Comparative metabolomic analysis reveals shared and unique chemical interactions in sponge holobionts View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-02-01

AUTHORS

Shan Zhang, Weizhi Song, Louis-Félix Nothias, Sneha P. Couvillion, Nicole Webster, Torsten Thomas

ABSTRACT

BackgroundSponges are ancient sessile metazoans, which form with their associated microbial symbionts a complex functional unit called a holobiont. Sponges are a rich source of chemical diversity; however, there is limited knowledge of which holobiont members produce certain metabolites and how they may contribute to chemical interactions. To address this issue, we applied non-targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) and gas chromatography mass spectrometry (GC-MS) to either whole sponge tissue or fractionated microbial cells from six different, co-occurring sponge species.ResultsSeveral metabolites were commonly found or enriched in whole sponge tissue, supporting the notion that sponge cells produce them. These include 2-methylbutyryl-carnitine, hexanoyl-carnitine and various carbohydrates, which may be potential food sources for microorganisms, as well as the antagonistic compounds hymenialdisine and eicosatrienoic acid methyl ester. Metabolites that were mostly observed or enriched in microbial cells include the antioxidant didodecyl 3,3′-thiodipropionate, the antagonistic compounds docosatetraenoic acid, and immune-suppressor phenylethylamide. This suggests that these compounds are mainly produced by the microbial members in the sponge holobiont, and are potentially either involved in inter-microbial competitions or in defenses against intruding organisms.ConclusionsThis study shows how different chemical functionality is compartmentalized between sponge hosts and their microbial symbionts and provides new insights into how chemical interactions underpin the function of sponge holobionts.1ZKRtxnVdRBPc6hY7com8SVideo abstract More... »

PAGES

22

References to SciGraph publications

  • 1980-01. Monolinolein as a selective fungus inhibitor from Cymbidium, Orchidaceae in MYCOPATHOLOGIA
  • 2000-10. Susceptibility to oxidative stress of the Mediterranean demosponge Petrosia ficiformis : role of endosymbionts and solar irradiance in MARINE BIOLOGY
  • 2016-08-09. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking in NATURE BIOTECHNOLOGY
  • 2020-08-24. Feature-based molecular networking in the GNPS analysis environment in NATURE METHODS
  • 2019-03-15. The antibacterial and antibiofilm activity of sea anemone (Stichodactyla haddoni) against antibiotic-resistant bacteria and characterization of bioactive metabolites in INTERNATIONAL AQUATIC RESEARCH
  • 2014-05-15. Antioxidant synergism between synthesised alkylated diphenylamine and dilauryl thiodipropionate in polyolefin base fluid in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2019-01-15. Fueled by methane: deep-sea sponges from asphalt seeps gain their nutrition from methane-oxidizing symbionts in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2017-04-10. Symbiotic plasticity of Symbiodinium in a common excavating sponge in MARINE BIOLOGY
  • 1986-09. Inactivation and inhibition of African swine fever virus by monoolein, monolinolein, and γ-linolenyl alcohol in ARCHIVES OF VIROLOGY
  • 2017-03-20. Metagenomic discovery of polybrominated diphenyl ether biosynthesis by marine sponges in NATURE CHEMICAL BIOLOGY
  • 2002. Systema Porifera. A Guide to the Classification of Sponges in SYSTEMA PORIFERA
  • 2020-02-03. SciPy 1.0: fundamental algorithms for scientific computing in Python in NATURE METHODS
  • 2018-08-27. Metabolome variability for two Mediterranean sponge species of the genus Haliclona: specificity, time, and space in METABOLOMICS
  • 2020-01-28. Characterization of a sponge microbiome using an integrative genome-centric approach in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2021-01-19. A genomic view of the microbiome of coral reef demosponges in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2012-05-09. Spatial Variability in Secondary Metabolites of the Indo-Pacific Sponge Stylissa massa in JOURNAL OF CHEMICAL ECOLOGY
  • 2016-09-09. Inhibitory activity of monoacylglycerols on biofilm formation in Aeromonas hydrophila, Streptococcus mutans, Xanthomonas oryzae, and Yersinia enterocolitica in SPRINGERPLUS
  • 1985-08. Screening and bioassays for biologically-active substances from forty marine sponge species from San Diego, California, USA in MARINE BIOLOGY
  • 2017-07-05. Global chemical analysis of biology by mass spectrometry in NATURE REVIEWS CHEMISTRY
  • 2018-05. Studies on Degradation of 7-ketocholesterol by Environmental Bacterial Isolates in APPLIED BIOCHEMISTRY AND MICROBIOLOGY
  • 2014-10-18. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? in JOURNAL OF CLASSIFICATION
  • 2019-03-19. In vitro anti-proliferative activities of the sterols and fatty acids isolated from the Persian Gulf sponge; Axinella sinoxea in DARU JOURNAL OF PHARMACEUTICAL SCIENCES
  • 1988-12. A marineMicrococcus produces metabolites ascribed to the spongeTedania ignis in CELLULAR AND MOLECULAR LIFE SCIENCES
  • 2017-03-24. Integrated metabolism in sponge–microbe symbiosis revealed by genome-centered metatranscriptomics in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2011-01-19. Cellular Localization of Debromohymenialdisine and Hymenialdisine in the Marine Sponge Axinella sp. Using a Newly Developed Cell Purification Protocol in MARINE BIOTECHNOLOGY
  • 1971-11. Ultrastructural aspects of the symbiosis between two species of the genus Aphanocapsa (Cyanophyceae) and Ircinia variabilis (Demospongiae) in MARINE BIOLOGY
  • 2018-03-09. The sponge holobiont in a changing ocean: from microbes to ecosystems in MICROBIOME
  • 2002. Systema Porifera, A Guide to the Classification of Sponges in NONE
  • 2017-07-11. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2020-06-08. Highlights of marine natural products having parallel scaffolds found from marine-derived bacteria, sponges, and tunicates in THE JOURNAL OF ANTIBIOTICS
  • 2019-09-12. Changes in the metabolic potential of the sponge microbiome under ocean acidification in NATURE COMMUNICATIONS
  • 2003-09-12. Molecular/chemical ecology in sponges: evidence for an adaptive antibacterial response in Suberites domuncula in MARINE BIOLOGY
  • 2018-05-29. The bioeroding sponge Cliona orientalis will not tolerate future projected ocean warming in SCIENTIFIC REPORTS
  • 2016-10-31. Dereplication of peptidic natural products through database search of mass spectra in NATURE CHEMICAL BIOLOGY
  • 2011-04-09. Lysophospholipids in the Mediterranean Sponge Oscarella tuberculata: Seasonal Variability and Putative Biological Role in JOURNAL OF CHEMICAL ECOLOGY
  • 2009-05-08. Seaweed Extracts as Biostimulants of Plant Growth and Development in JOURNAL OF PLANT GROWTH REGULATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40168-021-01220-9

    DOI

    http://dx.doi.org/10.1186/s40168-021-01220-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1145175107

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/35105377


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromatography, Liquid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metabolomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tandem Mass Spectrometry", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Centre for Marine Science and Innovation, University of New South Wales, 2052, Sydney, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1005.4", 
              "name": [
                "School of Biotechnology and Biomolecular Sciences, University of New South Wales, 2052, Sydney, Australia", 
                "Centre for Marine Science and Innovation, University of New South Wales, 2052, Sydney, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Shan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Biological, Earth and Environmental Sciences, University of New South Wales, 2052, Sydney, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1005.4", 
              "name": [
                "Centre for Marine Science and Innovation, University of New South Wales, 2052, Sydney, Australia", 
                "School of Biological, Earth and Environmental Sciences, University of New South Wales, 2052, Sydney, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Weizhi", 
            "id": "sg:person.01071633176.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071633176.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nothias", 
            "givenName": "Louis-F\u00e9lix", 
            "id": "sg:person.011720002155.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011720002155.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.451303.0", 
              "name": [
                "Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Couvillion", 
            "givenName": "Sneha P.", 
            "id": "sg:person.016266647507.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266647507.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1003.2", 
              "name": [
                "Australian Institute of Marine Science, Townsville, Australia", 
                "Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Webster", 
            "givenName": "Nicole", 
            "id": "sg:person.015003545622.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015003545622.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Biological, Earth and Environmental Sciences, University of New South Wales, 2052, Sydney, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1005.4", 
              "name": [
                "Centre for Marine Science and Innovation, University of New South Wales, 2052, Sydney, Australia", 
                "School of Biological, Earth and Environmental Sciences, University of New South Wales, 2052, Sydney, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thomas", 
            "givenName": "Torsten", 
            "id": "sg:person.01330014060.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330014060.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10973-014-3808-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050016404", 
              "https://doi.org/10.1007/s10973-014-3808-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10886-011-9943-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047836029", 
              "https://doi.org/10.1007/s10886-011-9943-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40064-016-3182-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051720498", 
              "https://doi.org/10.1186/s40064-016-3182-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41592-019-0686-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124547608", 
              "https://doi.org/10.1038/s41592-019-0686-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2017.25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128183", 
              "https://doi.org/10.1038/ismej.2017.25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10126-010-9347-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036531417", 
              "https://doi.org/10.1007/s10126-010-9347-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01939910", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022507263", 
              "https://doi.org/10.1007/bf01939910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00344-009-9103-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026721917", 
              "https://doi.org/10.1007/s00344-009-9103-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40168-018-0428-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101398238", 
              "https://doi.org/10.1186/s40168-018-0428-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10886-012-0124-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050653134", 
              "https://doi.org/10.1007/s10886-012-0124-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00443022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042524959", 
              "https://doi.org/10.1007/bf00443022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11306-018-1401-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106366247", 
              "https://doi.org/10.1007/s11306-018-1401-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41396-019-0346-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111408162", 
              "https://doi.org/10.1038/s41396-019-0346-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00227-017-3088-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084762030", 
              "https://doi.org/10.1007/s00227-017-3088-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-26535-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104200865", 
              "https://doi.org/10.1038/s41598-018-26535-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002270000369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008298175", 
              "https://doi.org/10.1007/s002270000369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00357-014-9161-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049678681", 
              "https://doi.org/10.1007/s00357-014-9161-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0003683818030110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104331627", 
              "https://doi.org/10.1134/s0003683818030110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4615-0747-5_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008933590", 
              "https://doi.org/10.1007/978-1-4615-0747-5_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00227-003-1184-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028231922", 
              "https://doi.org/10.1007/s00227-003-1184-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2017.101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090579854", 
              "https://doi.org/10.1038/ismej.2017.101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4615-0747-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016116430", 
              "https://doi.org/10.1007/978-1-4615-0747-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41396-020-00876-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134680238", 
              "https://doi.org/10.1038/s41396-020-00876-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01310882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009612606", 
              "https://doi.org/10.1007/bf01310882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41592-020-0933-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130293863", 
              "https://doi.org/10.1038/s41592-020-0933-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3597", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045197127", 
              "https://doi.org/10.1038/nbt.3597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.2330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128734", 
              "https://doi.org/10.1038/nchembio.2330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.2219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043661254", 
              "https://doi.org/10.1038/nchembio.2219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00401270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024207349", 
              "https://doi.org/10.1007/bf00401270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41396-020-0591-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124359526", 
              "https://doi.org/10.1038/s41396-020-0591-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00393038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038836801", 
              "https://doi.org/10.1007/bf00393038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-12156-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120975935", 
              "https://doi.org/10.1038/s41467-019-12156-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41570-017-0054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090344463", 
              "https://doi.org/10.1038/s41570-017-0054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41429-020-0330-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128294640", 
              "https://doi.org/10.1038/s41429-020-0330-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40199-019-00253-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112860499", 
              "https://doi.org/10.1007/s40199-019-00253-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40071-019-0221-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112774510", 
              "https://doi.org/10.1007/s40071-019-0221-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-02-01", 
        "datePublishedReg": "2022-02-01", 
        "description": "BackgroundSponges are ancient sessile metazoans, which form with their associated microbial symbionts a complex functional unit called a holobiont. Sponges are a rich source of chemical diversity; however, there is limited knowledge of which holobiont members produce certain metabolites and how they may contribute to chemical interactions. To address this issue, we applied non-targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) and gas chromatography mass spectrometry (GC-MS) to either whole sponge tissue or fractionated microbial cells from six different, co-occurring sponge species.ResultsSeveral metabolites were commonly found or enriched in whole sponge tissue, supporting the notion that sponge cells produce them. These include 2-methylbutyryl-carnitine, hexanoyl-carnitine and various carbohydrates, which may be potential food sources for microorganisms, as well as the antagonistic compounds hymenialdisine and eicosatrienoic acid methyl ester. Metabolites that were mostly observed or enriched in microbial cells include the antioxidant didodecyl 3,3\u2032-thiodipropionate, the antagonistic compounds docosatetraenoic acid, and immune-suppressor phenylethylamide. This suggests that these compounds are mainly produced by the microbial members in the sponge holobiont, and are potentially either involved in inter-microbial competitions or in defenses against intruding organisms.ConclusionsThis study shows how different chemical functionality is compartmentalized between sponge hosts and their microbial symbionts and provides new insights into how chemical interactions underpin the function of sponge holobionts.1ZKRtxnVdRBPc6hY7com8SVideo abstract", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s40168-021-01220-9", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1048878", 
            "issn": [
              "2049-2618"
            ], 
            "name": "Microbiome", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "sponge holobiont", 
          "microbial symbionts", 
          "sponge tissue", 
          "microbial cells", 
          "inter-microbial competition", 
          "potential food sources", 
          "non-targeted liquid chromatography-tandem mass spectrometry", 
          "comparative metabolomic analysis", 
          "holobiont members", 
          "sessile metazoans", 
          "sponge host", 
          "sponge species", 
          "sponge cells", 
          "microbial members", 
          "holobiont", 
          "food sources", 
          "chemical diversity", 
          "symbionts", 
          "mass spectrometry", 
          "metabolomic analysis", 
          "certain metabolites", 
          "new insights", 
          "tandem mass spectrometry", 
          "cells", 
          "functional units", 
          "metazoans", 
          "rich source", 
          "unique chemical interactions", 
          "chemical interaction", 
          "liquid chromatography-tandem mass spectrometry", 
          "metabolites", 
          "chromatography-tandem mass spectrometry", 
          "organisms", 
          "species", 
          "members", 
          "diversity", 
          "hymenialdisine", 
          "docosatetraenoic acid", 
          "microorganisms", 
          "tissue", 
          "limited knowledge", 
          "different chemical functionalities", 
          "interaction", 
          "host", 
          "gas chromatography-mass spectrometry", 
          "sponges", 
          "defense", 
          "chromatography-mass spectrometry", 
          "spectrometry", 
          "chemical functionality", 
          "acid methyl ester", 
          "carbohydrates", 
          "acid", 
          "insights", 
          "competition", 
          "hexanoyl-carnitine", 
          "methyl ester", 
          "function", 
          "complex functional units", 
          "phenylethylamides", 
          "source", 
          "compounds", 
          "esters", 
          "didodecyl", 
          "analysis", 
          "knowledge", 
          "ConclusionsThis study", 
          "study", 
          "functionality", 
          "units", 
          "notion", 
          "issues"
        ], 
        "name": "Comparative metabolomic analysis reveals shared and unique chemical interactions in sponge holobionts", 
        "pagination": "22", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1145175107"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40168-021-01220-9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "35105377"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40168-021-01220-9", 
          "https://app.dimensions.ai/details/publication/pub.1145175107"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_927.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s40168-021-01220-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40168-021-01220-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40168-021-01220-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40168-021-01220-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40168-021-01220-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    335 TRIPLES      21 PREDICATES      136 URIs      92 LITERALS      10 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40168-021-01220-9 schema:about N294c448acfe94961a75cc791b133d54c
    2 Na29ddf2665e74d888c9b81776ff082e0
    3 Ndb82b9b5c54b454a8f942ed1bef9575e
    4 anzsrc-for:06
    5 anzsrc-for:0605
    6 schema:author N90d5a526256c45429f5f78b5fb1ef101
    7 schema:citation sg:pub.10.1007/978-1-4615-0747-5
    8 sg:pub.10.1007/978-1-4615-0747-5_1
    9 sg:pub.10.1007/bf00393038
    10 sg:pub.10.1007/bf00401270
    11 sg:pub.10.1007/bf00443022
    12 sg:pub.10.1007/bf01310882
    13 sg:pub.10.1007/bf01939910
    14 sg:pub.10.1007/s00227-003-1184-7
    15 sg:pub.10.1007/s00227-017-3088-y
    16 sg:pub.10.1007/s002270000369
    17 sg:pub.10.1007/s00344-009-9103-x
    18 sg:pub.10.1007/s00357-014-9161-z
    19 sg:pub.10.1007/s10126-010-9347-2
    20 sg:pub.10.1007/s10886-011-9943-2
    21 sg:pub.10.1007/s10886-012-0124-8
    22 sg:pub.10.1007/s10973-014-3808-1
    23 sg:pub.10.1007/s11306-018-1401-5
    24 sg:pub.10.1007/s40071-019-0221-1
    25 sg:pub.10.1007/s40199-019-00253-8
    26 sg:pub.10.1038/ismej.2017.101
    27 sg:pub.10.1038/ismej.2017.25
    28 sg:pub.10.1038/nbt.3597
    29 sg:pub.10.1038/nchembio.2219
    30 sg:pub.10.1038/nchembio.2330
    31 sg:pub.10.1038/s41396-019-0346-7
    32 sg:pub.10.1038/s41396-020-00876-9
    33 sg:pub.10.1038/s41396-020-0591-9
    34 sg:pub.10.1038/s41429-020-0330-5
    35 sg:pub.10.1038/s41467-019-12156-y
    36 sg:pub.10.1038/s41570-017-0054
    37 sg:pub.10.1038/s41592-019-0686-2
    38 sg:pub.10.1038/s41592-020-0933-6
    39 sg:pub.10.1038/s41598-018-26535-w
    40 sg:pub.10.1134/s0003683818030110
    41 sg:pub.10.1186/s40064-016-3182-5
    42 sg:pub.10.1186/s40168-018-0428-1
    43 schema:datePublished 2022-02-01
    44 schema:datePublishedReg 2022-02-01
    45 schema:description BackgroundSponges are ancient sessile metazoans, which form with their associated microbial symbionts a complex functional unit called a holobiont. Sponges are a rich source of chemical diversity; however, there is limited knowledge of which holobiont members produce certain metabolites and how they may contribute to chemical interactions. To address this issue, we applied non-targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) and gas chromatography mass spectrometry (GC-MS) to either whole sponge tissue or fractionated microbial cells from six different, co-occurring sponge species.ResultsSeveral metabolites were commonly found or enriched in whole sponge tissue, supporting the notion that sponge cells produce them. These include 2-methylbutyryl-carnitine, hexanoyl-carnitine and various carbohydrates, which may be potential food sources for microorganisms, as well as the antagonistic compounds hymenialdisine and eicosatrienoic acid methyl ester. Metabolites that were mostly observed or enriched in microbial cells include the antioxidant didodecyl 3,3′-thiodipropionate, the antagonistic compounds docosatetraenoic acid, and immune-suppressor phenylethylamide. This suggests that these compounds are mainly produced by the microbial members in the sponge holobiont, and are potentially either involved in inter-microbial competitions or in defenses against intruding organisms.ConclusionsThis study shows how different chemical functionality is compartmentalized between sponge hosts and their microbial symbionts and provides new insights into how chemical interactions underpin the function of sponge holobionts.1ZKRtxnVdRBPc6hY7com8SVideo abstract
    46 schema:genre article
    47 schema:isAccessibleForFree true
    48 schema:isPartOf N81610e1986ad482099de32517e74d9da
    49 Ne9b43489de9641acb169cb0b3afc17ce
    50 sg:journal.1048878
    51 schema:keywords ConclusionsThis study
    52 acid
    53 acid methyl ester
    54 analysis
    55 carbohydrates
    56 cells
    57 certain metabolites
    58 chemical diversity
    59 chemical functionality
    60 chemical interaction
    61 chromatography-mass spectrometry
    62 chromatography-tandem mass spectrometry
    63 comparative metabolomic analysis
    64 competition
    65 complex functional units
    66 compounds
    67 defense
    68 didodecyl
    69 different chemical functionalities
    70 diversity
    71 docosatetraenoic acid
    72 esters
    73 food sources
    74 function
    75 functional units
    76 functionality
    77 gas chromatography-mass spectrometry
    78 hexanoyl-carnitine
    79 holobiont
    80 holobiont members
    81 host
    82 hymenialdisine
    83 insights
    84 inter-microbial competition
    85 interaction
    86 issues
    87 knowledge
    88 limited knowledge
    89 liquid chromatography-tandem mass spectrometry
    90 mass spectrometry
    91 members
    92 metabolites
    93 metabolomic analysis
    94 metazoans
    95 methyl ester
    96 microbial cells
    97 microbial members
    98 microbial symbionts
    99 microorganisms
    100 new insights
    101 non-targeted liquid chromatography-tandem mass spectrometry
    102 notion
    103 organisms
    104 phenylethylamides
    105 potential food sources
    106 rich source
    107 sessile metazoans
    108 source
    109 species
    110 spectrometry
    111 sponge cells
    112 sponge holobiont
    113 sponge host
    114 sponge species
    115 sponge tissue
    116 sponges
    117 study
    118 symbionts
    119 tandem mass spectrometry
    120 tissue
    121 unique chemical interactions
    122 units
    123 schema:name Comparative metabolomic analysis reveals shared and unique chemical interactions in sponge holobionts
    124 schema:pagination 22
    125 schema:productId N02ad2790d38f4479b1dc4243a589bd33
    126 N1198618e89ac44719e76d2b476fc0767
    127 N601a83439f5a499e87a077d9e4fe1859
    128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1145175107
    129 https://doi.org/10.1186/s40168-021-01220-9
    130 schema:sdDatePublished 2022-11-24T21:08
    131 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    132 schema:sdPublisher N030a5b46cea54cf88b877ee0ac1599bd
    133 schema:url https://doi.org/10.1186/s40168-021-01220-9
    134 sgo:license sg:explorer/license/
    135 sgo:sdDataset articles
    136 rdf:type schema:ScholarlyArticle
    137 N02ad2790d38f4479b1dc4243a589bd33 schema:name doi
    138 schema:value 10.1186/s40168-021-01220-9
    139 rdf:type schema:PropertyValue
    140 N030a5b46cea54cf88b877ee0ac1599bd schema:name Springer Nature - SN SciGraph project
    141 rdf:type schema:Organization
    142 N1198618e89ac44719e76d2b476fc0767 schema:name pubmed_id
    143 schema:value 35105377
    144 rdf:type schema:PropertyValue
    145 N136fb4351d1345efbc3f38b4142a04e8 rdf:first sg:person.016266647507.26
    146 rdf:rest Nbe4ad248bea24031bf1b37e72c08ead5
    147 N294c448acfe94961a75cc791b133d54c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Metabolomics
    149 rdf:type schema:DefinedTerm
    150 N2abe5b28387b43bbba17a15ee1ab73a3 rdf:first sg:person.01071633176.23
    151 rdf:rest Nd3749e68884c4a8482823e05b60af65c
    152 N43bd8771d89d43109f2cabd7418287a9 rdf:first sg:person.01330014060.40
    153 rdf:rest rdf:nil
    154 N601a83439f5a499e87a077d9e4fe1859 schema:name dimensions_id
    155 schema:value pub.1145175107
    156 rdf:type schema:PropertyValue
    157 N81610e1986ad482099de32517e74d9da schema:issueNumber 1
    158 rdf:type schema:PublicationIssue
    159 N90d5a526256c45429f5f78b5fb1ef101 rdf:first Ncc473f5616154b3395d2417dedd42edb
    160 rdf:rest N2abe5b28387b43bbba17a15ee1ab73a3
    161 Na29ddf2665e74d888c9b81776ff082e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Chromatography, Liquid
    163 rdf:type schema:DefinedTerm
    164 Nbe4ad248bea24031bf1b37e72c08ead5 rdf:first sg:person.015003545622.13
    165 rdf:rest N43bd8771d89d43109f2cabd7418287a9
    166 Ncc473f5616154b3395d2417dedd42edb schema:affiliation grid-institutes:grid.1005.4
    167 schema:familyName Zhang
    168 schema:givenName Shan
    169 rdf:type schema:Person
    170 Nd3749e68884c4a8482823e05b60af65c rdf:first sg:person.011720002155.41
    171 rdf:rest N136fb4351d1345efbc3f38b4142a04e8
    172 Ndb82b9b5c54b454a8f942ed1bef9575e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Tandem Mass Spectrometry
    174 rdf:type schema:DefinedTerm
    175 Ne9b43489de9641acb169cb0b3afc17ce schema:volumeNumber 10
    176 rdf:type schema:PublicationVolume
    177 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    178 schema:name Biological Sciences
    179 rdf:type schema:DefinedTerm
    180 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    181 schema:name Microbiology
    182 rdf:type schema:DefinedTerm
    183 sg:journal.1048878 schema:issn 2049-2618
    184 schema:name Microbiome
    185 schema:publisher Springer Nature
    186 rdf:type schema:Periodical
    187 sg:person.01071633176.23 schema:affiliation grid-institutes:grid.1005.4
    188 schema:familyName Song
    189 schema:givenName Weizhi
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071633176.23
    191 rdf:type schema:Person
    192 sg:person.011720002155.41 schema:affiliation grid-institutes:grid.266100.3
    193 schema:familyName Nothias
    194 schema:givenName Louis-Félix
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011720002155.41
    196 rdf:type schema:Person
    197 sg:person.01330014060.40 schema:affiliation grid-institutes:grid.1005.4
    198 schema:familyName Thomas
    199 schema:givenName Torsten
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330014060.40
    201 rdf:type schema:Person
    202 sg:person.015003545622.13 schema:affiliation grid-institutes:grid.1003.2
    203 schema:familyName Webster
    204 schema:givenName Nicole
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015003545622.13
    206 rdf:type schema:Person
    207 sg:person.016266647507.26 schema:affiliation grid-institutes:grid.451303.0
    208 schema:familyName Couvillion
    209 schema:givenName Sneha P.
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266647507.26
    211 rdf:type schema:Person
    212 sg:pub.10.1007/978-1-4615-0747-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016116430
    213 https://doi.org/10.1007/978-1-4615-0747-5
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/978-1-4615-0747-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008933590
    216 https://doi.org/10.1007/978-1-4615-0747-5_1
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/bf00393038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038836801
    219 https://doi.org/10.1007/bf00393038
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/bf00401270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024207349
    222 https://doi.org/10.1007/bf00401270
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/bf00443022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042524959
    225 https://doi.org/10.1007/bf00443022
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/bf01310882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009612606
    228 https://doi.org/10.1007/bf01310882
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/bf01939910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022507263
    231 https://doi.org/10.1007/bf01939910
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/s00227-003-1184-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028231922
    234 https://doi.org/10.1007/s00227-003-1184-7
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s00227-017-3088-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1084762030
    237 https://doi.org/10.1007/s00227-017-3088-y
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s002270000369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008298175
    240 https://doi.org/10.1007/s002270000369
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/s00344-009-9103-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026721917
    243 https://doi.org/10.1007/s00344-009-9103-x
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s00357-014-9161-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1049678681
    246 https://doi.org/10.1007/s00357-014-9161-z
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/s10126-010-9347-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036531417
    249 https://doi.org/10.1007/s10126-010-9347-2
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/s10886-011-9943-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047836029
    252 https://doi.org/10.1007/s10886-011-9943-2
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1007/s10886-012-0124-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050653134
    255 https://doi.org/10.1007/s10886-012-0124-8
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1007/s10973-014-3808-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050016404
    258 https://doi.org/10.1007/s10973-014-3808-1
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1007/s11306-018-1401-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106366247
    261 https://doi.org/10.1007/s11306-018-1401-5
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1007/s40071-019-0221-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112774510
    264 https://doi.org/10.1007/s40071-019-0221-1
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1007/s40199-019-00253-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112860499
    267 https://doi.org/10.1007/s40199-019-00253-8
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/ismej.2017.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090579854
    270 https://doi.org/10.1038/ismej.2017.101
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/ismej.2017.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128183
    273 https://doi.org/10.1038/ismej.2017.25
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/nbt.3597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045197127
    276 https://doi.org/10.1038/nbt.3597
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1038/nchembio.2219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043661254
    279 https://doi.org/10.1038/nchembio.2219
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1038/nchembio.2330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128734
    282 https://doi.org/10.1038/nchembio.2330
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/s41396-019-0346-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111408162
    285 https://doi.org/10.1038/s41396-019-0346-7
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/s41396-020-00876-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134680238
    288 https://doi.org/10.1038/s41396-020-00876-9
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/s41396-020-0591-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124359526
    291 https://doi.org/10.1038/s41396-020-0591-9
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/s41429-020-0330-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128294640
    294 https://doi.org/10.1038/s41429-020-0330-5
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1038/s41467-019-12156-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1120975935
    297 https://doi.org/10.1038/s41467-019-12156-y
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1038/s41570-017-0054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090344463
    300 https://doi.org/10.1038/s41570-017-0054
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1038/s41592-019-0686-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124547608
    303 https://doi.org/10.1038/s41592-019-0686-2
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1038/s41592-020-0933-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130293863
    306 https://doi.org/10.1038/s41592-020-0933-6
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1038/s41598-018-26535-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1104200865
    309 https://doi.org/10.1038/s41598-018-26535-w
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1134/s0003683818030110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104331627
    312 https://doi.org/10.1134/s0003683818030110
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1186/s40064-016-3182-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051720498
    315 https://doi.org/10.1186/s40064-016-3182-5
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1186/s40168-018-0428-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101398238
    318 https://doi.org/10.1186/s40168-018-0428-1
    319 rdf:type schema:CreativeWork
    320 grid-institutes:grid.1003.2 schema:alternateName Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
    321 schema:name Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
    322 Australian Institute of Marine Science, Townsville, Australia
    323 rdf:type schema:Organization
    324 grid-institutes:grid.1005.4 schema:alternateName Centre for Marine Science and Innovation, University of New South Wales, 2052, Sydney, Australia
    325 School of Biological, Earth and Environmental Sciences, University of New South Wales, 2052, Sydney, Australia
    326 schema:name Centre for Marine Science and Innovation, University of New South Wales, 2052, Sydney, Australia
    327 School of Biological, Earth and Environmental Sciences, University of New South Wales, 2052, Sydney, Australia
    328 School of Biotechnology and Biomolecular Sciences, University of New South Wales, 2052, Sydney, Australia
    329 rdf:type schema:Organization
    330 grid-institutes:grid.266100.3 schema:alternateName School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
    331 schema:name School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
    332 rdf:type schema:Organization
    333 grid-institutes:grid.451303.0 schema:alternateName Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
    334 schema:name Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
    335 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...