Re-purposing software for functional characterization of the microbiome View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-01-09

AUTHORS

Laura-Jayne Gardiner, Niina Haiminen, Filippo Utro, Laxmi Parida, Ed Seabolt, Ritesh Krishna, James H. Kaufman

ABSTRACT

BackgroundWidespread bioinformatic resource development generates a constantly evolving and abundant landscape of workflows and software. For analysis of the microbiome, workflows typically begin with taxonomic classification of the microorganisms that are present in a given environment. Additional investigation is then required to uncover the functionality of the microbial community, in order to characterize its currently or potentially active biological processes. Such functional analysis of metagenomic data can be computationally demanding for high-throughput sequencing experiments. Instead, we can directly compare sequencing reads to a functionally annotated database. However, since reads frequently match multiple sequences equally well, analyses benefit from a hierarchical annotation tree, e.g. for taxonomic classification where reads are assigned to the lowest taxonomic unit.ResultsTo facilitate functional microbiome analysis, we re-purpose well-known taxonomic classification tools to allow us to perform direct functional sequencing read classification with the added benefit of a functional hierarchy. To enable this, we develop and present a tree-shaped functional hierarchy representing the molecular function subset of the Gene Ontology annotation structure. We use this functional hierarchy to replace the standard phylogenetic taxonomy used by the classification tools and assign query sequences accurately to the lowest possible molecular function in the tree. We demonstrate this with simulated and experimental datasets, where we reveal new biological insights.ConclusionsWe demonstrate that improved functional classification of metagenomic sequencing reads is possible by re-purposing a range of taxonomic classification tools that are already well-established, in conjunction with either protein or nucleotide reference databases. We leverage the advances in speed, accuracy and efficiency that have been made for taxonomic classification and translate these benefits for the rapid functional classification of microbiomes. While we focus on a specific set of commonly used methods, the functional annotation approach has broad applicability across other sequence classification tools. We hope that re-purposing becomes a routine consideration during bioinformatic resource development.CWJ3S1nYSzUqUEQpCfrTiKVideo abstract More... »

PAGES

4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40168-020-00971-1

DOI

http://dx.doi.org/10.1186/s40168-020-00971-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1134465575

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/33422152


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Classification", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metagenome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metagenomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbiota", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Research, The Hartree Centre, WA4 4AD, Warrington, UK", 
          "id": "http://www.grid.ac/institutes/grid.14467.30", 
          "name": [
            "IBM Research, The Hartree Centre, WA4 4AD, Warrington, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gardiner", 
        "givenName": "Laura-Jayne", 
        "id": "sg:person.0604125436.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604125436.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM T. J. Watson Research Center, 10598, Yorktown Heights, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T. J. Watson Research Center, 10598, Yorktown Heights, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haiminen", 
        "givenName": "Niina", 
        "id": "sg:person.0746114007.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746114007.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM T. J. Watson Research Center, 10598, Yorktown Heights, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T. J. Watson Research Center, 10598, Yorktown Heights, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Utro", 
        "givenName": "Filippo", 
        "id": "sg:person.01176571007.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176571007.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM T. J. Watson Research Center, 10598, Yorktown Heights, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T. J. Watson Research Center, 10598, Yorktown Heights, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parida", 
        "givenName": "Laxmi", 
        "id": "sg:person.01336557015.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336557015.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Almaden Research Center, 95120, San Jose, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Almaden Research Center, 95120, San Jose, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seabolt", 
        "givenName": "Ed", 
        "id": "sg:person.015406134746.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015406134746.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research, The Hartree Centre, WA4 4AD, Warrington, UK", 
          "id": "http://www.grid.ac/institutes/grid.14467.30", 
          "name": [
            "IBM Research, The Hartree Centre, WA4 4AD, Warrington, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krishna", 
        "givenName": "Ritesh", 
        "id": "sg:person.01205041146.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205041146.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Almaden Research Center, 95120, San Jose, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.481551.c", 
          "name": [
            "IBM Almaden Research Center, 95120, San Jose, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaufman", 
        "givenName": "James H.", 
        "id": "sg:person.0760021260.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760021260.60"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/gb-2014-15-3-r46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030203790", 
          "https://doi.org/10.1186/gb-2014-15-3-r46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006541515", 
          "https://doi.org/10.1038/nmeth.1923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-0611-6_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001841887", 
          "https://doi.org/10.1007/978-1-4757-0611-6_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12915-015-0195-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018674329", 
          "https://doi.org/10.1186/s12915-015-0195-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrgastro.2017.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091090268", 
          "https://doi.org/10.1038/nrgastro.2017.97"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-018-0386-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105928900", 
          "https://doi.org/10.1038/s41586-018-0386-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.4517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103195574", 
          "https://doi.org/10.1038/nm.4517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023901695", 
          "https://doi.org/10.1038/nmeth.3176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms11257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015339285", 
          "https://doi.org/10.1038/ncomms11257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-s1-s21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010663373", 
          "https://doi.org/10.1186/1471-2105-12-s1-s21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41592-018-0176-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107804224", 
          "https://doi.org/10.1038/s41592-018-0176-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-018-1568-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109919786", 
          "https://doi.org/10.1186/s13059-018-1568-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-019-1891-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1122989517", 
          "https://doi.org/10.1186/s13059-019-1891-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-01-09", 
    "datePublishedReg": "2021-01-09", 
    "description": "BackgroundWidespread bioinformatic resource development generates a constantly evolving and abundant landscape of workflows and software. For analysis of the microbiome, workflows typically begin with taxonomic classification of the microorganisms that are present in a given environment. Additional investigation is then required to uncover the functionality of the microbial community, in order to characterize its currently or potentially active biological processes. Such functional analysis of metagenomic data can be computationally demanding for high-throughput sequencing experiments. Instead, we can directly compare sequencing reads to a functionally annotated database. However, since reads frequently match multiple sequences equally well, analyses benefit from a hierarchical annotation tree, e.g. for taxonomic classification where reads are assigned to the lowest taxonomic unit.ResultsTo facilitate functional microbiome analysis, we re-purpose well-known taxonomic classification tools to allow us to perform direct functional sequencing read classification with the added benefit of a functional hierarchy. To enable this, we develop and present a tree-shaped functional hierarchy representing the molecular function subset of the Gene Ontology annotation structure. We use this functional hierarchy to replace the standard phylogenetic taxonomy used by the classification tools and assign query sequences accurately to the lowest possible molecular function in the tree. We demonstrate this with simulated and experimental datasets, where we reveal new biological insights.ConclusionsWe demonstrate that improved functional classification of metagenomic sequencing reads is possible by re-purposing a range of taxonomic classification tools that are already well-established, in conjunction with either protein or nucleotide reference databases. We leverage the advances in speed, accuracy and efficiency that have been made for taxonomic classification and translate these benefits for the rapid functional classification of microbiomes. While we focus on a specific set of commonly used methods, the functional annotation approach has broad applicability across other sequence classification tools. We hope that re-purposing becomes a routine consideration during bioinformatic resource development.CWJ3S1nYSzUqUEQpCfrTiKVideo abstract", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s40168-020-00971-1", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1048878", 
        "issn": [
          "2049-2618"
        ], 
        "name": "Microbiome", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "taxonomic classification tools", 
      "taxonomic classification", 
      "possible molecular function", 
      "such functional analyses", 
      "functional microbiome analysis", 
      "functional classification", 
      "new biological insights", 
      "high-throughput sequencing experiments", 
      "metagenomic sequencing reads", 
      "functional hierarchy", 
      "lower taxonomic units", 
      "phylogenetic taxonomy", 
      "molecular functions", 
      "active biological processes", 
      "microbial communities", 
      "taxonomic units", 
      "functional characterization", 
      "metagenomic data", 
      "biological insights", 
      "functional analysis", 
      "sequencing reads", 
      "biological processes", 
      "sequencing experiments", 
      "reads", 
      "microbiome analysis", 
      "microbiome", 
      "reference database", 
      "query sequence", 
      "multiple sequences", 
      "sequence", 
      "specific set", 
      "trees", 
      "annotation approach", 
      "sequencing", 
      "protein", 
      "microorganisms", 
      "broad applicability", 
      "taxonomy", 
      "landscape", 
      "annotation structure", 
      "classification tool", 
      "insights", 
      "development", 
      "analysis", 
      "ResultsTo", 
      "characterization", 
      "community", 
      "experimental datasets", 
      "function", 
      "tool", 
      "advances", 
      "workflow", 
      "subset", 
      "additional investigation", 
      "environment", 
      "database", 
      "structure", 
      "hierarchy", 
      "process", 
      "experiments", 
      "dataset", 
      "functionality", 
      "classification", 
      "routine consideration", 
      "data", 
      "range", 
      "ConclusionsWe", 
      "set", 
      "conjunction", 
      "investigation", 
      "approach", 
      "units", 
      "benefits", 
      "efficiency", 
      "order", 
      "resource development", 
      "method", 
      "applicability", 
      "software", 
      "consideration", 
      "speed", 
      "accuracy"
    ], 
    "name": "Re-purposing software for functional characterization of the microbiome", 
    "pagination": "4", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1134465575"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40168-020-00971-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "33422152"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40168-020-00971-1", 
      "https://app.dimensions.ai/details/publication/pub.1134465575"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_879.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s40168-020-00971-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40168-020-00971-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40168-020-00971-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40168-020-00971-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40168-020-00971-1'


 

This table displays all metadata directly associated to this object as RDF triples.

278 TRIPLES      21 PREDICATES      129 URIs      107 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40168-020-00971-1 schema:about N09572eb8ddbe47a8b7442d92c48765bd
2 N5e1a6c73f52344b5835a26c96de49adb
3 N9a28ce5c8fa94702bc7be7c13496261a
4 N9daef5e1851646839334c9c1343a7c58
5 Na33aef9ff4e6416aaa06634a3fd56cc7
6 Nc14e946119f949d0bdfa547d33a4bbef
7 Nd97652c57ecb4dfaa9dfe851aac5229e
8 Ne066f4331ea546f4a870f867492cc4fd
9 anzsrc-for:06
10 anzsrc-for:0604
11 schema:author N842ad60297874733be39b0d8b46d6b48
12 schema:citation sg:pub.10.1007/978-1-4757-0611-6_1
13 sg:pub.10.1038/75556
14 sg:pub.10.1038/ncomms11257
15 sg:pub.10.1038/nm.4517
16 sg:pub.10.1038/nmeth.1923
17 sg:pub.10.1038/nmeth.3176
18 sg:pub.10.1038/nrgastro.2017.97
19 sg:pub.10.1038/s41586-018-0386-6
20 sg:pub.10.1038/s41592-018-0176-y
21 sg:pub.10.1186/1471-2105-12-s1-s21
22 sg:pub.10.1186/gb-2014-15-3-r46
23 sg:pub.10.1186/s12915-015-0195-4
24 sg:pub.10.1186/s13059-018-1568-0
25 sg:pub.10.1186/s13059-019-1891-0
26 schema:datePublished 2021-01-09
27 schema:datePublishedReg 2021-01-09
28 schema:description BackgroundWidespread bioinformatic resource development generates a constantly evolving and abundant landscape of workflows and software. For analysis of the microbiome, workflows typically begin with taxonomic classification of the microorganisms that are present in a given environment. Additional investigation is then required to uncover the functionality of the microbial community, in order to characterize its currently or potentially active biological processes. Such functional analysis of metagenomic data can be computationally demanding for high-throughput sequencing experiments. Instead, we can directly compare sequencing reads to a functionally annotated database. However, since reads frequently match multiple sequences equally well, analyses benefit from a hierarchical annotation tree, e.g. for taxonomic classification where reads are assigned to the lowest taxonomic unit.ResultsTo facilitate functional microbiome analysis, we re-purpose well-known taxonomic classification tools to allow us to perform direct functional sequencing read classification with the added benefit of a functional hierarchy. To enable this, we develop and present a tree-shaped functional hierarchy representing the molecular function subset of the Gene Ontology annotation structure. We use this functional hierarchy to replace the standard phylogenetic taxonomy used by the classification tools and assign query sequences accurately to the lowest possible molecular function in the tree. We demonstrate this with simulated and experimental datasets, where we reveal new biological insights.ConclusionsWe demonstrate that improved functional classification of metagenomic sequencing reads is possible by re-purposing a range of taxonomic classification tools that are already well-established, in conjunction with either protein or nucleotide reference databases. We leverage the advances in speed, accuracy and efficiency that have been made for taxonomic classification and translate these benefits for the rapid functional classification of microbiomes. While we focus on a specific set of commonly used methods, the functional annotation approach has broad applicability across other sequence classification tools. We hope that re-purposing becomes a routine consideration during bioinformatic resource development.CWJ3S1nYSzUqUEQpCfrTiKVideo abstract
29 schema:genre article
30 schema:isAccessibleForFree true
31 schema:isPartOf N0b41250fb5ad42919bdc1b3d2426c58e
32 N2bffa160f29a49c0bb23521081b83ea1
33 sg:journal.1048878
34 schema:keywords ConclusionsWe
35 ResultsTo
36 accuracy
37 active biological processes
38 additional investigation
39 advances
40 analysis
41 annotation approach
42 annotation structure
43 applicability
44 approach
45 benefits
46 biological insights
47 biological processes
48 broad applicability
49 characterization
50 classification
51 classification tool
52 community
53 conjunction
54 consideration
55 data
56 database
57 dataset
58 development
59 efficiency
60 environment
61 experimental datasets
62 experiments
63 function
64 functional analysis
65 functional characterization
66 functional classification
67 functional hierarchy
68 functional microbiome analysis
69 functionality
70 hierarchy
71 high-throughput sequencing experiments
72 insights
73 investigation
74 landscape
75 lower taxonomic units
76 metagenomic data
77 metagenomic sequencing reads
78 method
79 microbial communities
80 microbiome
81 microbiome analysis
82 microorganisms
83 molecular functions
84 multiple sequences
85 new biological insights
86 order
87 phylogenetic taxonomy
88 possible molecular function
89 process
90 protein
91 query sequence
92 range
93 reads
94 reference database
95 resource development
96 routine consideration
97 sequence
98 sequencing
99 sequencing experiments
100 sequencing reads
101 set
102 software
103 specific set
104 speed
105 structure
106 subset
107 such functional analyses
108 taxonomic classification
109 taxonomic classification tools
110 taxonomic units
111 taxonomy
112 tool
113 trees
114 units
115 workflow
116 schema:name Re-purposing software for functional characterization of the microbiome
117 schema:pagination 4
118 schema:productId Nbd3176ed03424cb89a25e2d98c34b07d
119 Nc2353bdb3ebd444abf3ad3a3b3101b2e
120 Nf8463187f5244113bc47e5fe01438352
121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134465575
122 https://doi.org/10.1186/s40168-020-00971-1
123 schema:sdDatePublished 2022-09-02T16:06
124 schema:sdLicense https://scigraph.springernature.com/explorer/license/
125 schema:sdPublisher N846b710792784ff18e718e2f1689c562
126 schema:url https://doi.org/10.1186/s40168-020-00971-1
127 sgo:license sg:explorer/license/
128 sgo:sdDataset articles
129 rdf:type schema:ScholarlyArticle
130 N09572eb8ddbe47a8b7442d92c48765bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Classification
132 rdf:type schema:DefinedTerm
133 N0b41250fb5ad42919bdc1b3d2426c58e schema:issueNumber 1
134 rdf:type schema:PublicationIssue
135 N2bffa160f29a49c0bb23521081b83ea1 schema:volumeNumber 9
136 rdf:type schema:PublicationVolume
137 N5e1a6c73f52344b5835a26c96de49adb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Computational Biology
139 rdf:type schema:DefinedTerm
140 N6c66895e477e4562b47462a199a00562 rdf:first sg:person.0760021260.60
141 rdf:rest rdf:nil
142 N6e95af72c19b4e589b5c92464cb93d9a rdf:first sg:person.015406134746.71
143 rdf:rest Nb98a2dab77fb4c58a02e557c77852117
144 N842ad60297874733be39b0d8b46d6b48 rdf:first sg:person.0604125436.47
145 rdf:rest Nc9d7f3c4003b40c8ba7482ed62588abc
146 N846b710792784ff18e718e2f1689c562 schema:name Springer Nature - SN SciGraph project
147 rdf:type schema:Organization
148 N9a28ce5c8fa94702bc7be7c13496261a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Microbiota
150 rdf:type schema:DefinedTerm
151 N9daef5e1851646839334c9c1343a7c58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Software
153 rdf:type schema:DefinedTerm
154 Na16fdb70f78c4498ba7d147311a73872 rdf:first sg:person.01336557015.68
155 rdf:rest N6e95af72c19b4e589b5c92464cb93d9a
156 Na33aef9ff4e6416aaa06634a3fd56cc7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Metagenome
158 rdf:type schema:DefinedTerm
159 Nb60009ad3da94fdfb85902221fcd89d2 rdf:first sg:person.01176571007.38
160 rdf:rest Na16fdb70f78c4498ba7d147311a73872
161 Nb98a2dab77fb4c58a02e557c77852117 rdf:first sg:person.01205041146.05
162 rdf:rest N6c66895e477e4562b47462a199a00562
163 Nbd3176ed03424cb89a25e2d98c34b07d schema:name pubmed_id
164 schema:value 33422152
165 rdf:type schema:PropertyValue
166 Nc14e946119f949d0bdfa547d33a4bbef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Metagenomics
168 rdf:type schema:DefinedTerm
169 Nc2353bdb3ebd444abf3ad3a3b3101b2e schema:name doi
170 schema:value 10.1186/s40168-020-00971-1
171 rdf:type schema:PropertyValue
172 Nc9d7f3c4003b40c8ba7482ed62588abc rdf:first sg:person.0746114007.76
173 rdf:rest Nb60009ad3da94fdfb85902221fcd89d2
174 Nd97652c57ecb4dfaa9dfe851aac5229e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name High-Throughput Nucleotide Sequencing
176 rdf:type schema:DefinedTerm
177 Ne066f4331ea546f4a870f867492cc4fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Phylogeny
179 rdf:type schema:DefinedTerm
180 Nf8463187f5244113bc47e5fe01438352 schema:name dimensions_id
181 schema:value pub.1134465575
182 rdf:type schema:PropertyValue
183 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
184 schema:name Biological Sciences
185 rdf:type schema:DefinedTerm
186 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
187 schema:name Genetics
188 rdf:type schema:DefinedTerm
189 sg:journal.1048878 schema:issn 2049-2618
190 schema:name Microbiome
191 schema:publisher Springer Nature
192 rdf:type schema:Periodical
193 sg:person.01176571007.38 schema:affiliation grid-institutes:grid.481554.9
194 schema:familyName Utro
195 schema:givenName Filippo
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176571007.38
197 rdf:type schema:Person
198 sg:person.01205041146.05 schema:affiliation grid-institutes:grid.14467.30
199 schema:familyName Krishna
200 schema:givenName Ritesh
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205041146.05
202 rdf:type schema:Person
203 sg:person.01336557015.68 schema:affiliation grid-institutes:grid.481554.9
204 schema:familyName Parida
205 schema:givenName Laxmi
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336557015.68
207 rdf:type schema:Person
208 sg:person.015406134746.71 schema:affiliation grid-institutes:grid.481551.c
209 schema:familyName Seabolt
210 schema:givenName Ed
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015406134746.71
212 rdf:type schema:Person
213 sg:person.0604125436.47 schema:affiliation grid-institutes:grid.14467.30
214 schema:familyName Gardiner
215 schema:givenName Laura-Jayne
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604125436.47
217 rdf:type schema:Person
218 sg:person.0746114007.76 schema:affiliation grid-institutes:grid.481554.9
219 schema:familyName Haiminen
220 schema:givenName Niina
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746114007.76
222 rdf:type schema:Person
223 sg:person.0760021260.60 schema:affiliation grid-institutes:grid.481551.c
224 schema:familyName Kaufman
225 schema:givenName James H.
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760021260.60
227 rdf:type schema:Person
228 sg:pub.10.1007/978-1-4757-0611-6_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001841887
229 https://doi.org/10.1007/978-1-4757-0611-6_1
230 rdf:type schema:CreativeWork
231 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
232 https://doi.org/10.1038/75556
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/ncomms11257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015339285
235 https://doi.org/10.1038/ncomms11257
236 rdf:type schema:CreativeWork
237 sg:pub.10.1038/nm.4517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103195574
238 https://doi.org/10.1038/nm.4517
239 rdf:type schema:CreativeWork
240 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
241 https://doi.org/10.1038/nmeth.1923
242 rdf:type schema:CreativeWork
243 sg:pub.10.1038/nmeth.3176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023901695
244 https://doi.org/10.1038/nmeth.3176
245 rdf:type schema:CreativeWork
246 sg:pub.10.1038/nrgastro.2017.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091090268
247 https://doi.org/10.1038/nrgastro.2017.97
248 rdf:type schema:CreativeWork
249 sg:pub.10.1038/s41586-018-0386-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105928900
250 https://doi.org/10.1038/s41586-018-0386-6
251 rdf:type schema:CreativeWork
252 sg:pub.10.1038/s41592-018-0176-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1107804224
253 https://doi.org/10.1038/s41592-018-0176-y
254 rdf:type schema:CreativeWork
255 sg:pub.10.1186/1471-2105-12-s1-s21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010663373
256 https://doi.org/10.1186/1471-2105-12-s1-s21
257 rdf:type schema:CreativeWork
258 sg:pub.10.1186/gb-2014-15-3-r46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030203790
259 https://doi.org/10.1186/gb-2014-15-3-r46
260 rdf:type schema:CreativeWork
261 sg:pub.10.1186/s12915-015-0195-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018674329
262 https://doi.org/10.1186/s12915-015-0195-4
263 rdf:type schema:CreativeWork
264 sg:pub.10.1186/s13059-018-1568-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109919786
265 https://doi.org/10.1186/s13059-018-1568-0
266 rdf:type schema:CreativeWork
267 sg:pub.10.1186/s13059-019-1891-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122989517
268 https://doi.org/10.1186/s13059-019-1891-0
269 rdf:type schema:CreativeWork
270 grid-institutes:grid.14467.30 schema:alternateName IBM Research, The Hartree Centre, WA4 4AD, Warrington, UK
271 schema:name IBM Research, The Hartree Centre, WA4 4AD, Warrington, UK
272 rdf:type schema:Organization
273 grid-institutes:grid.481551.c schema:alternateName IBM Almaden Research Center, 95120, San Jose, CA, USA
274 schema:name IBM Almaden Research Center, 95120, San Jose, CA, USA
275 rdf:type schema:Organization
276 grid-institutes:grid.481554.9 schema:alternateName IBM T. J. Watson Research Center, 10598, Yorktown Heights, NY, USA
277 schema:name IBM T. J. Watson Research Center, 10598, Yorktown Heights, NY, USA
278 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...