Ultrafast and accurate 16S rRNA microbial community analysis using Kraken 2 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-08-28

AUTHORS

Jennifer Lu, Steven L. Salzberg

ABSTRACT

BackgroundFor decades, 16S ribosomal RNA sequencing has been the primary means for identifying the bacterial species present in a sample with unknown composition. One of the most widely used tools for this purpose today is the QIIME (Quantitative Insights Into Microbial Ecology) package. Recent results have shown that the newest release, QIIME 2, has higher accuracy than QIIME, MAPseq, and mothur when classifying bacterial genera from simulated human gut, ocean, and soil metagenomes, although QIIME 2 also proved to be the most computationally expensive. Kraken, first released in 2014, has been shown to provide exceptionally fast and accurate classification for shotgun metagenomics sequencing projects. Bracken, released in 2016, then provided users with the ability to accurately estimate species or genus relative abundances using Kraken classification results. Kraken 2, which matches the accuracy and speed of Kraken 1, now supports 16S rRNA databases, allowing for direct comparisons to QIIME and similar systems.MethodsFor a comprehensive assessment of each tool, we compare the computational resources and speed of QIIME 2’s q2-feature-classifier, Kraken 2, and Bracken in generating the three main 16S rRNA databases: Greengenes, SILVA, and RDP. For an evaluation of accuracy, we evaluated each tool using the same simulated 16S rRNA reads from human gut, ocean, and soil metagenomes that were previously used to compare QIIME, MAPseq, mothur, and QIIME 2. We evaluated accuracy based on the accuracy of the final genera read counts assigned by each tool. Finally, as Kraken 2 is the only tool providing per-read taxonomic assignments, we evaluate the sensitivity and precision of Kraken 2’s per-read classifications.ResultsFor both the Greengenes and SILVA database, Kraken 2 and Bracken are up to 100 times faster at database generation. For classification, using the same data as previous studies, Kraken 2 and Bracken are up to 300 times faster, use 100x less RAM, and generate results that more accurate at 16S rRNA profiling than QIIME 2’s q2-feature-classifier.ConclusionKraken 2 and Bracken provide a very fast, efficient, and accurate solution for 16S rRNA metataxonomic data analysis.BduTYvgx2U5MCkCSpFgxKvVideo Abstract More... »

PAGES

124

References to SciGraph publications

  • 2017-03-14. SILVA, RDP, Greengenes, NCBI and OTT — how do these taxonomies compare? in BMC GENOMICS
  • 2016-05-23. DADA2: High-resolution sample inference from Illumina amplicon data in NATURE METHODS
  • 1975-03. Conservation of primary structure in 16S ribosomal RNA in NATURE
  • 2014-03-03. Kraken: ultrafast metagenomic sequence classification using exact alignments in GENOME BIOLOGY
  • 2014-08-22. The Earth Microbiome project: successes and aspirations in BMC BIOLOGY
  • 2015-06-19. The ocean sampling day consortium in GIGASCIENCE
  • 2018-05-17. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin in MICROBIOME
  • 2001. 16S rRNA Gene Sequencing for Bacterial Pathogen Identification in the Clinical Laboratory in MOLECULAR DIAGNOSIS
  • 2019-05-29. The Integrative Human Microbiome Project in NATURE
  • 2012-06-13. Structure, function and diversity of the healthy human microbiome in NATURE
  • 2019-11-28. Improved metagenomic analysis with Kraken 2 in GENOME BIOLOGY
  • 2009-12-15. BLAST+: architecture and applications in BMC BIOINFORMATICS
  • 2010-04-11. QIIME allows analysis of high-throughput community sequencing data in NATURE METHODS
  • 2010-05-06. Soil bacterial and fungal communities across a pH gradient in an arable soil in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2019-07-24. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 in NATURE BIOTECHNOLOGY
  • 2016-01-18. An evaluation of the accuracy and speed of metagenome analysis tools in SCIENTIFIC REPORTS
  • 2010-05-05. Direct sequencing of the human microbiome readily reveals community differences in GENOME BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40168-020-00900-2

    DOI

    http://dx.doi.org/10.1186/s40168-020-00900-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1130418046

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32859275


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbiota", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Ribosomal, 16S", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Software", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA", 
                "Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Jennifer", 
            "id": "sg:person.011420654423.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011420654423.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departments of Computer Science and Biostatistics, Johns Hopkins University, Baltimore, MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA", 
                "Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA", 
                "Departments of Computer Science and Biostatistics, Johns Hopkins University, Baltimore, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Salzberg", 
            "givenName": "Steven L.", 
            "id": "sg:person.01223441713.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223441713.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1471-2105-10-421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050579230", 
              "https://doi.org/10.1186/1471-2105-10-421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-019-1891-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122989517", 
              "https://doi.org/10.1186/s13059-019-1891-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007740093", 
              "https://doi.org/10.1038/nature11234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016631324", 
              "https://doi.org/10.1038/nmeth.3869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2165/00066982-200106040-00012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069123399", 
              "https://doi.org/10.2165/00066982-200106040-00012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-017-3501-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084250048", 
              "https://doi.org/10.1186/s12864-017-3501-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40168-018-0470-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104049103", 
              "https://doi.org/10.1186/s40168-018-0470-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41587-019-0209-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1119809350", 
              "https://doi.org/10.1038/s41587-019-0209-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep19233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051309616", 
              "https://doi.org/10.1038/srep19233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13742-015-0066-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018022139", 
              "https://doi.org/10.1186/s13742-015-0066-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.f.303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009032055", 
              "https://doi.org/10.1038/nmeth.f.303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2010.58", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020560324", 
              "https://doi.org/10.1038/ismej.2010.58"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2014-15-3-r46", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030203790", 
              "https://doi.org/10.1186/gb-2014-15-3-r46"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/254083a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040352006", 
              "https://doi.org/10.1038/254083a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12915-014-0069-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000588445", 
              "https://doi.org/10.1186/s12915-014-0069-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-019-1238-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1115986075", 
              "https://doi.org/10.1038/s41586-019-1238-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-5-210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042123396", 
              "https://doi.org/10.1186/gb-2010-11-5-210"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-08-28", 
        "datePublishedReg": "2020-08-28", 
        "description": "BackgroundFor decades, 16S ribosomal RNA sequencing has been the primary means for identifying the bacterial species present in a sample with unknown composition. One of the most widely used tools for this purpose today is the QIIME (Quantitative Insights Into Microbial Ecology) package. Recent results have shown that the newest release, QIIME 2, has higher accuracy than QIIME, MAPseq, and mothur when classifying bacterial genera from simulated human gut, ocean, and soil metagenomes, although QIIME 2 also proved to be the most computationally expensive. Kraken, first released in 2014, has been shown to provide exceptionally fast and accurate classification for shotgun metagenomics sequencing projects. Bracken, released in 2016, then provided users with the ability to accurately estimate species or genus relative abundances using Kraken classification results. Kraken 2, which matches the accuracy and speed of Kraken 1, now supports 16S rRNA databases, allowing for direct comparisons to QIIME and similar systems.MethodsFor a comprehensive assessment of each tool, we compare the computational resources and speed of QIIME 2\u2019s q2-feature-classifier, Kraken 2, and Bracken in generating the three main 16S rRNA databases: Greengenes, SILVA, and RDP. For an evaluation of accuracy, we evaluated each tool using the same simulated 16S rRNA reads from human gut, ocean, and soil metagenomes that were previously used to compare QIIME, MAPseq, mothur, and QIIME 2. We evaluated accuracy based on the accuracy of the final genera read counts assigned by each tool. Finally, as Kraken 2 is the only tool providing per-read taxonomic assignments, we evaluate the sensitivity and precision of Kraken 2\u2019s per-read classifications.ResultsFor both the Greengenes and SILVA database, Kraken 2 and Bracken are up to 100 times faster at database generation. For classification, using the same data as previous studies, Kraken 2 and Bracken are up to 300 times faster, use 100x less RAM, and generate results that more accurate at 16S rRNA profiling than QIIME 2\u2019s q2-feature-classifier.ConclusionKraken 2 and Bracken provide a very fast, efficient, and accurate solution for 16S rRNA metataxonomic data analysis.BduTYvgx2U5MCkCSpFgxKvVideo Abstract", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s40168-020-00900-2", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8383234", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7874043", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2529453", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1048878", 
            "issn": [
              "2049-2618"
            ], 
            "name": "Microbiome", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "keywords": [
          "rRNA databases", 
          "soil metagenome", 
          "Kraken 2", 
          "QIIME 2", 
          "human gut", 
          "metagenomic sequencing projects", 
          "microbial community analysis", 
          "QIIME package", 
          "sequencing projects", 
          "RNA sequencing", 
          "taxonomic assignment", 
          "bacterial genera", 
          "bacterial species", 
          "community analysis", 
          "simulated human gut", 
          "relative abundance", 
          "genus relative abundance", 
          "ribosomal RNA sequencing", 
          "read classification", 
          "metagenomes", 
          "rRNA", 
          "Greengenes", 
          "QIIME", 
          "genus", 
          "Mothur", 
          "MAPseq", 
          "species", 
          "bracken", 
          "gut", 
          "sequencing", 
          "abundance", 
          "unknown composition", 
          "previous studies", 
          "Ocean", 
          "primary means", 
          "Kraken", 
          "tool", 
          "analysis", 
          "only tool", 
          "composition", 
          "release", 
          "ability", 
          "Silva", 
          "recent results", 
          "database", 
          "direct comparison", 
          "database generation", 
          "results", 
          "generation", 
          "comprehensive assessment", 
          "resources", 
          "new release", 
          "generate results", 
          "assignment", 
          "decades", 
          "study", 
          "purpose today", 
          "accurate classification", 
          "sensitivity", 
          "classification", 
          "less RAM", 
          "RDP", 
          "data", 
          "comparison", 
          "time", 
          "similar systems", 
          "count", 
          "data analysis", 
          "samples", 
          "system", 
          "same data", 
          "rams", 
          "means", 
          "today", 
          "package", 
          "assessment", 
          "computational resources", 
          "project", 
          "high accuracy", 
          "speed", 
          "evaluation", 
          "accuracy", 
          "precision", 
          "classifier", 
          "solution", 
          "MethodsFor", 
          "classification results", 
          "evaluation of accuracy", 
          "users", 
          "Ultrafast", 
          "accurate solutions", 
          "BackgroundFor decades"
        ], 
        "name": "Ultrafast and accurate 16S rRNA microbial community analysis using Kraken 2", 
        "pagination": "124", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1130418046"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40168-020-00900-2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32859275"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40168-020-00900-2", 
          "https://app.dimensions.ai/details/publication/pub.1130418046"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_871.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s40168-020-00900-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40168-020-00900-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40168-020-00900-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40168-020-00900-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40168-020-00900-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    268 TRIPLES      21 PREDICATES      142 URIs      117 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40168-020-00900-2 schema:about N2126c04d2f8a44098a21b8114fe04307
    2 N2bedbff610b74a578cde3920281c73c7
    3 N4ef8c3a748b543bd94347e20bdafc2cb
    4 N6cb06df196054321acad422498103385
    5 N7169b3681aa34d9f966132ee6e70175b
    6 N7ad7dc4ee35b43d48f2414e9f408d0d2
    7 N93028be751374f51804df16165860af0
    8 Nb2f4bb87b0a5461fabc58d42b22346d1
    9 anzsrc-for:06
    10 anzsrc-for:0605
    11 schema:author N472317ce4a3444eab45d526f120f6ca9
    12 schema:citation sg:pub.10.1038/254083a0
    13 sg:pub.10.1038/ismej.2010.58
    14 sg:pub.10.1038/nature11234
    15 sg:pub.10.1038/nmeth.3869
    16 sg:pub.10.1038/nmeth.f.303
    17 sg:pub.10.1038/s41586-019-1238-8
    18 sg:pub.10.1038/s41587-019-0209-9
    19 sg:pub.10.1038/srep19233
    20 sg:pub.10.1186/1471-2105-10-421
    21 sg:pub.10.1186/gb-2010-11-5-210
    22 sg:pub.10.1186/gb-2014-15-3-r46
    23 sg:pub.10.1186/s12864-017-3501-4
    24 sg:pub.10.1186/s12915-014-0069-1
    25 sg:pub.10.1186/s13059-019-1891-0
    26 sg:pub.10.1186/s13742-015-0066-5
    27 sg:pub.10.1186/s40168-018-0470-z
    28 sg:pub.10.2165/00066982-200106040-00012
    29 schema:datePublished 2020-08-28
    30 schema:datePublishedReg 2020-08-28
    31 schema:description BackgroundFor decades, 16S ribosomal RNA sequencing has been the primary means for identifying the bacterial species present in a sample with unknown composition. One of the most widely used tools for this purpose today is the QIIME (Quantitative Insights Into Microbial Ecology) package. Recent results have shown that the newest release, QIIME 2, has higher accuracy than QIIME, MAPseq, and mothur when classifying bacterial genera from simulated human gut, ocean, and soil metagenomes, although QIIME 2 also proved to be the most computationally expensive. Kraken, first released in 2014, has been shown to provide exceptionally fast and accurate classification for shotgun metagenomics sequencing projects. Bracken, released in 2016, then provided users with the ability to accurately estimate species or genus relative abundances using Kraken classification results. Kraken 2, which matches the accuracy and speed of Kraken 1, now supports 16S rRNA databases, allowing for direct comparisons to QIIME and similar systems.MethodsFor a comprehensive assessment of each tool, we compare the computational resources and speed of QIIME 2’s q2-feature-classifier, Kraken 2, and Bracken in generating the three main 16S rRNA databases: Greengenes, SILVA, and RDP. For an evaluation of accuracy, we evaluated each tool using the same simulated 16S rRNA reads from human gut, ocean, and soil metagenomes that were previously used to compare QIIME, MAPseq, mothur, and QIIME 2. We evaluated accuracy based on the accuracy of the final genera read counts assigned by each tool. Finally, as Kraken 2 is the only tool providing per-read taxonomic assignments, we evaluate the sensitivity and precision of Kraken 2’s per-read classifications.ResultsFor both the Greengenes and SILVA database, Kraken 2 and Bracken are up to 100 times faster at database generation. For classification, using the same data as previous studies, Kraken 2 and Bracken are up to 300 times faster, use 100x less RAM, and generate results that more accurate at 16S rRNA profiling than QIIME 2’s q2-feature-classifier.ConclusionKraken 2 and Bracken provide a very fast, efficient, and accurate solution for 16S rRNA metataxonomic data analysis.BduTYvgx2U5MCkCSpFgxKvVideo Abstract
    32 schema:genre article
    33 schema:isAccessibleForFree true
    34 schema:isPartOf N79d0a676311b426eb4471e468b2e4b2e
    35 N9061f0e8219142c5a72e5d0d4dea4325
    36 sg:journal.1048878
    37 schema:keywords BackgroundFor decades
    38 Greengenes
    39 Kraken
    40 Kraken 2
    41 MAPseq
    42 MethodsFor
    43 Mothur
    44 Ocean
    45 QIIME
    46 QIIME 2
    47 QIIME package
    48 RDP
    49 RNA sequencing
    50 Silva
    51 Ultrafast
    52 ability
    53 abundance
    54 accuracy
    55 accurate classification
    56 accurate solutions
    57 analysis
    58 assessment
    59 assignment
    60 bacterial genera
    61 bacterial species
    62 bracken
    63 classification
    64 classification results
    65 classifier
    66 community analysis
    67 comparison
    68 composition
    69 comprehensive assessment
    70 computational resources
    71 count
    72 data
    73 data analysis
    74 database
    75 database generation
    76 decades
    77 direct comparison
    78 evaluation
    79 evaluation of accuracy
    80 generate results
    81 generation
    82 genus
    83 genus relative abundance
    84 gut
    85 high accuracy
    86 human gut
    87 less RAM
    88 means
    89 metagenomes
    90 metagenomic sequencing projects
    91 microbial community analysis
    92 new release
    93 only tool
    94 package
    95 precision
    96 previous studies
    97 primary means
    98 project
    99 purpose today
    100 rRNA
    101 rRNA databases
    102 rams
    103 read classification
    104 recent results
    105 relative abundance
    106 release
    107 resources
    108 results
    109 ribosomal RNA sequencing
    110 same data
    111 samples
    112 sensitivity
    113 sequencing
    114 sequencing projects
    115 similar systems
    116 simulated human gut
    117 soil metagenome
    118 solution
    119 species
    120 speed
    121 study
    122 system
    123 taxonomic assignment
    124 time
    125 today
    126 tool
    127 unknown composition
    128 users
    129 schema:name Ultrafast and accurate 16S rRNA microbial community analysis using Kraken 2
    130 schema:pagination 124
    131 schema:productId N2680f357c43a49918e63d33e6b37122c
    132 N8863b0d313454e61b1063393e7d7b584
    133 Nd2e193ca36ea4631a7a0f3cc38d7d4bf
    134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130418046
    135 https://doi.org/10.1186/s40168-020-00900-2
    136 schema:sdDatePublished 2022-09-02T16:05
    137 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    138 schema:sdPublisher N73b072137d50425288377ee85046a0d2
    139 schema:url https://doi.org/10.1186/s40168-020-00900-2
    140 sgo:license sg:explorer/license/
    141 sgo:sdDataset articles
    142 rdf:type schema:ScholarlyArticle
    143 N2126c04d2f8a44098a21b8114fe04307 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Metagenomics
    145 rdf:type schema:DefinedTerm
    146 N2680f357c43a49918e63d33e6b37122c schema:name dimensions_id
    147 schema:value pub.1130418046
    148 rdf:type schema:PropertyValue
    149 N2bedbff610b74a578cde3920281c73c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Metagenome
    151 rdf:type schema:DefinedTerm
    152 N472317ce4a3444eab45d526f120f6ca9 rdf:first sg:person.011420654423.27
    153 rdf:rest Nab7398cdb24348c4a610ec34d05ba9c7
    154 N4ef8c3a748b543bd94347e20bdafc2cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Bacteria
    156 rdf:type schema:DefinedTerm
    157 N6cb06df196054321acad422498103385 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Software
    159 rdf:type schema:DefinedTerm
    160 N7169b3681aa34d9f966132ee6e70175b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Microbiota
    162 rdf:type schema:DefinedTerm
    163 N73b072137d50425288377ee85046a0d2 schema:name Springer Nature - SN SciGraph project
    164 rdf:type schema:Organization
    165 N79d0a676311b426eb4471e468b2e4b2e schema:volumeNumber 8
    166 rdf:type schema:PublicationVolume
    167 N7ad7dc4ee35b43d48f2414e9f408d0d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name RNA, Ribosomal, 16S
    169 rdf:type schema:DefinedTerm
    170 N8863b0d313454e61b1063393e7d7b584 schema:name pubmed_id
    171 schema:value 32859275
    172 rdf:type schema:PropertyValue
    173 N9061f0e8219142c5a72e5d0d4dea4325 schema:issueNumber 1
    174 rdf:type schema:PublicationIssue
    175 N93028be751374f51804df16165860af0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Humans
    177 rdf:type schema:DefinedTerm
    178 Nab7398cdb24348c4a610ec34d05ba9c7 rdf:first sg:person.01223441713.02
    179 rdf:rest rdf:nil
    180 Nb2f4bb87b0a5461fabc58d42b22346d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Time Factors
    182 rdf:type schema:DefinedTerm
    183 Nd2e193ca36ea4631a7a0f3cc38d7d4bf schema:name doi
    184 schema:value 10.1186/s40168-020-00900-2
    185 rdf:type schema:PropertyValue
    186 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    187 schema:name Biological Sciences
    188 rdf:type schema:DefinedTerm
    189 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    190 schema:name Microbiology
    191 rdf:type schema:DefinedTerm
    192 sg:grant.2529453 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-020-00900-2
    193 rdf:type schema:MonetaryGrant
    194 sg:grant.7874043 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-020-00900-2
    195 rdf:type schema:MonetaryGrant
    196 sg:grant.8383234 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-020-00900-2
    197 rdf:type schema:MonetaryGrant
    198 sg:journal.1048878 schema:issn 2049-2618
    199 schema:name Microbiome
    200 schema:publisher Springer Nature
    201 rdf:type schema:Periodical
    202 sg:person.011420654423.27 schema:affiliation grid-institutes:grid.21107.35
    203 schema:familyName Lu
    204 schema:givenName Jennifer
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011420654423.27
    206 rdf:type schema:Person
    207 sg:person.01223441713.02 schema:affiliation grid-institutes:grid.21107.35
    208 schema:familyName Salzberg
    209 schema:givenName Steven L.
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223441713.02
    211 rdf:type schema:Person
    212 sg:pub.10.1038/254083a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040352006
    213 https://doi.org/10.1038/254083a0
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/ismej.2010.58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020560324
    216 https://doi.org/10.1038/ismej.2010.58
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nature11234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007740093
    219 https://doi.org/10.1038/nature11234
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nmeth.3869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016631324
    222 https://doi.org/10.1038/nmeth.3869
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
    225 https://doi.org/10.1038/nmeth.f.303
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/s41586-019-1238-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1115986075
    228 https://doi.org/10.1038/s41586-019-1238-8
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/s41587-019-0209-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1119809350
    231 https://doi.org/10.1038/s41587-019-0209-9
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/srep19233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051309616
    234 https://doi.org/10.1038/srep19233
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1186/1471-2105-10-421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050579230
    237 https://doi.org/10.1186/1471-2105-10-421
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1186/gb-2010-11-5-210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042123396
    240 https://doi.org/10.1186/gb-2010-11-5-210
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1186/gb-2014-15-3-r46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030203790
    243 https://doi.org/10.1186/gb-2014-15-3-r46
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1186/s12864-017-3501-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084250048
    246 https://doi.org/10.1186/s12864-017-3501-4
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1186/s12915-014-0069-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000588445
    249 https://doi.org/10.1186/s12915-014-0069-1
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1186/s13059-019-1891-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122989517
    252 https://doi.org/10.1186/s13059-019-1891-0
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1186/s13742-015-0066-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018022139
    255 https://doi.org/10.1186/s13742-015-0066-5
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1186/s40168-018-0470-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1104049103
    258 https://doi.org/10.1186/s40168-018-0470-z
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.2165/00066982-200106040-00012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069123399
    261 https://doi.org/10.2165/00066982-200106040-00012
    262 rdf:type schema:CreativeWork
    263 grid-institutes:grid.21107.35 schema:alternateName Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
    264 Departments of Computer Science and Biostatistics, Johns Hopkins University, Baltimore, MD, USA
    265 schema:name Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
    266 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
    267 Departments of Computer Science and Biostatistics, Johns Hopkins University, Baltimore, MD, USA
    268 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...