Methodology for fast interactive segmentation of the peritoneum and diaphragm in multi-modal 3D medical image View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-08-11

AUTHORS

Alexandre Hostettler, Wenwu Zhu, Stéphane Nicolau, Luc Soler, Jacques Marescaux

ABSTRACT

The segmentation of the peritoneum and diaphragm is important for the non-rigid registration and surgical simulation on the abdominal viscera region. However, there has been few works on the peritoneum or the abdominal viscera envelop segmentation. The challenge in segmentation of the peritoneum is caused by its complex shape and connection to the internal abdominal organs with similar intensity value, which limits the feasibility of the deformable segmentation methods. In this paper, we present two semi-automatic tools to perform a fast segmentation of a patient peritoneum and diaphragm based on the low curvature of the peritoneum along cranio-caudal direction. The segmentation of the peritoneum can be achieved by delineating several selected axial slices using 2D B-spline fitting technique, and the remaining slices can be segmented automatically with 3D B-spline interpolation technique. Experiments on the choice of the number of selected slice (NSS) for interactive segmentation are performed and demonstrated that 10–15 slices are enough to reach an accurate segmentation and can be finished within several minutes. The segmentation of the diaphragm is performed in the sagittal view based on the segmentation result of the peritoneum and can be finished within several minutes also. The segmentation duration of these two interactive tools are also evaluated by six users, the experiment shows that they can finish the segmentation within 10 min. The application of the peritoneum and diaphragm segmentation approach for abdominal visualization and registration is also shown. In conclusion, our developed tools for segmenting the peritoneum and diaphragm are efficient and fast and can play an important role for the surgical planning and simulation on the abdominal viscera. This approach can also inspire the segmentation of the other anatomy structures with low curvature. More... »

PAGES

4

References to SciGraph publications

  • 2006-12-23. Computer-assisted operative procedure: from preoperative planning to simulation in EUROPEAN CLINICS IN OBSTETRICS AND GYNAECOLOGY
  • 2012. Simulation of Pneumoperitoneum for Laparoscopic Surgery Planning in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2012
  • 2008-01-01. A Real-Time Predictive Simulation of Abdominal Organ Positions Induced by Free Breathing in BIOMEDICAL SIMULATION
  • 2012. Fast Explicit Diffusion for Registration with Direction-Dependent Regularization in BIOMEDICAL IMAGE REGISTRATION
  • 2015-11-21. Fast Marching Methods in ENCYCLOPEDIA OF APPLIED AND COMPUTATIONAL MATHEMATICS
  • 2009. Slipping Objects in Image Registration: Improved Motion Field Estimation with Direction-Dependent Regularization in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2009
  • 1988-01. Snakes: Active contour models in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2002-12. A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2007-11-27. Segmentation of multiple organs in non-contrast 3D abdominal CT images in INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY
  • 2000. Coupled Geodesic Active Regions for Image Segmentation: A Level Set Approach in COMPUTER VISION — ECCV 2000
  • 2012. Fast Segmentation of Abdominal Wall: Application to Sliding Effect Removal for Non-rigid Registration in ABDOMINAL IMAGING. COMPUTATIONAL AND CLINICAL APPLICATIONS
  • 2004. Level Set Based Image Segmentation with Multiple Regions in PATTERN RECOGNITION
  • 2012. Simulation of the Abdominal Wall and Its Arteries after Pneumoperitoneum for Guidance of Port Positioning in Laparoscopic Surgery in ADVANCES IN VISUAL COMPUTING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40244-015-0017-6

    DOI

    http://dx.doi.org/10.1186/s40244-015-0017-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021817409


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "IRCAD-France, Virtual-surg, place de l\u2019H\u00f4spital 1, 67091, Strasbourg, Cedex, France", 
              "id": "http://www.grid.ac/institutes/grid.420397.b", 
              "name": [
                "IRCAD-France, Virtual-surg, place de l\u2019H\u00f4spital 1, 67091, Strasbourg, Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hostettler", 
            "givenName": "Alexandre", 
            "id": "sg:person.0705317047.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705317047.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut de M\u00e9canique des Fluides et des Solides, rue Boussingault 2, 67000, Strasbourg, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "IRCAD-France, Virtual-surg, place de l\u2019H\u00f4spital 1, 67091, Strasbourg, Cedex, France", 
                "Institut de M\u00e9canique des Fluides et des Solides, rue Boussingault 2, 67000, Strasbourg, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhu", 
            "givenName": "Wenwu", 
            "id": "sg:person.016007304763.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016007304763.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "IRCAD-France, Virtual-surg, place de l\u2019H\u00f4spital 1, 67091, Strasbourg, Cedex, France", 
              "id": "http://www.grid.ac/institutes/grid.420397.b", 
              "name": [
                "IRCAD-France, Virtual-surg, place de l\u2019H\u00f4spital 1, 67091, Strasbourg, Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nicolau", 
            "givenName": "St\u00e9phane", 
            "id": "sg:person.01266131170.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266131170.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "IRCAD-France, Virtual-surg, place de l\u2019H\u00f4spital 1, 67091, Strasbourg, Cedex, France", 
              "id": "http://www.grid.ac/institutes/grid.420397.b", 
              "name": [
                "IRCAD-France, Virtual-surg, place de l\u2019H\u00f4spital 1, 67091, Strasbourg, Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Soler", 
            "givenName": "Luc", 
            "id": "sg:person.0773202070.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773202070.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "IRCAD-France, Virtual-surg, place de l\u2019H\u00f4spital 1, 67091, Strasbourg, Cedex, France", 
              "id": "http://www.grid.ac/institutes/grid.420397.b", 
              "name": [
                "IRCAD-France, Virtual-surg, place de l\u2019H\u00f4spital 1, 67091, Strasbourg, Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marescaux", 
            "givenName": "Jacques", 
            "id": "sg:person.0772603354.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772603354.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11296-006-0055-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017040639", 
              "https://doi.org/10.1007/s11296-006-0055-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-33179-4_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032587611", 
              "https://doi.org/10.1007/978-3-642-33179-4_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-33415-3_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015509800", 
              "https://doi.org/10.1007/978-3-642-33415-3_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1020874308076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035462968", 
              "https://doi.org/10.1023/a:1020874308076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-70521-5_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018534916", 
              "https://doi.org/10.1007/978-3-540-70521-5_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11548-007-0135-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051963128", 
              "https://doi.org/10.1007/s11548-007-0135-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-04268-3_93", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044981841", 
              "https://doi.org/10.1007/978-3-642-04268-3_93"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00133570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016330466", 
              "https://doi.org/10.1007/bf00133570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-70529-1_379", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017759862", 
              "https://doi.org/10.1007/978-3-540-70529-1_379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-33612-6_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031666128", 
              "https://doi.org/10.1007/978-3-642-33612-6_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-28649-3_51", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022236629", 
              "https://doi.org/10.1007/978-3-540-28649-3_51"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-31340-0_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031732431", 
              "https://doi.org/10.1007/978-3-642-31340-0_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45053-x_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027676543", 
              "https://doi.org/10.1007/3-540-45053-x_15"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-08-11", 
        "datePublishedReg": "2015-08-11", 
        "description": "The segmentation of the peritoneum and diaphragm is important for the non-rigid registration and surgical simulation on the abdominal viscera region. However, there has been few works on the peritoneum or the abdominal viscera envelop segmentation. The challenge in segmentation of the peritoneum is caused by its complex shape and connection to the internal abdominal organs with similar intensity value, which limits the feasibility of the deformable segmentation methods. In this paper, we present two semi-automatic tools to perform a fast segmentation of a patient peritoneum and diaphragm based on the low curvature of the peritoneum along cranio-caudal direction. The segmentation of the peritoneum can be achieved by delineating several selected axial slices using 2D B-spline fitting technique, and the remaining slices can be segmented automatically with 3D B-spline interpolation technique. Experiments on the choice of the number of selected slice (NSS) for interactive segmentation are performed and demonstrated that 10\u201315 slices are enough to reach an accurate segmentation and can be finished within several minutes. The segmentation of the diaphragm is performed in the sagittal view based on the segmentation result of the peritoneum and can be finished within several minutes also. The segmentation duration of these two interactive tools are also evaluated by six users, the experiment shows that they can finish the segmentation within 10\u00a0min. The application of the peritoneum and diaphragm segmentation approach for abdominal visualization and registration is also shown. In conclusion, our developed tools for segmenting the peritoneum and diaphragm are efficient and fast and can play an important role for the surgical planning and simulation on the abdominal viscera. This approach can also inspire the segmentation of the other anatomy structures with low curvature.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s40244-015-0017-6", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052069", 
            "issn": [
              "2194-3990"
            ], 
            "name": "Journal of Computational Surgery", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "keywords": [
          "interactive segmentation", 
          "semi-automatic tool", 
          "fast interactive segmentation", 
          "deformable segmentation method", 
          "similar intensity values", 
          "non-rigid registration", 
          "spline fitting techniques", 
          "fast segmentation", 
          "medical images", 
          "accurate segmentation", 
          "segmentation results", 
          "segmentation method", 
          "interactive tool", 
          "segmentation approach", 
          "segmentation duration", 
          "segmentation", 
          "spline interpolation technique", 
          "surgical simulation", 
          "internal abdominal organs", 
          "abdominal visualization", 
          "anatomy structure", 
          "patient peritoneum", 
          "interpolation technique", 
          "intensity values", 
          "registration", 
          "surgical planning", 
          "tool", 
          "users", 
          "fitting technique", 
          "complex shapes", 
          "simulations", 
          "images", 
          "visualization", 
          "axial slices", 
          "technique", 
          "planning", 
          "applications", 
          "experiments", 
          "challenges", 
          "methodology", 
          "cranio-caudal direction", 
          "slices", 
          "feasibility", 
          "work", 
          "sagittal view", 
          "method", 
          "view", 
          "connection", 
          "low curvature", 
          "abdominal organs", 
          "number", 
          "results", 
          "important role", 
          "direction", 
          "choice", 
          "shape", 
          "structure", 
          "curvature", 
          "values", 
          "region", 
          "minutes", 
          "role", 
          "conclusion", 
          "duration", 
          "organs", 
          "diaphragm", 
          "abdominal viscera", 
          "approach", 
          "min", 
          "paper", 
          "viscera", 
          "peritoneum", 
          "abdominal viscera region", 
          "viscera region", 
          "abdominal viscera envelop segmentation", 
          "viscera envelop segmentation", 
          "envelop segmentation", 
          "diaphragm segmentation approach", 
          "multi-modal 3D medical image"
        ], 
        "name": "Methodology for fast interactive segmentation of the peritoneum and diaphragm in multi-modal 3D medical image", 
        "pagination": "4", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021817409"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40244-015-0017-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40244-015-0017-6", 
          "https://app.dimensions.ai/details/publication/pub.1021817409"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_682.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s40244-015-0017-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40244-015-0017-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40244-015-0017-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40244-015-0017-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40244-015-0017-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    220 TRIPLES      22 PREDICATES      117 URIs      96 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40244-015-0017-6 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nb2e93ec175df43ee8bd83a954f358ede
    4 schema:citation sg:pub.10.1007/3-540-45053-x_15
    5 sg:pub.10.1007/978-3-540-28649-3_51
    6 sg:pub.10.1007/978-3-540-70521-5_10
    7 sg:pub.10.1007/978-3-540-70529-1_379
    8 sg:pub.10.1007/978-3-642-04268-3_93
    9 sg:pub.10.1007/978-3-642-31340-0_23
    10 sg:pub.10.1007/978-3-642-33179-4_1
    11 sg:pub.10.1007/978-3-642-33415-3_12
    12 sg:pub.10.1007/978-3-642-33612-6_21
    13 sg:pub.10.1007/bf00133570
    14 sg:pub.10.1007/s11296-006-0055-4
    15 sg:pub.10.1007/s11548-007-0135-z
    16 sg:pub.10.1023/a:1020874308076
    17 schema:datePublished 2015-08-11
    18 schema:datePublishedReg 2015-08-11
    19 schema:description The segmentation of the peritoneum and diaphragm is important for the non-rigid registration and surgical simulation on the abdominal viscera region. However, there has been few works on the peritoneum or the abdominal viscera envelop segmentation. The challenge in segmentation of the peritoneum is caused by its complex shape and connection to the internal abdominal organs with similar intensity value, which limits the feasibility of the deformable segmentation methods. In this paper, we present two semi-automatic tools to perform a fast segmentation of a patient peritoneum and diaphragm based on the low curvature of the peritoneum along cranio-caudal direction. The segmentation of the peritoneum can be achieved by delineating several selected axial slices using 2D B-spline fitting technique, and the remaining slices can be segmented automatically with 3D B-spline interpolation technique. Experiments on the choice of the number of selected slice (NSS) for interactive segmentation are performed and demonstrated that 10–15 slices are enough to reach an accurate segmentation and can be finished within several minutes. The segmentation of the diaphragm is performed in the sagittal view based on the segmentation result of the peritoneum and can be finished within several minutes also. The segmentation duration of these two interactive tools are also evaluated by six users, the experiment shows that they can finish the segmentation within 10 min. The application of the peritoneum and diaphragm segmentation approach for abdominal visualization and registration is also shown. In conclusion, our developed tools for segmenting the peritoneum and diaphragm are efficient and fast and can play an important role for the surgical planning and simulation on the abdominal viscera. This approach can also inspire the segmentation of the other anatomy structures with low curvature.
    20 schema:genre article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree true
    23 schema:isPartOf N23a20edae4e64434878eb67696beca40
    24 Nb83af265504646e08a232ecf73731906
    25 sg:journal.1052069
    26 schema:keywords abdominal organs
    27 abdominal viscera
    28 abdominal viscera envelop segmentation
    29 abdominal viscera region
    30 abdominal visualization
    31 accurate segmentation
    32 anatomy structure
    33 applications
    34 approach
    35 axial slices
    36 challenges
    37 choice
    38 complex shapes
    39 conclusion
    40 connection
    41 cranio-caudal direction
    42 curvature
    43 deformable segmentation method
    44 diaphragm
    45 diaphragm segmentation approach
    46 direction
    47 duration
    48 envelop segmentation
    49 experiments
    50 fast interactive segmentation
    51 fast segmentation
    52 feasibility
    53 fitting technique
    54 images
    55 important role
    56 intensity values
    57 interactive segmentation
    58 interactive tool
    59 internal abdominal organs
    60 interpolation technique
    61 low curvature
    62 medical images
    63 method
    64 methodology
    65 min
    66 minutes
    67 multi-modal 3D medical image
    68 non-rigid registration
    69 number
    70 organs
    71 paper
    72 patient peritoneum
    73 peritoneum
    74 planning
    75 region
    76 registration
    77 results
    78 role
    79 sagittal view
    80 segmentation
    81 segmentation approach
    82 segmentation duration
    83 segmentation method
    84 segmentation results
    85 semi-automatic tool
    86 shape
    87 similar intensity values
    88 simulations
    89 slices
    90 spline fitting techniques
    91 spline interpolation technique
    92 structure
    93 surgical planning
    94 surgical simulation
    95 technique
    96 tool
    97 users
    98 values
    99 view
    100 viscera
    101 viscera envelop segmentation
    102 viscera region
    103 visualization
    104 work
    105 schema:name Methodology for fast interactive segmentation of the peritoneum and diaphragm in multi-modal 3D medical image
    106 schema:pagination 4
    107 schema:productId N712ce1723fe743239a4a078bcca5452f
    108 Ndb57aa4dea9a4287a57a08b45b2c8eed
    109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021817409
    110 https://doi.org/10.1186/s40244-015-0017-6
    111 schema:sdDatePublished 2021-12-01T19:34
    112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    113 schema:sdPublisher N6088fffb359445c686ba322678335d6a
    114 schema:url https://doi.org/10.1186/s40244-015-0017-6
    115 sgo:license sg:explorer/license/
    116 sgo:sdDataset articles
    117 rdf:type schema:ScholarlyArticle
    118 N23a20edae4e64434878eb67696beca40 schema:issueNumber 1
    119 rdf:type schema:PublicationIssue
    120 N2e39953d89ae40b780173a177788c535 rdf:first sg:person.016007304763.26
    121 rdf:rest Ne95a53d369394c8991184a666c702d4d
    122 N5ff5c29be9c947ffb765155ae7aec797 rdf:first sg:person.0773202070.58
    123 rdf:rest Ne5420ffe5dd04d6d947110fa377ebcb8
    124 N6088fffb359445c686ba322678335d6a schema:name Springer Nature - SN SciGraph project
    125 rdf:type schema:Organization
    126 N712ce1723fe743239a4a078bcca5452f schema:name dimensions_id
    127 schema:value pub.1021817409
    128 rdf:type schema:PropertyValue
    129 Nb2e93ec175df43ee8bd83a954f358ede rdf:first sg:person.0705317047.54
    130 rdf:rest N2e39953d89ae40b780173a177788c535
    131 Nb83af265504646e08a232ecf73731906 schema:volumeNumber 2
    132 rdf:type schema:PublicationVolume
    133 Ndb57aa4dea9a4287a57a08b45b2c8eed schema:name doi
    134 schema:value 10.1186/s40244-015-0017-6
    135 rdf:type schema:PropertyValue
    136 Ne5420ffe5dd04d6d947110fa377ebcb8 rdf:first sg:person.0772603354.41
    137 rdf:rest rdf:nil
    138 Ne95a53d369394c8991184a666c702d4d rdf:first sg:person.01266131170.08
    139 rdf:rest N5ff5c29be9c947ffb765155ae7aec797
    140 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Information and Computing Sciences
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Artificial Intelligence and Image Processing
    145 rdf:type schema:DefinedTerm
    146 sg:journal.1052069 schema:issn 2194-3990
    147 schema:name Journal of Computational Surgery
    148 schema:publisher Springer Nature
    149 rdf:type schema:Periodical
    150 sg:person.01266131170.08 schema:affiliation grid-institutes:grid.420397.b
    151 schema:familyName Nicolau
    152 schema:givenName Stéphane
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266131170.08
    154 rdf:type schema:Person
    155 sg:person.016007304763.26 schema:affiliation grid-institutes:None
    156 schema:familyName Zhu
    157 schema:givenName Wenwu
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016007304763.26
    159 rdf:type schema:Person
    160 sg:person.0705317047.54 schema:affiliation grid-institutes:grid.420397.b
    161 schema:familyName Hostettler
    162 schema:givenName Alexandre
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705317047.54
    164 rdf:type schema:Person
    165 sg:person.0772603354.41 schema:affiliation grid-institutes:grid.420397.b
    166 schema:familyName Marescaux
    167 schema:givenName Jacques
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772603354.41
    169 rdf:type schema:Person
    170 sg:person.0773202070.58 schema:affiliation grid-institutes:grid.420397.b
    171 schema:familyName Soler
    172 schema:givenName Luc
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773202070.58
    174 rdf:type schema:Person
    175 sg:pub.10.1007/3-540-45053-x_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027676543
    176 https://doi.org/10.1007/3-540-45053-x_15
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/978-3-540-28649-3_51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022236629
    179 https://doi.org/10.1007/978-3-540-28649-3_51
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/978-3-540-70521-5_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018534916
    182 https://doi.org/10.1007/978-3-540-70521-5_10
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/978-3-540-70529-1_379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017759862
    185 https://doi.org/10.1007/978-3-540-70529-1_379
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/978-3-642-04268-3_93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044981841
    188 https://doi.org/10.1007/978-3-642-04268-3_93
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/978-3-642-31340-0_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031732431
    191 https://doi.org/10.1007/978-3-642-31340-0_23
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/978-3-642-33179-4_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032587611
    194 https://doi.org/10.1007/978-3-642-33179-4_1
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/978-3-642-33415-3_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015509800
    197 https://doi.org/10.1007/978-3-642-33415-3_12
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/978-3-642-33612-6_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031666128
    200 https://doi.org/10.1007/978-3-642-33612-6_21
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/bf00133570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016330466
    203 https://doi.org/10.1007/bf00133570
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s11296-006-0055-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017040639
    206 https://doi.org/10.1007/s11296-006-0055-4
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s11548-007-0135-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1051963128
    209 https://doi.org/10.1007/s11548-007-0135-z
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1023/a:1020874308076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035462968
    212 https://doi.org/10.1023/a:1020874308076
    213 rdf:type schema:CreativeWork
    214 grid-institutes:None schema:alternateName Institut de Mécanique des Fluides et des Solides, rue Boussingault 2, 67000, Strasbourg, France
    215 schema:name IRCAD-France, Virtual-surg, place de l’Hôspital 1, 67091, Strasbourg, Cedex, France
    216 Institut de Mécanique des Fluides et des Solides, rue Boussingault 2, 67000, Strasbourg, France
    217 rdf:type schema:Organization
    218 grid-institutes:grid.420397.b schema:alternateName IRCAD-France, Virtual-surg, place de l’Hôspital 1, 67091, Strasbourg, Cedex, France
    219 schema:name IRCAD-France, Virtual-surg, place de l’Hôspital 1, 67091, Strasbourg, Cedex, France
    220 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...