Prevalence and risk factors of active pulmonary tuberculosis among elderly people in China: a population based cross-sectional study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Can-You Zhang, Fei Zhao, Yin-Yin Xia, Yan-Ling Yu, Xin Shen, Wei Lu, Xiao-Meng Wang, Jin Xing, Jian-Jun Ye, Jian-Wei Li, Fei-Ying Liu, Jian-Lin Wu, Lin Xu, Hui Zhang, Jun Cheng, Li-Xia Wang

ABSTRACT

BACKGROUND: The problem of population aging is a critical public health concern in modern China, and more tuberculosis (TB) control efforts are needed to reach elderly people at high priority. In this study, we aim to determine the prevalence and identify the risk factors of TB among elderly people in China. METHODS: A multistage cluster-sampled cross-sectional survey was conducted in 2013, and 27 clusters were selected from 10 counties of 10 provinces in China. All consenting participants greater than or equal to 65 years of age were screened for pulmonary TB with a chest X-ray (CXR) and a symptom questionnaire. Three sputum specimens for bacteriological examination by microscopy and culture were collected from those whose screening was positive. Prevalence was calculated, a multiple logistic regression model was performed to confirm the risk factors, and population attributable fraction (PAF) of each risk factor was calculated to indicate the public health significance. RESULTS: Of 38 888 eligible people from 27 clusters, 34 269 participants finished both questionnaire and physical examination. There were 193 active pulmonary TB cases, 62 of which were bacteriologically confirmed. The estimated prevalence of active pulmonary TB and bacteriologically confirmed TB in those 65 years of age and older was 563.19 per 100 000 (95% CI: 483.73-642.65) and 180.92 per 100 000 (95% CI: 135.89-225.96), respectively. Male sex, older age, living in rural areas, underweight, diabetes, close contact of pulmonary TB (PTB) and previous TB history are all risk factors for TB. The risk of TB increased with increasing age and decreasing body mass index (BMI) after adjusting for other factors, and there is a positive dose-response relationship. CONCLUSIONS: In China, active case finding (ACF) could be implemented among elderly people aged 65 and above with underweight, diabetes, close contact history and previous TB history as a priority, which will get significant yields and be cost-effective. More... »

PAGES

7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40249-019-0515-y

DOI

http://dx.doi.org/10.1186/s40249-019-0515-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111499220

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30654836


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "China", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mass Screening", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prevalence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tuberculosis, Pulmonary", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chinese Center For Disease Control and Prevention", 
          "id": "https://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Can-You", 
        "id": "sg:person.0662056025.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662056025.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Center For Disease Control and Prevention", 
          "id": "https://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Fei", 
        "id": "sg:person.01277500730.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277500730.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Center For Disease Control and Prevention", 
          "id": "https://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xia", 
        "givenName": "Yin-Yin", 
        "id": "sg:person.0720071755.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720071755.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Heilongjiang Provincial Center for Tuberculosis Control and Prevention, Harbin, Heilongjiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Yan-Ling", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Municipal Center For Disease Control Prevention", 
          "id": "https://www.grid.ac/institutes/grid.430328.e", 
          "name": [
            "Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Xin", 
        "id": "sg:person.01273412544.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273412544.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Center For Disease Control and Prevention", 
          "id": "https://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Wei", 
        "id": "sg:person.01267614070.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267614070.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang Center for Disease Control and Prevention", 
          "id": "https://www.grid.ac/institutes/grid.433871.a", 
          "name": [
            "Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xiao-Meng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Center For Disease Control and Prevention", 
          "id": "https://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "Henan Provincial Center for Disease Control and Prevention, Zhengzhou, Henan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xing", 
        "givenName": "Jin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Center For Disease Control and Prevention", 
          "id": "https://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Jian-Jun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Tuberculosis Control of Guangdong Province", 
          "id": "https://www.grid.ac/institutes/grid.410748.e", 
          "name": [
            "Center for Tuberculosis Control of Guangdong Province, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jian-Wei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Guangxi Provincial Center for Disease Control and Prevention, Nanning, Guangxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Fei-Ying", 
        "id": "sg:person.014077575025.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014077575025.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Center For Disease Control and Prevention", 
          "id": "https://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "Sichuan Provincial Center for Disease Control and Prevention, Chengdu, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Jian-Lin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Yunnan Provincial Center for Disease Control and Prevention, Kunming, Yunnan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Lin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Center For Disease Control and Prevention", 
          "id": "https://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Hui", 
        "id": "sg:person.01220317404.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220317404.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Center For Disease Control and Prevention", 
          "id": "https://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Jun", 
        "id": "sg:person.0611141704.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611141704.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Center For Disease Control and Prevention", 
          "id": "https://www.grid.ac/institutes/grid.198530.6", 
          "name": [
            "National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Li-Xia", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/tmi.12536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003170037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1473-3099(08)70071-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003214980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1473-3099(08)70071-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003214980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(10)60483-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004639011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cid/cit643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006384918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.annepidem.2014.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006557619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/tmi.12534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008760848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0088290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010548134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/dyp308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011456395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.1002119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012477520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2458-13-97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014173021", 
          "https://doi.org/10.1186/1471-2458-13-97"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5588/pha.12.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015080025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.0040020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015152208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1185449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015176272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0043225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021117777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5588/ijtld.15.0608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022202255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5588/ijtld.16.0386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025206211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0096433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026554819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cid/cit027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028808053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0042625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033013609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.0050152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035005068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(07)61602-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036200026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(15)60570-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037062762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(13)62639-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043920368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2458-8-289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045414434", 
          "https://doi.org/10.1186/1471-2458-8-289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2458-9-450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051464760", 
          "https://doi.org/10.1186/1471-2458-9-450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0950268811001609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053964890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2105/ajph.88.1.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068876497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2471/blt.09.067801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070837485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2471/blt.09.067801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070837485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077152304", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077501077", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077964836", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079954437", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tube.2017.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083408785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tube.2017.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083408785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0175925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085043183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2017.7596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086323216"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "BACKGROUND: The problem of population aging is a critical public health concern in modern China, and more tuberculosis (TB) control efforts are needed to reach elderly people at high priority. In this study, we aim to determine the prevalence and identify the risk factors of TB among elderly people in China.\nMETHODS: A multistage cluster-sampled cross-sectional survey was conducted in 2013, and 27 clusters were selected from 10 counties of 10 provinces in China. All consenting participants greater than or equal to 65\u2009years of age were screened for pulmonary TB with a chest X-ray (CXR) and a symptom questionnaire. Three sputum specimens for bacteriological examination by microscopy and culture were collected from those whose screening was positive. Prevalence was calculated, a multiple logistic regression model was performed to confirm the risk factors, and population attributable fraction (PAF) of each risk factor was calculated to indicate the public health significance.\nRESULTS: Of 38\u2009888 eligible people from 27 clusters, 34\u2009269 participants finished both questionnaire and physical examination. There were 193 active pulmonary TB cases, 62 of which were bacteriologically confirmed. The estimated prevalence of active pulmonary TB and bacteriologically confirmed TB in those 65\u2009years of age and older was 563.19 per 100\u2009000 (95% CI: 483.73-642.65) and 180.92 per 100\u2009000 (95% CI: 135.89-225.96), respectively. Male sex, older age, living in rural areas, underweight, diabetes, close contact of pulmonary TB (PTB) and previous TB history are all risk factors for TB. The risk of TB increased with increasing age and decreasing body mass index (BMI) after adjusting for other factors, and there is a positive dose-response relationship.\nCONCLUSIONS: In China, active case finding (ACF) could be implemented among elderly people aged 65 and above with underweight, diabetes, close contact history and previous TB history as a priority, which will get significant yields and be cost-effective.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40249-019-0515-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1048296", 
        "issn": [
          "2095-5162", 
          "2049-9957"
        ], 
        "name": "Infectious Diseases of Poverty", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Prevalence and risk factors of active pulmonary tuberculosis among elderly people in China: a population based cross-sectional study", 
    "pagination": "7", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40249-019-0515-y"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9b6a95f223e70ba9ed852d38ee77e03b043ff4dfa9c634eb78ff94b8d2cac42e"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111499220"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101606645"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30654836"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40249-019-0515-y", 
      "https://app.dimensions.ai/details/publication/pub.1111499220"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119730_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs40249-019-0515-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40249-019-0515-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40249-019-0515-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40249-019-0515-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40249-019-0515-y'


 

This table displays all metadata directly associated to this object as RDF triples.

337 TRIPLES      21 PREDICATES      76 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40249-019-0515-y schema:about N0b92b9542b7946bfb8a3537497010d01
2 N11ae5a4ac01d422483d81cf54362f919
3 N20ef989d141141a1b88ebb6fa0b2195d
4 N3431cbc0f23f4d8d8c577d3d36150cd7
5 N47711b71613e40289101586c59e1ed9f
6 N48c76076a7d542f0ac32690e042d9163
7 N62c22a852a78401381618a40b91b07b1
8 N71b03b804b5847d6a6a3fbf1f158b4c0
9 Nb2111f6b300543afa2e7437696f66bf3
10 Nc5ffd67613624c9d9dfd056280b202fc
11 Ncbea7a40e61044b1838e5966a139dc08
12 Ne8a7c5f5300243a7ae1d929a7bbe80fb
13 anzsrc-for:11
14 anzsrc-for:1117
15 schema:author Na62299f3033e4ae283a2a84fffec188d
16 schema:citation sg:pub.10.1186/1471-2458-13-97
17 sg:pub.10.1186/1471-2458-8-289
18 sg:pub.10.1186/1471-2458-9-450
19 https://app.dimensions.ai/details/publication/pub.1077152304
20 https://app.dimensions.ai/details/publication/pub.1077501077
21 https://app.dimensions.ai/details/publication/pub.1077964836
22 https://app.dimensions.ai/details/publication/pub.1079954437
23 https://doi.org/10.1001/jama.2017.7596
24 https://doi.org/10.1016/j.annepidem.2014.11.015
25 https://doi.org/10.1016/j.tube.2017.01.007
26 https://doi.org/10.1016/s0140-6736(07)61602-x
27 https://doi.org/10.1016/s0140-6736(10)60483-7
28 https://doi.org/10.1016/s0140-6736(13)62639-2
29 https://doi.org/10.1016/s0140-6736(15)60570-0
30 https://doi.org/10.1016/s1473-3099(08)70071-9
31 https://doi.org/10.1017/s0950268811001609
32 https://doi.org/10.1093/cid/cit027
33 https://doi.org/10.1093/cid/cit643
34 https://doi.org/10.1093/ije/dyp308
35 https://doi.org/10.1111/tmi.12534
36 https://doi.org/10.1111/tmi.12536
37 https://doi.org/10.1126/science.1185449
38 https://doi.org/10.1371/journal.pmed.0040020
39 https://doi.org/10.1371/journal.pmed.0050152
40 https://doi.org/10.1371/journal.pmed.1002119
41 https://doi.org/10.1371/journal.pone.0042625
42 https://doi.org/10.1371/journal.pone.0043225
43 https://doi.org/10.1371/journal.pone.0088290
44 https://doi.org/10.1371/journal.pone.0096433
45 https://doi.org/10.1371/journal.pone.0175925
46 https://doi.org/10.2105/ajph.88.1.15
47 https://doi.org/10.2471/blt.09.067801
48 https://doi.org/10.5588/ijtld.15.0608
49 https://doi.org/10.5588/ijtld.16.0386
50 https://doi.org/10.5588/pha.12.0001
51 schema:datePublished 2019-12
52 schema:datePublishedReg 2019-12-01
53 schema:description BACKGROUND: The problem of population aging is a critical public health concern in modern China, and more tuberculosis (TB) control efforts are needed to reach elderly people at high priority. In this study, we aim to determine the prevalence and identify the risk factors of TB among elderly people in China. METHODS: A multistage cluster-sampled cross-sectional survey was conducted in 2013, and 27 clusters were selected from 10 counties of 10 provinces in China. All consenting participants greater than or equal to 65 years of age were screened for pulmonary TB with a chest X-ray (CXR) and a symptom questionnaire. Three sputum specimens for bacteriological examination by microscopy and culture were collected from those whose screening was positive. Prevalence was calculated, a multiple logistic regression model was performed to confirm the risk factors, and population attributable fraction (PAF) of each risk factor was calculated to indicate the public health significance. RESULTS: Of 38 888 eligible people from 27 clusters, 34 269 participants finished both questionnaire and physical examination. There were 193 active pulmonary TB cases, 62 of which were bacteriologically confirmed. The estimated prevalence of active pulmonary TB and bacteriologically confirmed TB in those 65 years of age and older was 563.19 per 100 000 (95% CI: 483.73-642.65) and 180.92 per 100 000 (95% CI: 135.89-225.96), respectively. Male sex, older age, living in rural areas, underweight, diabetes, close contact of pulmonary TB (PTB) and previous TB history are all risk factors for TB. The risk of TB increased with increasing age and decreasing body mass index (BMI) after adjusting for other factors, and there is a positive dose-response relationship. CONCLUSIONS: In China, active case finding (ACF) could be implemented among elderly people aged 65 and above with underweight, diabetes, close contact history and previous TB history as a priority, which will get significant yields and be cost-effective.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree true
57 schema:isPartOf N49bf19f140814d9c98f8ba70424a2599
58 Nb02c132ae3ba4e4aa5564ffca82ff215
59 sg:journal.1048296
60 schema:name Prevalence and risk factors of active pulmonary tuberculosis among elderly people in China: a population based cross-sectional study
61 schema:pagination 7
62 schema:productId N02951bdeb68a4625bed9cb2a598ab319
63 N76594862206f4a3896c87fe58c5495ac
64 N78f9e800773448d7a06b27a70f42d1e4
65 Nbc9adbe9eb604194ba648539a9418e31
66 Ncb7ecea9ff5c4453bfc811c4bcd2c8f9
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111499220
68 https://doi.org/10.1186/s40249-019-0515-y
69 schema:sdDatePublished 2019-04-15T08:50
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N1cb402941a0f41128af66d975f1516e0
72 schema:url https://link.springer.com/10.1186%2Fs40249-019-0515-y
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N0098552c2fbf4769b42d3ed02d0f2428 rdf:first sg:person.0720071755.49
77 rdf:rest N6bac9f00168747f187e737dbf490fc8f
78 N02951bdeb68a4625bed9cb2a598ab319 schema:name readcube_id
79 schema:value 9b6a95f223e70ba9ed852d38ee77e03b043ff4dfa9c634eb78ff94b8d2cac42e
80 rdf:type schema:PropertyValue
81 N05e2d053f1df4d2da5376e71529c90c8 schema:affiliation Ne10687b780e34112bb23dea727f5b26e
82 schema:familyName Xu
83 schema:givenName Lin
84 rdf:type schema:Person
85 N076913552dd44089838563596b2bda0f schema:affiliation https://www.grid.ac/institutes/grid.198530.6
86 schema:familyName Xing
87 schema:givenName Jin
88 rdf:type schema:Person
89 N0b92b9542b7946bfb8a3537497010d01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Male
91 rdf:type schema:DefinedTerm
92 N11ae5a4ac01d422483d81cf54362f919 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Mass Screening
94 rdf:type schema:DefinedTerm
95 N15943e827d714503aa6abdcac9a52b1a rdf:first sg:person.014077575025.94
96 rdf:rest Nf5d9434f941447cd80a510880117017b
97 N1a9dba569b4d4e40ad4a830fac206a0d schema:affiliation https://www.grid.ac/institutes/grid.198530.6
98 schema:familyName Ye
99 schema:givenName Jian-Jun
100 rdf:type schema:Person
101 N1cb402941a0f41128af66d975f1516e0 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N20ef989d141141a1b88ebb6fa0b2195d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Tuberculosis, Pulmonary
105 rdf:type schema:DefinedTerm
106 N26c9e66b737c461f94ecf82ee8ecfd74 schema:affiliation N619afed75c1346b88b2eacd18f4df69c
107 schema:familyName Yu
108 schema:givenName Yan-Ling
109 rdf:type schema:Person
110 N3431cbc0f23f4d8d8c577d3d36150cd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Risk Factors
112 rdf:type schema:DefinedTerm
113 N37c072d16eef4f238dd20577c7421960 schema:affiliation https://www.grid.ac/institutes/grid.410748.e
114 schema:familyName Li
115 schema:givenName Jian-Wei
116 rdf:type schema:Person
117 N47711b71613e40289101586c59e1ed9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Female
119 rdf:type schema:DefinedTerm
120 N48c76076a7d542f0ac32690e042d9163 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name China
122 rdf:type schema:DefinedTerm
123 N49353a465f6949ee9d57421d03adddab schema:name Guangxi Provincial Center for Disease Control and Prevention, Nanning, Guangxi, China
124 rdf:type schema:Organization
125 N49bf19f140814d9c98f8ba70424a2599 schema:volumeNumber 8
126 rdf:type schema:PublicationVolume
127 N49c64dbe7af94868b83c594aee539710 rdf:first N37c072d16eef4f238dd20577c7421960
128 rdf:rest N15943e827d714503aa6abdcac9a52b1a
129 N619afed75c1346b88b2eacd18f4df69c schema:name Heilongjiang Provincial Center for Tuberculosis Control and Prevention, Harbin, Heilongjiang, China
130 rdf:type schema:Organization
131 N62c22a852a78401381618a40b91b07b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Prevalence
133 rdf:type schema:DefinedTerm
134 N69a219d7d3f34efbb0ae9dba70049366 rdf:first N1a9dba569b4d4e40ad4a830fac206a0d
135 rdf:rest N49c64dbe7af94868b83c594aee539710
136 N6bac9f00168747f187e737dbf490fc8f rdf:first N26c9e66b737c461f94ecf82ee8ecfd74
137 rdf:rest Nb5c03bdfaaac4a93a0c700b6e246a7ee
138 N71b03b804b5847d6a6a3fbf1f158b4c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Aged, 80 and over
140 rdf:type schema:DefinedTerm
141 N76594862206f4a3896c87fe58c5495ac schema:name pubmed_id
142 schema:value 30654836
143 rdf:type schema:PropertyValue
144 N78f9e800773448d7a06b27a70f42d1e4 schema:name dimensions_id
145 schema:value pub.1111499220
146 rdf:type schema:PropertyValue
147 N87d19adda0044385b8db39934d2df00b schema:affiliation https://www.grid.ac/institutes/grid.198530.6
148 schema:familyName Wang
149 schema:givenName Li-Xia
150 rdf:type schema:Person
151 N8bc3e4656a56452f8327fd050adabbdf rdf:first sg:person.01220317404.04
152 rdf:rest Nb6810e5067b04edea130c03ce53a5a16
153 N8f8cce7812c548509667c18d4833cabb rdf:first N076913552dd44089838563596b2bda0f
154 rdf:rest N69a219d7d3f34efbb0ae9dba70049366
155 Na00832779b5740419bb126791e8ce4dc rdf:first N05e2d053f1df4d2da5376e71529c90c8
156 rdf:rest N8bc3e4656a56452f8327fd050adabbdf
157 Na62299f3033e4ae283a2a84fffec188d rdf:first sg:person.0662056025.64
158 rdf:rest Nb4aa02cacd754aaa8d241a4c511093ab
159 Naaaf094db45d4ab7bfb6424be9cfa7e2 rdf:first sg:person.01267614070.70
160 rdf:rest Ne04a8c2868a949049d48bdb41b9c783d
161 Nad07082a4d6644ba831ad0b44ec68c6b schema:affiliation https://www.grid.ac/institutes/grid.433871.a
162 schema:familyName Wang
163 schema:givenName Xiao-Meng
164 rdf:type schema:Person
165 Nb02c132ae3ba4e4aa5564ffca82ff215 schema:issueNumber 1
166 rdf:type schema:PublicationIssue
167 Nb2111f6b300543afa2e7437696f66bf3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Algorithms
169 rdf:type schema:DefinedTerm
170 Nb4aa02cacd754aaa8d241a4c511093ab rdf:first sg:person.01277500730.16
171 rdf:rest N0098552c2fbf4769b42d3ed02d0f2428
172 Nb5c03bdfaaac4a93a0c700b6e246a7ee rdf:first sg:person.01273412544.25
173 rdf:rest Naaaf094db45d4ab7bfb6424be9cfa7e2
174 Nb6810e5067b04edea130c03ce53a5a16 rdf:first sg:person.0611141704.47
175 rdf:rest Nbe0ddf7516124600bac80233a4ec385e
176 Nbc9adbe9eb604194ba648539a9418e31 schema:name doi
177 schema:value 10.1186/s40249-019-0515-y
178 rdf:type schema:PropertyValue
179 Nbe0ddf7516124600bac80233a4ec385e rdf:first N87d19adda0044385b8db39934d2df00b
180 rdf:rest rdf:nil
181 Nc5ffd67613624c9d9dfd056280b202fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Cross-Sectional Studies
183 rdf:type schema:DefinedTerm
184 Nc6196b33ea9a41719900f3a606291757 schema:affiliation https://www.grid.ac/institutes/grid.198530.6
185 schema:familyName Wu
186 schema:givenName Jian-Lin
187 rdf:type schema:Person
188 Ncb7ecea9ff5c4453bfc811c4bcd2c8f9 schema:name nlm_unique_id
189 schema:value 101606645
190 rdf:type schema:PropertyValue
191 Ncbea7a40e61044b1838e5966a139dc08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Humans
193 rdf:type schema:DefinedTerm
194 Ne04a8c2868a949049d48bdb41b9c783d rdf:first Nad07082a4d6644ba831ad0b44ec68c6b
195 rdf:rest N8f8cce7812c548509667c18d4833cabb
196 Ne10687b780e34112bb23dea727f5b26e schema:name Yunnan Provincial Center for Disease Control and Prevention, Kunming, Yunnan, China
197 rdf:type schema:Organization
198 Ne8a7c5f5300243a7ae1d929a7bbe80fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Aged
200 rdf:type schema:DefinedTerm
201 Nf5d9434f941447cd80a510880117017b rdf:first Nc6196b33ea9a41719900f3a606291757
202 rdf:rest Na00832779b5740419bb126791e8ce4dc
203 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
204 schema:name Medical and Health Sciences
205 rdf:type schema:DefinedTerm
206 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
207 schema:name Public Health and Health Services
208 rdf:type schema:DefinedTerm
209 sg:journal.1048296 schema:issn 2049-9957
210 2095-5162
211 schema:name Infectious Diseases of Poverty
212 rdf:type schema:Periodical
213 sg:person.01220317404.04 schema:affiliation https://www.grid.ac/institutes/grid.198530.6
214 schema:familyName Zhang
215 schema:givenName Hui
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220317404.04
217 rdf:type schema:Person
218 sg:person.01267614070.70 schema:affiliation https://www.grid.ac/institutes/grid.198530.6
219 schema:familyName Lu
220 schema:givenName Wei
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267614070.70
222 rdf:type schema:Person
223 sg:person.01273412544.25 schema:affiliation https://www.grid.ac/institutes/grid.430328.e
224 schema:familyName Shen
225 schema:givenName Xin
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273412544.25
227 rdf:type schema:Person
228 sg:person.01277500730.16 schema:affiliation https://www.grid.ac/institutes/grid.198530.6
229 schema:familyName Zhao
230 schema:givenName Fei
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277500730.16
232 rdf:type schema:Person
233 sg:person.014077575025.94 schema:affiliation N49353a465f6949ee9d57421d03adddab
234 schema:familyName Liu
235 schema:givenName Fei-Ying
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014077575025.94
237 rdf:type schema:Person
238 sg:person.0611141704.47 schema:affiliation https://www.grid.ac/institutes/grid.198530.6
239 schema:familyName Cheng
240 schema:givenName Jun
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611141704.47
242 rdf:type schema:Person
243 sg:person.0662056025.64 schema:affiliation https://www.grid.ac/institutes/grid.198530.6
244 schema:familyName Zhang
245 schema:givenName Can-You
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662056025.64
247 rdf:type schema:Person
248 sg:person.0720071755.49 schema:affiliation https://www.grid.ac/institutes/grid.198530.6
249 schema:familyName Xia
250 schema:givenName Yin-Yin
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720071755.49
252 rdf:type schema:Person
253 sg:pub.10.1186/1471-2458-13-97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014173021
254 https://doi.org/10.1186/1471-2458-13-97
255 rdf:type schema:CreativeWork
256 sg:pub.10.1186/1471-2458-8-289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045414434
257 https://doi.org/10.1186/1471-2458-8-289
258 rdf:type schema:CreativeWork
259 sg:pub.10.1186/1471-2458-9-450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051464760
260 https://doi.org/10.1186/1471-2458-9-450
261 rdf:type schema:CreativeWork
262 https://app.dimensions.ai/details/publication/pub.1077152304 schema:CreativeWork
263 https://app.dimensions.ai/details/publication/pub.1077501077 schema:CreativeWork
264 https://app.dimensions.ai/details/publication/pub.1077964836 schema:CreativeWork
265 https://app.dimensions.ai/details/publication/pub.1079954437 schema:CreativeWork
266 https://doi.org/10.1001/jama.2017.7596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086323216
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1016/j.annepidem.2014.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006557619
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1016/j.tube.2017.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083408785
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1016/s0140-6736(07)61602-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036200026
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1016/s0140-6736(10)60483-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004639011
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1016/s0140-6736(13)62639-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043920368
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1016/s0140-6736(15)60570-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037062762
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1016/s1473-3099(08)70071-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003214980
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1017/s0950268811001609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053964890
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1093/cid/cit027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028808053
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1093/cid/cit643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006384918
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1093/ije/dyp308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011456395
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1111/tmi.12534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008760848
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1111/tmi.12536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003170037
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1126/science.1185449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015176272
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1371/journal.pmed.0040020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015152208
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1371/journal.pmed.0050152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035005068
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1371/journal.pmed.1002119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012477520
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1371/journal.pone.0042625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033013609
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1371/journal.pone.0043225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021117777
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1371/journal.pone.0088290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010548134
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1371/journal.pone.0096433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026554819
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1371/journal.pone.0175925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085043183
311 rdf:type schema:CreativeWork
312 https://doi.org/10.2105/ajph.88.1.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068876497
313 rdf:type schema:CreativeWork
314 https://doi.org/10.2471/blt.09.067801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070837485
315 rdf:type schema:CreativeWork
316 https://doi.org/10.5588/ijtld.15.0608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022202255
317 rdf:type schema:CreativeWork
318 https://doi.org/10.5588/ijtld.16.0386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025206211
319 rdf:type schema:CreativeWork
320 https://doi.org/10.5588/pha.12.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015080025
321 rdf:type schema:CreativeWork
322 https://www.grid.ac/institutes/grid.198530.6 schema:alternateName Chinese Center For Disease Control and Prevention
323 schema:name Henan Provincial Center for Disease Control and Prevention, Zhengzhou, Henan, China
324 Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, China
325 Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
326 National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
327 Sichuan Provincial Center for Disease Control and Prevention, Chengdu, Sichuan, China
328 rdf:type schema:Organization
329 https://www.grid.ac/institutes/grid.410748.e schema:alternateName Center for Tuberculosis Control of Guangdong Province
330 schema:name Center for Tuberculosis Control of Guangdong Province, Guangzhou, Guangdong, China
331 rdf:type schema:Organization
332 https://www.grid.ac/institutes/grid.430328.e schema:alternateName Shanghai Municipal Center For Disease Control Prevention
333 schema:name Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
334 rdf:type schema:Organization
335 https://www.grid.ac/institutes/grid.433871.a schema:alternateName Zhejiang Center for Disease Control and Prevention
336 schema:name Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
337 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...