Fecal metatranscriptomics of macaques with idiopathic chronic diarrhea reveals altered mucin degradation and fucose utilization View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Samuel T. Westreich, Amir Ardeshir, Zeynep Alkan, Mary E. Kable, Ian Korf, Danielle G. Lemay

ABSTRACT

BACKGROUND: Idiopathic chronic diarrhea (ICD) is a common cause of morbidity and mortality among juvenile rhesus macaques. Characterized by chronic inflammation of the colon and repeated bouts of diarrhea, ICD is largely unresponsive to medical interventions, including corticosteroid, antiparasitic, and antibiotic treatments. Although ICD is accompanied by large disruptions in the composition of the commensal gut microbiome, no single pathogen has been concretely identified as responsible for the onset and continuation of the disease. RESULTS: Fecal samples were collected from 12 ICD-diagnosed macaques and 12 age- and sex-matched controls. RNA was extracted for metatranscriptomic analysis of organisms and functional annotations associated with the gut microbiome. Bacterial, fungal, archaeal, protozoan, and macaque (host) transcripts were simultaneously assessed. ICD-afflicted animals were characterized by increased expression of host-derived genes involved in inflammation and increased transcripts from bacterial pathogens such as Campylobacter and Helicobacter and the protozoan Trichomonas. Transcripts associated with known mucin-degrading organisms and mucin-degrading enzymes were elevated in the fecal microbiomes of ICD-afflicted animals. Assessment of colon sections using immunohistochemistry and of the host transcriptome suggests differential fucosylation of mucins between control and ICD-afflicted animals. Interrogation of the metatranscriptome for fucose utilization genes reveals possible mechanisms by which opportunists persist in ICD. Bacteroides sp. potentially cross-fed fucose to Haemophilus whereas Campylobacter expressed a mucosa-associated transcriptome with increased expression of adherence genes. CONCLUSIONS: The simultaneous profiling of bacterial, fungal, archaeal, protozoan, and macaque transcripts from stool samples reveals that ICD of rhesus macaques is associated with increased gene expression by pathogens, increased mucin degradation, and altered fucose utilization. The data suggest that the ICD-afflicted host produces fucosylated mucins that are leveraged by potentially pathogenic microbes as a carbon source or as adhesion sites. More... »

PAGES

41

References to SciGraph publications

  • 2016-01. Gut dendritic cell activation links an altered colonic microbiome to mucosal and systemic T-cell activation in untreated HIV-1 infection in MUCOSAL IMMUNOLOGY
  • 2009-01. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources in NATURE PROTOCOLS
  • 2013-07. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota in NATURE REVIEWS MICROBIOLOGY
  • 2014-12. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 in GENOME BIOLOGY
  • 2016-01. Diet-induced extinctions in the gut microbiota compound over generations in NATURE
  • 2008-12. The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes in BMC BIOINFORMATICS
  • 2017-04. Dysbiosis and the immune system in NATURE REVIEWS IMMUNOLOGY
  • 2016-01. Gut biogeography of the bacterial microbiota in NATURE REVIEWS MICROBIOLOGY
  • 2016-02. Gut microbiota in 2015: Prevotella in the gut: choose carefully in NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY
  • 2012-07. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates in THE ISME JOURNAL
  • 2016-09. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut in NATURE MICROBIOLOGY
  • 2017-12. Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota in SCIENTIFIC REPORTS
  • 2018-12. SAMSA2: a standalone metatranscriptome analysis pipeline in BMC BIOINFORMATICS
  • 2011-06. Intestinal homeostasis and its breakdown in inflammatory bowel disease in NATURE
  • 2016-12. SAMSA: a comprehensive metatranscriptome analysis pipeline in BMC BIOINFORMATICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40168-019-0664-z

    DOI

    http://dx.doi.org/10.1186/s40168-019-0664-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112857579

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30885266


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of California, Davis", 
              "id": "https://www.grid.ac/institutes/grid.27860.3b", 
              "name": [
                "Genome Center, University of California, Davis, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Westreich", 
            "givenName": "Samuel T.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, Davis", 
              "id": "https://www.grid.ac/institutes/grid.27860.3b", 
              "name": [
                "California National Primate Research Center, University of California, Davis, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ardeshir", 
            "givenName": "Amir", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Agricultural Research Service", 
              "id": "https://www.grid.ac/institutes/grid.463419.d", 
              "name": [
                "USDA ARS Western Human Nutrition Research Center, Davis, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alkan", 
            "givenName": "Zeynep", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, Davis", 
              "id": "https://www.grid.ac/institutes/grid.27860.3b", 
              "name": [
                "USDA ARS Western Human Nutrition Research Center, Davis, California, USA", 
                "Department of Nutrition, University of California, Davis, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kable", 
            "givenName": "Mary E.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, Davis", 
              "id": "https://www.grid.ac/institutes/grid.27860.3b", 
              "name": [
                "Genome Center, University of California, Davis, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Korf", 
            "givenName": "Ian", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, Davis", 
              "id": "https://www.grid.ac/institutes/grid.27860.3b", 
              "name": [
                "Genome Center, University of California, Davis, California, USA", 
                "USDA ARS Western Human Nutrition Research Center, Davis, California, USA", 
                "Department of Nutrition, University of California, Davis, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lemay", 
            "givenName": "Danielle G.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1111/j.1365-2958.2005.04525.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001392053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/iai.71.7.4079-4086.2003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002075476"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btt703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005363149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-9-386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006083026", 
              "https://doi.org/10.1186/1471-2105-9-386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.96.17.9833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006751202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro3552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007554150", 
              "https://doi.org/10.1038/nrmicro3552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.freeradbiomed.2016.09.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007981691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.ppat.1003000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009363185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt1226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009906349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cm.20468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009992646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cm.20468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009992646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btt593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010435278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt1274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010677784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fgene.2015.00081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010885597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/mog.0b013e32835c9cb3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012888053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/mog.0b013e32835c9cb3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012888053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/mog.0b013e32835c9cb3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012888053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-016-1270-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013175693", 
              "https://doi.org/10.1186/s12859-016-1270-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-016-1270-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013175693", 
              "https://doi.org/10.1186/s12859-016-1270-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cmet.2014.07.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014489119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-014-0550-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015222646", 
              "https://doi.org/10.1186/s13059-014-0550-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-014-0550-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015222646", 
              "https://doi.org/10.1186/s13059-014-0550-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1208344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015324311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1053/j.gastro.2011.04.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015456637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1600-0684.2012.00553.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016910852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/gut.45.2.246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017071275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2015/828264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018486930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/cvi.00267-06", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019667871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.270.9.4640", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023553171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.93", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023953929", 
              "https://doi.org/10.1038/nmicrobiol.2016.93"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0147425", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024248453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/gut.2004.061168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024994405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1462-2920.13659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025410941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.22647", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026730273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chom.2011.10.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026967122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3109/00365521.2014.987809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029028827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/ajpgi.00091.2014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030493551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1104/pp.104.900198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030512981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030840088", 
              "https://doi.org/10.1038/nature10208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro3050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031258718", 
              "https://doi.org/10.1038/nrmicro3050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chom.2015.04.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032124496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1189/jlb.0504286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032532359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/gutjnl-2015-309618", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032623477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/ajpgi.00574.2004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033120743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/mi.2015.33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033155791", 
              "https://doi.org/10.1038/mi.2015.33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1099/jmm.0.019117-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033560805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1099/jmm.0.019117-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033560805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.ppat.0040020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033929856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/039463200802100205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034311196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/039463200802100205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034311196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tibtech.2015.06.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035071504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2016.10.043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036336264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2008.211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039987283", 
              "https://doi.org/10.1038/nprot.2008.211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ebiom.2016.01.032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040468983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ibd.21696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040537433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ibd.21696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040537433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1053/j.gastro.2015.10.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041533261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042720804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrgastro.2016.4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042920202", 
              "https://doi.org/10.1038/nrgastro.2016.4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2011.212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043234942", 
              "https://doi.org/10.1038/ismej.2011.212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/gutjnl-2012-303207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043942816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2958.1994.tb01324.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045616001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ar.22727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047193789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/iai.70.11.6242-6250.2002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047850153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048142283", 
              "https://doi.org/10.1038/nature16504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aad3369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049864477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ilar/ilt044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051234497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7554/elife.01202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051414124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1099/0022-1317-50-5-421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060353987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1080029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062447714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/ecosal.5.2.3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062713836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2174/156652406776894572", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069185770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077964861", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078167407", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/j.1460-2075.1991.tb07736.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078192294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4049/jimmunol.1500395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079099635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/microbiolspec.mbp-0006-2014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079119336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082823640", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijppaw.2016.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083527282"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nri.2017.7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129725", 
              "https://doi.org/10.1038/nri.2017.7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chom.2017.03.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084774802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chom.2017.03.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084774802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-02995-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085640655", 
              "https://doi.org/10.1038/s41598-017-02995-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.22088/cjim.8.3.178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091875620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-018-2189-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104089252", 
              "https://doi.org/10.1186/s12859-018-2189-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "BACKGROUND: Idiopathic chronic diarrhea (ICD) is a common cause of morbidity and mortality among juvenile rhesus macaques. Characterized by chronic inflammation of the colon and repeated bouts of diarrhea, ICD is largely unresponsive to medical interventions, including corticosteroid, antiparasitic, and antibiotic treatments. Although ICD is accompanied by large disruptions in the composition of the commensal gut microbiome, no single pathogen has been concretely identified as responsible for the onset and continuation of the disease.\nRESULTS: Fecal samples were collected from 12 ICD-diagnosed macaques and 12 age- and sex-matched controls. RNA was extracted for metatranscriptomic analysis of organisms and functional annotations associated with the gut microbiome. Bacterial, fungal, archaeal, protozoan, and macaque (host) transcripts were simultaneously assessed. ICD-afflicted animals were characterized by increased expression of host-derived genes involved in inflammation and increased transcripts from bacterial pathogens such as Campylobacter and Helicobacter and the protozoan Trichomonas. Transcripts associated with known mucin-degrading organisms and mucin-degrading enzymes were elevated in the fecal microbiomes of ICD-afflicted animals. Assessment of colon sections using immunohistochemistry and of the host transcriptome suggests differential fucosylation of mucins between control and ICD-afflicted animals. Interrogation of the metatranscriptome for fucose utilization genes reveals possible mechanisms by which opportunists persist in ICD. Bacteroides sp. potentially cross-fed fucose to Haemophilus whereas Campylobacter expressed a mucosa-associated transcriptome with increased expression of adherence genes.\nCONCLUSIONS: The simultaneous profiling of bacterial, fungal, archaeal, protozoan, and macaque transcripts from stool samples reveals that ICD of rhesus macaques is associated with increased gene expression by pathogens, increased mucin degradation, and altered fucose utilization. The data suggest that the ICD-afflicted host produces fucosylated mucins that are leveraged by potentially pathogenic microbes as a carbon source or as adhesion sites.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s40168-019-0664-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2441128", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2671463", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1048878", 
            "issn": [
              "2049-2618"
            ], 
            "name": "Microbiome", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "Fecal metatranscriptomics of macaques with idiopathic chronic diarrhea reveals altered mucin degradation and fucose utilization", 
        "pagination": "41", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d74440e534317c3696c4e70a09bf475342f2debac8ce643034b2e187ea26b5a8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30885266"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101615147"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40168-019-0664-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112857579"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40168-019-0664-z", 
          "https://app.dimensions.ai/details/publication/pub.1112857579"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46766_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs40168-019-0664-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40168-019-0664-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40168-019-0664-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40168-019-0664-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40168-019-0664-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    347 TRIPLES      21 PREDICATES      105 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40168-019-0664-z schema:about anzsrc-for:06
    2 anzsrc-for:0605
    3 schema:author Nceb535b0e4e14219888ab546f948b37b
    4 schema:citation sg:pub.10.1038/ismej.2011.212
    5 sg:pub.10.1038/mi.2015.33
    6 sg:pub.10.1038/nature10208
    7 sg:pub.10.1038/nature16504
    8 sg:pub.10.1038/nmicrobiol.2016.93
    9 sg:pub.10.1038/nprot.2008.211
    10 sg:pub.10.1038/nrgastro.2016.4
    11 sg:pub.10.1038/nri.2017.7
    12 sg:pub.10.1038/nrmicro3050
    13 sg:pub.10.1038/nrmicro3552
    14 sg:pub.10.1038/s41598-017-02995-4
    15 sg:pub.10.1186/1471-2105-9-386
    16 sg:pub.10.1186/s12859-016-1270-8
    17 sg:pub.10.1186/s12859-018-2189-z
    18 sg:pub.10.1186/s13059-014-0550-8
    19 https://app.dimensions.ai/details/publication/pub.1077964861
    20 https://app.dimensions.ai/details/publication/pub.1078167407
    21 https://app.dimensions.ai/details/publication/pub.1082823640
    22 https://doi.org/10.1002/ar.22727
    23 https://doi.org/10.1002/cm.20468
    24 https://doi.org/10.1002/ibd.21696
    25 https://doi.org/10.1002/ijc.22647
    26 https://doi.org/10.1002/j.1460-2075.1991.tb07736.x
    27 https://doi.org/10.1016/j.cell.2016.10.043
    28 https://doi.org/10.1016/j.chom.2011.10.007
    29 https://doi.org/10.1016/j.chom.2015.04.012
    30 https://doi.org/10.1016/j.chom.2017.03.010
    31 https://doi.org/10.1016/j.cmet.2014.07.003
    32 https://doi.org/10.1016/j.ebiom.2016.01.032
    33 https://doi.org/10.1016/j.freeradbiomed.2016.09.022
    34 https://doi.org/10.1016/j.ijppaw.2016.12.003
    35 https://doi.org/10.1016/j.tibtech.2015.06.011
    36 https://doi.org/10.1053/j.gastro.2011.04.011
    37 https://doi.org/10.1053/j.gastro.2015.10.005
    38 https://doi.org/10.1073/pnas.96.17.9833
    39 https://doi.org/10.1074/jbc.270.9.4640
    40 https://doi.org/10.1093/bioinformatics/btt593
    41 https://doi.org/10.1093/bioinformatics/btt703
    42 https://doi.org/10.1093/bioinformatics/btu170
    43 https://doi.org/10.1093/ilar/ilt044
    44 https://doi.org/10.1093/nar/gkt1226
    45 https://doi.org/10.1093/nar/gkt1274
    46 https://doi.org/10.1097/mog.0b013e32835c9cb3
    47 https://doi.org/10.1099/0022-1317-50-5-421
    48 https://doi.org/10.1099/jmm.0.019117-0
    49 https://doi.org/10.1104/pp.104.900198
    50 https://doi.org/10.1111/1462-2920.13659
    51 https://doi.org/10.1111/j.1365-2958.1994.tb01324.x
    52 https://doi.org/10.1111/j.1365-2958.2005.04525.x
    53 https://doi.org/10.1111/j.1600-0684.2012.00553.x
    54 https://doi.org/10.1126/science.1080029
    55 https://doi.org/10.1126/science.1208344
    56 https://doi.org/10.1126/science.aad3369
    57 https://doi.org/10.1128/cvi.00267-06
    58 https://doi.org/10.1128/ecosal.5.2.3
    59 https://doi.org/10.1128/iai.70.11.6242-6250.2002
    60 https://doi.org/10.1128/iai.71.7.4079-4086.2003
    61 https://doi.org/10.1128/microbiolspec.mbp-0006-2014
    62 https://doi.org/10.1136/gut.2004.061168
    63 https://doi.org/10.1136/gut.45.2.246
    64 https://doi.org/10.1136/gutjnl-2012-303207
    65 https://doi.org/10.1136/gutjnl-2015-309618
    66 https://doi.org/10.1152/ajpgi.00091.2014
    67 https://doi.org/10.1152/ajpgi.00574.2004
    68 https://doi.org/10.1155/2015/828264
    69 https://doi.org/10.1177/039463200802100205
    70 https://doi.org/10.1189/jlb.0504286
    71 https://doi.org/10.1371/journal.pone.0147425
    72 https://doi.org/10.1371/journal.ppat.0040020
    73 https://doi.org/10.1371/journal.ppat.1003000
    74 https://doi.org/10.2174/156652406776894572
    75 https://doi.org/10.22088/cjim.8.3.178
    76 https://doi.org/10.3109/00365521.2014.987809
    77 https://doi.org/10.3389/fgene.2015.00081
    78 https://doi.org/10.4049/jimmunol.1500395
    79 https://doi.org/10.7554/elife.01202
    80 schema:datePublished 2019-12
    81 schema:datePublishedReg 2019-12-01
    82 schema:description BACKGROUND: Idiopathic chronic diarrhea (ICD) is a common cause of morbidity and mortality among juvenile rhesus macaques. Characterized by chronic inflammation of the colon and repeated bouts of diarrhea, ICD is largely unresponsive to medical interventions, including corticosteroid, antiparasitic, and antibiotic treatments. Although ICD is accompanied by large disruptions in the composition of the commensal gut microbiome, no single pathogen has been concretely identified as responsible for the onset and continuation of the disease. RESULTS: Fecal samples were collected from 12 ICD-diagnosed macaques and 12 age- and sex-matched controls. RNA was extracted for metatranscriptomic analysis of organisms and functional annotations associated with the gut microbiome. Bacterial, fungal, archaeal, protozoan, and macaque (host) transcripts were simultaneously assessed. ICD-afflicted animals were characterized by increased expression of host-derived genes involved in inflammation and increased transcripts from bacterial pathogens such as Campylobacter and Helicobacter and the protozoan Trichomonas. Transcripts associated with known mucin-degrading organisms and mucin-degrading enzymes were elevated in the fecal microbiomes of ICD-afflicted animals. Assessment of colon sections using immunohistochemistry and of the host transcriptome suggests differential fucosylation of mucins between control and ICD-afflicted animals. Interrogation of the metatranscriptome for fucose utilization genes reveals possible mechanisms by which opportunists persist in ICD. Bacteroides sp. potentially cross-fed fucose to Haemophilus whereas Campylobacter expressed a mucosa-associated transcriptome with increased expression of adherence genes. CONCLUSIONS: The simultaneous profiling of bacterial, fungal, archaeal, protozoan, and macaque transcripts from stool samples reveals that ICD of rhesus macaques is associated with increased gene expression by pathogens, increased mucin degradation, and altered fucose utilization. The data suggest that the ICD-afflicted host produces fucosylated mucins that are leveraged by potentially pathogenic microbes as a carbon source or as adhesion sites.
    83 schema:genre research_article
    84 schema:inLanguage en
    85 schema:isAccessibleForFree true
    86 schema:isPartOf N8eefb0126d204aefaf9af258c7944172
    87 Nfbf7fad115eb40a39353ea4f07fa04e6
    88 sg:journal.1048878
    89 schema:name Fecal metatranscriptomics of macaques with idiopathic chronic diarrhea reveals altered mucin degradation and fucose utilization
    90 schema:pagination 41
    91 schema:productId N19521e4be3544b9c9cad4f59c5e622e3
    92 N5b85d3e408e24397928895f4e0273732
    93 N98a6a736b18d411e8a20ed8ba90a2246
    94 Na11079585cfd4044aaa85e6ee935a6c2
    95 Nb6f755eab74842c4b6f85455c86f8e5e
    96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112857579
    97 https://doi.org/10.1186/s40168-019-0664-z
    98 schema:sdDatePublished 2019-04-11T13:33
    99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    100 schema:sdPublisher N3f317abbab6b48269753c2bc76d026c0
    101 schema:url https://link.springer.com/10.1186%2Fs40168-019-0664-z
    102 sgo:license sg:explorer/license/
    103 sgo:sdDataset articles
    104 rdf:type schema:ScholarlyArticle
    105 N19521e4be3544b9c9cad4f59c5e622e3 schema:name pubmed_id
    106 schema:value 30885266
    107 rdf:type schema:PropertyValue
    108 N1d2d39e9c5f940b7b4a3013f86ca303c schema:affiliation https://www.grid.ac/institutes/grid.463419.d
    109 schema:familyName Alkan
    110 schema:givenName Zeynep
    111 rdf:type schema:Person
    112 N3d29d6fd01be493291cc7c6df5f1a7be rdf:first N78edc514fb8a454e92c23930b2858dea
    113 rdf:rest rdf:nil
    114 N3db83b31bc554db2ba420a1b07aecfe0 schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
    115 schema:familyName Korf
    116 schema:givenName Ian
    117 rdf:type schema:Person
    118 N3f317abbab6b48269753c2bc76d026c0 schema:name Springer Nature - SN SciGraph project
    119 rdf:type schema:Organization
    120 N5b85d3e408e24397928895f4e0273732 schema:name nlm_unique_id
    121 schema:value 101615147
    122 rdf:type schema:PropertyValue
    123 N65171da4e30d474f892532d1d011ffb4 rdf:first N71c1cec26a4b49ddbc1fa06a28bf8757
    124 rdf:rest Naa36420f01a4483799d89ca96553d61f
    125 N6574d3141493427ea25e5747a4222e3d schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
    126 schema:familyName Westreich
    127 schema:givenName Samuel T.
    128 rdf:type schema:Person
    129 N71c1cec26a4b49ddbc1fa06a28bf8757 schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
    130 schema:familyName Kable
    131 schema:givenName Mary E.
    132 rdf:type schema:Person
    133 N78edc514fb8a454e92c23930b2858dea schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
    134 schema:familyName Lemay
    135 schema:givenName Danielle G.
    136 rdf:type schema:Person
    137 N7dc71ff9346e41f5b39c3f710a24a7f9 rdf:first N1d2d39e9c5f940b7b4a3013f86ca303c
    138 rdf:rest N65171da4e30d474f892532d1d011ffb4
    139 N8eefb0126d204aefaf9af258c7944172 schema:volumeNumber 7
    140 rdf:type schema:PublicationVolume
    141 N98a6a736b18d411e8a20ed8ba90a2246 schema:name readcube_id
    142 schema:value d74440e534317c3696c4e70a09bf475342f2debac8ce643034b2e187ea26b5a8
    143 rdf:type schema:PropertyValue
    144 N9ba82f4ec7894f3fb105d657893eb591 rdf:first Nb78370b272e9461c8a8165f0763aea42
    145 rdf:rest N7dc71ff9346e41f5b39c3f710a24a7f9
    146 Na11079585cfd4044aaa85e6ee935a6c2 schema:name dimensions_id
    147 schema:value pub.1112857579
    148 rdf:type schema:PropertyValue
    149 Naa36420f01a4483799d89ca96553d61f rdf:first N3db83b31bc554db2ba420a1b07aecfe0
    150 rdf:rest N3d29d6fd01be493291cc7c6df5f1a7be
    151 Nb6f755eab74842c4b6f85455c86f8e5e schema:name doi
    152 schema:value 10.1186/s40168-019-0664-z
    153 rdf:type schema:PropertyValue
    154 Nb78370b272e9461c8a8165f0763aea42 schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
    155 schema:familyName Ardeshir
    156 schema:givenName Amir
    157 rdf:type schema:Person
    158 Nceb535b0e4e14219888ab546f948b37b rdf:first N6574d3141493427ea25e5747a4222e3d
    159 rdf:rest N9ba82f4ec7894f3fb105d657893eb591
    160 Nfbf7fad115eb40a39353ea4f07fa04e6 schema:issueNumber 1
    161 rdf:type schema:PublicationIssue
    162 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Biological Sciences
    164 rdf:type schema:DefinedTerm
    165 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    166 schema:name Microbiology
    167 rdf:type schema:DefinedTerm
    168 sg:grant.2441128 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-019-0664-z
    169 rdf:type schema:MonetaryGrant
    170 sg:grant.2671463 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-019-0664-z
    171 rdf:type schema:MonetaryGrant
    172 sg:journal.1048878 schema:issn 2049-2618
    173 schema:name Microbiome
    174 rdf:type schema:Periodical
    175 sg:pub.10.1038/ismej.2011.212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043234942
    176 https://doi.org/10.1038/ismej.2011.212
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/mi.2015.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033155791
    179 https://doi.org/10.1038/mi.2015.33
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/nature10208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030840088
    182 https://doi.org/10.1038/nature10208
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/nature16504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048142283
    185 https://doi.org/10.1038/nature16504
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nmicrobiol.2016.93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023953929
    188 https://doi.org/10.1038/nmicrobiol.2016.93
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nprot.2008.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039987283
    191 https://doi.org/10.1038/nprot.2008.211
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nrgastro.2016.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042920202
    194 https://doi.org/10.1038/nrgastro.2016.4
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nri.2017.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129725
    197 https://doi.org/10.1038/nri.2017.7
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/nrmicro3050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031258718
    200 https://doi.org/10.1038/nrmicro3050
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nrmicro3552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007554150
    203 https://doi.org/10.1038/nrmicro3552
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/s41598-017-02995-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085640655
    206 https://doi.org/10.1038/s41598-017-02995-4
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1186/1471-2105-9-386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006083026
    209 https://doi.org/10.1186/1471-2105-9-386
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1186/s12859-016-1270-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013175693
    212 https://doi.org/10.1186/s12859-016-1270-8
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1186/s12859-018-2189-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1104089252
    215 https://doi.org/10.1186/s12859-018-2189-z
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1186/s13059-014-0550-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015222646
    218 https://doi.org/10.1186/s13059-014-0550-8
    219 rdf:type schema:CreativeWork
    220 https://app.dimensions.ai/details/publication/pub.1077964861 schema:CreativeWork
    221 https://app.dimensions.ai/details/publication/pub.1078167407 schema:CreativeWork
    222 https://app.dimensions.ai/details/publication/pub.1082823640 schema:CreativeWork
    223 https://doi.org/10.1002/ar.22727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047193789
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1002/cm.20468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009992646
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1002/ibd.21696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040537433
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1002/ijc.22647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026730273
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1002/j.1460-2075.1991.tb07736.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1078192294
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1016/j.cell.2016.10.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036336264
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1016/j.chom.2011.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026967122
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1016/j.chom.2015.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032124496
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1016/j.chom.2017.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084774802
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1016/j.cmet.2014.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014489119
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1016/j.ebiom.2016.01.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040468983
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1016/j.freeradbiomed.2016.09.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007981691
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1016/j.ijppaw.2016.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083527282
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1016/j.tibtech.2015.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035071504
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1053/j.gastro.2011.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015456637
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1053/j.gastro.2015.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041533261
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1073/pnas.96.17.9833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006751202
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1074/jbc.270.9.4640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023553171
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1093/bioinformatics/btt593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010435278
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1093/bioinformatics/btt703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005363149
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1093/bioinformatics/btu170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042720804
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1093/ilar/ilt044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051234497
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1093/nar/gkt1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009906349
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1093/nar/gkt1274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010677784
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1097/mog.0b013e32835c9cb3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012888053
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1099/0022-1317-50-5-421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060353987
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1099/jmm.0.019117-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033560805
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1104/pp.104.900198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030512981
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1111/1462-2920.13659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025410941
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1111/j.1365-2958.1994.tb01324.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045616001
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1111/j.1365-2958.2005.04525.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001392053
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1111/j.1600-0684.2012.00553.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016910852
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1126/science.1080029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062447714
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1126/science.1208344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015324311
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1126/science.aad3369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049864477
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1128/cvi.00267-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019667871
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1128/ecosal.5.2.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062713836
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1128/iai.70.11.6242-6250.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047850153
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1128/iai.71.7.4079-4086.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002075476
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1128/microbiolspec.mbp-0006-2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079119336
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1136/gut.2004.061168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024994405
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1136/gut.45.2.246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017071275
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1136/gutjnl-2012-303207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043942816
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1136/gutjnl-2015-309618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032623477
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1152/ajpgi.00091.2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030493551
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1152/ajpgi.00574.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033120743
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1155/2015/828264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018486930
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1177/039463200802100205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034311196
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1189/jlb.0504286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032532359
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1371/journal.pone.0147425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024248453
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1371/journal.ppat.0040020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033929856
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1371/journal.ppat.1003000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009363185
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.2174/156652406776894572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069185770
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.22088/cjim.8.3.178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091875620
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.3109/00365521.2014.987809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029028827
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.3389/fgene.2015.00081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010885597
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.4049/jimmunol.1500395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079099635
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.7554/elife.01202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051414124
    338 rdf:type schema:CreativeWork
    339 https://www.grid.ac/institutes/grid.27860.3b schema:alternateName University of California, Davis
    340 schema:name California National Primate Research Center, University of California, Davis, California, USA
    341 Department of Nutrition, University of California, Davis, California, USA
    342 Genome Center, University of California, Davis, California, USA
    343 USDA ARS Western Human Nutrition Research Center, Davis, California, USA
    344 rdf:type schema:Organization
    345 https://www.grid.ac/institutes/grid.463419.d schema:alternateName Agricultural Research Service
    346 schema:name USDA ARS Western Human Nutrition Research Center, Davis, California, USA
    347 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...