-04-11T12:13
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher N634daad03bf64451a7f0dd9c27ec392f
    67 schema:url https://link.springer.com/10.1186%2Fs40309-019-0154-3
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset articles
    70 rdf:type schema:ScholarlyArticle
    71 N0461760eece5472186b3fdfe72fd4bfb rdf:first N702f971b80334e108af57539dd39b8b8
    72 rdf:rest N2786e7565a9f4716ac63664ab9388530
    73 N23960754711241fcbedebefdcec45c5f schema:affiliation https://www.grid.ac/institutes/grid.5292.c
    74 schema:familyName Dodou
    75 schema:givenName D.
    76 rdf:type schema:Person
    77 N2786e7565a9f4716ac63664ab9388530 rdf:first Ncf7d34ea88a84d69be74b8f70e6f6c0d
    78 rdf:rest rdf:nil
    79 N634daad03bf64451a7f0dd9c27ec392f schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 N702f971b80334e108af57539dd39b8b8 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
    82 schema:familyName Happee
    83 schema:givenName R.
    84 rdf:type schema:Person
    85 N77d037de281d4ae3a049e2c421790542 rdf:first N23960754711241fcbedebefdcec45c5f
    86 rdf:rest N0461760eece5472186b3fdfe72fd4bfb
    87 N8657a3eff8e6421d9bfb7d9b2258d1e3 rdf:first Nc10c9b31e7224a32bbb95aaa3c66f89f
    88 rdf:rest N77d037de281d4ae3a049e2c421790542
    89 Nb1da595979d143c8ba8da40843d54c2b schema:name readcube_id
    90 schema:value f2a57f64c3b347d05da5f658af311b19a6200815b259169016dddd2b86de3f60
    91 rdf:type schema:PropertyValue
    92 Nbeee92ada7914610b4c753703b131590 schema:name dimensions_id
    93 schema:value pub.1112858581
    94 rdf:type schema:PropertyValue
    95 Nc10c9b31e7224a32bbb95aaa3c66f89f schema:affiliation https://www.grid.ac/institutes/grid.5292.c
    96 schema:familyName de Winter
    97 schema:givenName J. C. F.
    98 rdf:type schema:Person
    99 Nc4400986ad5a4e749e13f3b1506a45f3 schema:volumeNumber 7
    100 rdf:type schema:PublicationVolume
    101 Ncf7d34ea88a84d69be74b8f70e6f6c0d schema:affiliation https://www.grid.ac/institutes/grid.5292.c
    102 schema:familyName Eisma
    103 schema:givenName Y. B.
    104 rdf:type schema:Person
    105 Ne897097c8df84861a397c6bf5a8c6256 schema:issueNumber 1
    106 rdf:type schema:PublicationIssue
    107 Nf69287d64f7643a48edde0117e77c101 schema:name doi
    108 schema:value 10.1186/s40309-019-0154-3
    109 rdf:type schema:PropertyValue
    110 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Information and Computing Sciences
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Artificial Intelligence and Image Processing
    115 rdf:type schema:DefinedTerm
    116 sg:journal.1136395 schema:issn 2195-2248
    117 2195-4194
    118 schema:name European Journal of Futures Research
    119 rdf:type schema:Periodical
    120 sg:pub.10.1007/978-0-85729-994-9_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007519404
    121 https://doi.org/10.1007/978-0-85729-994-9_13
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/978-1-4614-5690-2_262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001960872
    124 https://doi.org/10.1007/978-1-4614-5690-2_262
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/978-3-319-20855-8_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052720087
    127 https://doi.org/10.1007/978-3-319-20855-8_20
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/978-3-319-99762-9_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106184933
    130 https://doi.org/10.1007/978-3-319-99762-9_10
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/s10676-009-9192-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1037241308
    133 https://doi.org/10.1007/s10676-009-9192-z
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/s10799-005-5879-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1017296741
    136 https://doi.org/10.1007/s10799-005-5879-y
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/s11263-018-1104-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105270501
    139 https://doi.org/10.1007/s11263-018-1104-4
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/s13177-016-0132-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031618879
    142 https://doi.org/10.1007/s13177-016-0132-0
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1038/mp.2017.163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091086471
    145 https://doi.org/10.1038/mp.2017.163
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1038/scientificamerican0616-52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035978325
    148 https://doi.org/10.1038/scientificamerican0616-52
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/0001-4575(94)90051-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039126587
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.aap.2005.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051268938
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.aap.2010.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002169278
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.aap.2010.12.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044504263
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.aap.2012.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038008113
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.aap.2014.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025933423
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.aap.2018.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104352172
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.clsr.2016.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045219174
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.proeng.2015.01.436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005291966
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.ssci.2011.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045178497
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.tra.2015.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026916604
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/j.tra.2018.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104330022
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1080/00140130601032721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039294829
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1080/1463922x.2013.856494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006357957
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1093/idpl/ipw026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084602250
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1098/rsta.2016.0115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040934447
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1109/cvpr.2017.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094444272
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1109/itsc.2011.6083078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094437403
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1109/mcom.2017.1600238cm schema:sameAs https://app.dimensions.ai/details/publication/pub.1084203991
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1109/mits.2014.2328673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061407707
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1109/tiv.2016.2571067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061659212
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1109/wf-iot.2014.6803166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094302431
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1126/science.347.6221.492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040179160
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1155/2017/8241545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099648648
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1371/journal.pone.0174959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084776601
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1371/journal.pone.0184952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091883036
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.15439/2014f503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095560898
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.2139/ssrn.2029201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102336289
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.2139/ssrn.2157659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102356260
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.2307/25148854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102515475
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.4067/s0718-18762011000200009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001492855
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.4067/s0718-18762014000300007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072195789
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.5465/ambpp.2015.11235abstract schema:sameAs https://app.dimensions.ai/details/publication/pub.1072889943
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.7208/chicago/9780226081199.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099475838
    217 rdf:type schema:CreativeWork
    218 https://www.grid.ac/institutes/grid.5292.c schema:alternateName Delft University of Technology
    219 schema:name Department of BioMechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, the Netherlands
    220 Department of Cognitive Robotics, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, the Netherlands
    221 Department of Control and Operations, Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands
    222 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...