Genomic and metagenomic insights into the microbial community of a thermal spring View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Renato Pedron, Alfonso Esposito, Irene Bianconi, Edoardo Pasolli, Adrian Tett, Francesco Asnicar, Mario Cristofolini, Nicola Segata, Olivier Jousson

ABSTRACT

BACKGROUND: Water springs provide important ecosystem services including drinking water supply, recreation, and balneotherapy, but their microbial communities remain largely unknown. In this study, we characterized the spring water microbiome of Comano Terme (Italy) at four sampling points of the thermal spa, including natural (spring and well) and human-built (storage tank, bathtubs) environments. We integrated large-scale culturing and metagenomic approaches, with the aim of comprehensively determining the spring water taxonomic composition and functional potential. RESULTS: The groundwater feeding the spring hosted the most atypical microbiome, including many taxa known to be recalcitrant to cultivation. The core microbiome included the orders Sphingomonadales, Rhizobiales, and Caulobacterales, and the families Bradyrhizobiaceae and Moraxellaceae. A comparative genomic analysis of 72 isolates and 30 metagenome-assembled genomes (MAGs) revealed that most isolates and MAGs belonged to new species or higher taxonomic ranks widely distributed in the microbial tree of life. Average nucleotide identity (ANI) values calculated for each isolated or assembled genome showed that 10 genomes belonged to known bacterial species (> 95% ANI), 36 genomes (including 1 MAG) had ANI values ranging 85-92.5% and could be assigned as undescribed species belonging to known genera, while the remaining 55 genomes had lower ANI values (< 85%). A number of functional features were significantly over- or underrepresented in genomes derived from the four sampling sites. Functional specialization was found between sites, with for example methanogenesis being unique to groundwater whereas methanotrophy was found in all samples. CONCLUSIONS: Current knowledge on aquatic microbiomes is essentially based on surface or human-associated environments. We started uncovering the spring water microbiome, highlighting an unexpected diversity that should be further investigated. This study confirms that groundwater environments host highly adapted, stable microbial communities composed of many unknown taxa, even among the culturable fraction. More... »

PAGES

8

References to SciGraph publications

  • 2010-05. QIIME allows analysis of high-throughput community sequencing data in NATURE METHODS
  • 2017-08-21. Embracing the unknown: disentangling the complexities of the soil microbiome in NATURE REVIEWS MICROBIOLOGY
  • 2014-11. Binning metagenomic contigs by coverage and composition in NATURE METHODS
  • 2016-12. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary in GENOME BIOLOGY
  • 2006-09. Review: Microbial biocenoses in pristine aquifers and an assessment of investigative methods in HYDROGEOLOGY JOURNAL
  • 2018-11. Species-level functional profiling of metagenomes and metatranscriptomes in NATURE METHODS
  • 2015-07. Unusual biology across a group comprising more than 15% of domain Bacteria in NATURE
  • 2013-06. Speedy speciation in a bacterial microcosm: new species can arise as frequently as adaptations within a species in THE ISME JOURNAL
  • 2015-01. Origins and bioavailability of dissolved organic matter in groundwater in BIOGEOCHEMISTRY
  • 2015-04. Ecology and exploration of the rare biosphere in NATURE REVIEWS MICROBIOLOGY
  • 2013-12. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes in NATURE COMMUNICATIONS
  • 2006-06. Springs of the Alps – Sensitive Ecosystems to Environmental Change: From Biodiversity Assessments to Long-term Studies in HYDROBIOLOGIA
  • 2018-07. Best practices for analysing microbiomes in NATURE REVIEWS MICROBIOLOGY
  • 2017-08-08. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea in NATURE BIOTECHNOLOGY
  • 2012-04. Fast gapped-read alignment with Bowtie 2 in NATURE METHODS
  • 2018-01. Ecological and genomic profiling of anaerobic methane-oxidizing archaea in a deep granitic environment in THE ISME JOURNAL
  • 2014-12. Dominance of Methanosarcinales Phylotypes and Depth-Wise Distribution of Methanogenic Community in Fresh Water Sediments of Sitka Stream from Czech Republic in CURRENT MICROBIOLOGY
  • 2013-12. Functional microbial diversity explains groundwater chemistry in a pristine aquifer in BMC MICROBIOLOGY
  • 2017-11. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life in NATURE MICROBIOLOGY
  • 2015-10. MetaPhlAn2 for enhanced metagenomic taxonomic profiling in NATURE METHODS
  • 2017-01. Salinity Affects the Composition of the Aerobic Methanotroph Community in Alkaline Lake Sediments from the Tibetan Plateau in MICROBIAL ECOLOGY
  • Journal

    TITLE

    Microbiome

    ISSUE

    1

    VOLUME

    7

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40168-019-0625-6

    DOI

    http://dx.doi.org/10.1186/s40168-019-0625-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111593760

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30674352


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Trento", 
              "id": "https://www.grid.ac/institutes/grid.11696.39", 
              "name": [
                "Centre for Integrative Biology, University of Trento, 38123, Trento, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pedron", 
            "givenName": "Renato", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Trento", 
              "id": "https://www.grid.ac/institutes/grid.11696.39", 
              "name": [
                "Centre for Integrative Biology, University of Trento, 38123, Trento, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Esposito", 
            "givenName": "Alfonso", 
            "id": "sg:person.0645723132.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645723132.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Trento", 
              "id": "https://www.grid.ac/institutes/grid.11696.39", 
              "name": [
                "Centre for Integrative Biology, University of Trento, 38123, Trento, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bianconi", 
            "givenName": "Irene", 
            "id": "sg:person.010042776075.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042776075.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Trento", 
              "id": "https://www.grid.ac/institutes/grid.11696.39", 
              "name": [
                "Centre for Integrative Biology, University of Trento, 38123, Trento, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pasolli", 
            "givenName": "Edoardo", 
            "id": "sg:person.012425575203.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012425575203.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Trento", 
              "id": "https://www.grid.ac/institutes/grid.11696.39", 
              "name": [
                "Centre for Integrative Biology, University of Trento, 38123, Trento, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tett", 
            "givenName": "Adrian", 
            "id": "sg:person.01135561001.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135561001.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Trento", 
              "id": "https://www.grid.ac/institutes/grid.11696.39", 
              "name": [
                "Centre for Integrative Biology, University of Trento, 38123, Trento, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Asnicar", 
            "givenName": "Francesco", 
            "id": "sg:person.0644076461.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644076461.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Istituto G.B. Mattei, Stenico, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cristofolini", 
            "givenName": "Mario", 
            "id": "sg:person.013171507055.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013171507055.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Trento", 
              "id": "https://www.grid.ac/institutes/grid.11696.39", 
              "name": [
                "Centre for Integrative Biology, University of Trento, 38123, Trento, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Segata", 
            "givenName": "Nicola", 
            "id": "sg:person.0736227144.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736227144.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Trento", 
              "id": "https://www.grid.ac/institutes/grid.11696.39", 
              "name": [
                "Centre for Integrative Biology, University of Trento, 38123, Trento, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jousson", 
            "givenName": "Olivier", 
            "id": "sg:person.01301432535.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301432535.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1093/bioinformatics/btt086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000520351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2427.2008.02013.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003917001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1303090110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004272737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.copbio.2014.01.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006001969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006541515", 
              "https://doi.org/10.1038/nmeth.1923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.f.303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009032055", 
              "https://doi.org/10.1038/nmeth.f.303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.f.303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009032055", 
              "https://doi.org/10.1038/nmeth.f.303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btw354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010049881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1574-6941.1999.tb00575.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011627765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1574-6941.1999.tb00575.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011627765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10533-014-0029-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011642616", 
              "https://doi.org/10.1007/s10533-014-0029-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10533-014-0029-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011642616", 
              "https://doi.org/10.1007/s10533-014-0029-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.01303-08", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012229916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fmicb.2016.00783", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012785840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.68.8.3878-3885.2002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015572439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00284-014-0659-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015954150", 
              "https://doi.org/10.1007/s00284-014-0659-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-1108-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016471298", 
              "https://doi.org/10.1186/s13059-016-1108-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-1108-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016471298", 
              "https://doi.org/10.1186/s13059-016-1108-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhydrol.2012.05.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020499567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu739", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020707112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0168-1605(94)90011-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021234514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0168-1605(94)90011-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021234514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1529-8019.2003.01622.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022431836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt1244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024952637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10040-005-0009-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025602432", 
              "https://doi.org/10.1007/s10040-005-0009-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10040-005-0009-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025602432", 
              "https://doi.org/10.1007/s10040-005-0009-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btq461", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025904619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts565", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027022529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00248-016-0879-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027675365", 
              "https://doi.org/10.1007/s00248-016-0879-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00248-016-0879-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027675365", 
              "https://doi.org/10.1007/s00248-016-0879-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028162909", 
              "https://doi.org/10.1038/nmeth.3589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029031769", 
              "https://doi.org/10.1038/nature14486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymeth.2016.02.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029409494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymeth.2016.02.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029409494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.resmic.2015.12.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029607227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fmicb.2015.00506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029704407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031501454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2013.3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032014220", 
              "https://doi.org/10.1038/ismej.2013.3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034514160", 
              "https://doi.org/10.1038/nmeth.3103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.03006-05", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034568952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/aqc.884", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034938558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10750-005-1806-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036100076", 
              "https://doi.org/10.1007/s10750-005-1806-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10750-005-1806-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036100076", 
              "https://doi.org/10.1007/s10750-005-1806-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1899/11-111.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036396875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2180-13-146", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039405621", 
              "https://doi.org/10.1186/1471-2180-13-146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1529-8019.2008.00200.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039855657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms3304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040093094", 
              "https://doi.org/10.1038/ncomms3304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4319/lo.2004.49.6.2001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040323018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2014/943824", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040805752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.71.12.8228-8235.2005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042157769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv1189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042394201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7717/peerj.1029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045626913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro3400", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046380461", 
              "https://doi.org/10.1038/nrmicro3400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7717/peerj.1319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047354329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c5ay02550h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049093032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fmicb.2015.00454", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053706033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/cmb.2012.0021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059246094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075526270", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077155949", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1684/ejd.2011.1576", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078473056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1080013201", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/molbev/msx148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085225815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fmicb.2017.01199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090584874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev-micro-090816-093449", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090861530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091105392", 
              "https://doi.org/10.1038/nbt.3893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091105392", 
              "https://doi.org/10.1038/nbt.3893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091105392", 
              "https://doi.org/10.1038/nbt.3893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091105392", 
              "https://doi.org/10.1038/nbt.3893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091105392", 
              "https://doi.org/10.1038/nbt.3893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro.2017.87", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091281431", 
              "https://doi.org/10.1038/nrmicro.2017.87"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2017.140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091505832", 
              "https://doi.org/10.1038/ismej.2017.140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41564-017-0012-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091527308", 
              "https://doi.org/10.1038/s41564-017-0012-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.clindermatol.2018.03.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101521741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41579-018-0029-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104142067", 
              "https://doi.org/10.1038/s41579-018-0029-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41592-018-0176-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107804224", 
              "https://doi.org/10.1038/s41592-018-0176-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "BACKGROUND: Water springs provide important ecosystem services including drinking water supply, recreation, and balneotherapy, but their microbial communities remain largely unknown. In this study, we characterized the spring water microbiome of Comano Terme (Italy) at four sampling points of the thermal spa, including natural (spring and well) and human-built (storage tank, bathtubs) environments. We integrated large-scale culturing and metagenomic approaches, with the aim of comprehensively determining the spring water taxonomic composition and functional potential.\nRESULTS: The groundwater feeding the spring hosted the most atypical microbiome, including many taxa known to be recalcitrant to cultivation. The core microbiome included the orders Sphingomonadales, Rhizobiales, and Caulobacterales, and the families Bradyrhizobiaceae and Moraxellaceae. A comparative genomic analysis of 72 isolates and 30 metagenome-assembled genomes (MAGs) revealed that most isolates and MAGs belonged to new species or higher taxonomic ranks widely distributed in the microbial tree of life. Average nucleotide identity (ANI) values calculated for each isolated or assembled genome showed that 10 genomes belonged to known bacterial species (>\u200995% ANI), 36 genomes (including 1 MAG) had ANI values ranging 85-92.5% and could be assigned as undescribed species belonging to known genera, while the remaining 55 genomes had lower ANI values (<\u200985%). A number of functional features were significantly over- or underrepresented in genomes derived from the four sampling sites. Functional specialization was found between sites, with for example methanogenesis being unique to groundwater whereas methanotrophy was found in all samples.\nCONCLUSIONS: Current knowledge on aquatic microbiomes is essentially based on surface or human-associated environments. We started uncovering the spring water microbiome, highlighting an unexpected diversity that should be further investigated. This study confirms that groundwater environments host highly adapted, stable microbial communities composed of many unknown taxa, even among the culturable fraction.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s40168-019-0625-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1048878", 
            "issn": [
              "2049-2618"
            ], 
            "name": "Microbiome", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "Genomic and metagenomic insights into the microbial community of a thermal spring", 
        "pagination": "8", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6152892ba1ebe968fbe8c6d2882fa3bb45adb0917976af5e980fb972162961c5"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30674352"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101615147"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40168-019-0625-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111593760"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40168-019-0625-6", 
          "https://app.dimensions.ai/details/publication/pub.1111593760"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70049_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs40168-019-0625-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40168-019-0625-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40168-019-0625-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40168-019-0625-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40168-019-0625-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    329 TRIPLES      21 PREDICATES      91 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40168-019-0625-6 schema:about anzsrc-for:06
    2 anzsrc-for:0605
    3 schema:author N050f29c7b2334b8db8faead8680082fc
    4 schema:citation sg:pub.10.1007/s00248-016-0879-5
    5 sg:pub.10.1007/s00284-014-0659-8
    6 sg:pub.10.1007/s10040-005-0009-9
    7 sg:pub.10.1007/s10533-014-0029-4
    8 sg:pub.10.1007/s10750-005-1806-9
    9 sg:pub.10.1038/ismej.2013.3
    10 sg:pub.10.1038/ismej.2017.140
    11 sg:pub.10.1038/nature14486
    12 sg:pub.10.1038/nbt.3893
    13 sg:pub.10.1038/ncomms3304
    14 sg:pub.10.1038/nmeth.1923
    15 sg:pub.10.1038/nmeth.3103
    16 sg:pub.10.1038/nmeth.3589
    17 sg:pub.10.1038/nmeth.f.303
    18 sg:pub.10.1038/nrmicro.2017.87
    19 sg:pub.10.1038/nrmicro3400
    20 sg:pub.10.1038/s41564-017-0012-7
    21 sg:pub.10.1038/s41579-018-0029-9
    22 sg:pub.10.1038/s41592-018-0176-y
    23 sg:pub.10.1186/1471-2180-13-146
    24 sg:pub.10.1186/s13059-016-1108-8
    25 https://app.dimensions.ai/details/publication/pub.1075526270
    26 https://app.dimensions.ai/details/publication/pub.1077155949
    27 https://app.dimensions.ai/details/publication/pub.1080013201
    28 https://doi.org/10.1002/aqc.884
    29 https://doi.org/10.1016/0168-1605(94)90011-6
    30 https://doi.org/10.1016/j.clindermatol.2018.03.010
    31 https://doi.org/10.1016/j.copbio.2014.01.018
    32 https://doi.org/10.1016/j.jhydrol.2012.05.020
    33 https://doi.org/10.1016/j.resmic.2015.12.006
    34 https://doi.org/10.1016/j.ymeth.2016.02.020
    35 https://doi.org/10.1039/c5ay02550h
    36 https://doi.org/10.1046/j.1529-8019.2003.01622.x
    37 https://doi.org/10.1073/pnas.1303090110
    38 https://doi.org/10.1089/cmb.2012.0021
    39 https://doi.org/10.1093/bioinformatics/btq461
    40 https://doi.org/10.1093/bioinformatics/bts565
    41 https://doi.org/10.1093/bioinformatics/btt086
    42 https://doi.org/10.1093/bioinformatics/btu153
    43 https://doi.org/10.1093/bioinformatics/btu739
    44 https://doi.org/10.1093/bioinformatics/btw354
    45 https://doi.org/10.1093/molbev/msx148
    46 https://doi.org/10.1093/nar/gkt1244
    47 https://doi.org/10.1093/nar/gkv1189
    48 https://doi.org/10.1111/j.1365-2427.2008.02013.x
    49 https://doi.org/10.1111/j.1529-8019.2008.00200.x
    50 https://doi.org/10.1111/j.1574-6941.1999.tb00575.x
    51 https://doi.org/10.1128/aem.01303-08
    52 https://doi.org/10.1128/aem.03006-05
    53 https://doi.org/10.1128/aem.68.8.3878-3885.2002
    54 https://doi.org/10.1128/aem.71.12.8228-8235.2005
    55 https://doi.org/10.1146/annurev-micro-090816-093449
    56 https://doi.org/10.1155/2014/943824
    57 https://doi.org/10.1684/ejd.2011.1576
    58 https://doi.org/10.1899/11-111.1
    59 https://doi.org/10.3389/fmicb.2015.00454
    60 https://doi.org/10.3389/fmicb.2015.00506
    61 https://doi.org/10.3389/fmicb.2016.00783
    62 https://doi.org/10.3389/fmicb.2017.01199
    63 https://doi.org/10.4319/lo.2004.49.6.2001
    64 https://doi.org/10.7717/peerj.1029
    65 https://doi.org/10.7717/peerj.1319
    66 schema:datePublished 2019-12
    67 schema:datePublishedReg 2019-12-01
    68 schema:description BACKGROUND: Water springs provide important ecosystem services including drinking water supply, recreation, and balneotherapy, but their microbial communities remain largely unknown. In this study, we characterized the spring water microbiome of Comano Terme (Italy) at four sampling points of the thermal spa, including natural (spring and well) and human-built (storage tank, bathtubs) environments. We integrated large-scale culturing and metagenomic approaches, with the aim of comprehensively determining the spring water taxonomic composition and functional potential. RESULTS: The groundwater feeding the spring hosted the most atypical microbiome, including many taxa known to be recalcitrant to cultivation. The core microbiome included the orders Sphingomonadales, Rhizobiales, and Caulobacterales, and the families Bradyrhizobiaceae and Moraxellaceae. A comparative genomic analysis of 72 isolates and 30 metagenome-assembled genomes (MAGs) revealed that most isolates and MAGs belonged to new species or higher taxonomic ranks widely distributed in the microbial tree of life. Average nucleotide identity (ANI) values calculated for each isolated or assembled genome showed that 10 genomes belonged to known bacterial species (> 95% ANI), 36 genomes (including 1 MAG) had ANI values ranging 85-92.5% and could be assigned as undescribed species belonging to known genera, while the remaining 55 genomes had lower ANI values (< 85%). A number of functional features were significantly over- or underrepresented in genomes derived from the four sampling sites. Functional specialization was found between sites, with for example methanogenesis being unique to groundwater whereas methanotrophy was found in all samples. CONCLUSIONS: Current knowledge on aquatic microbiomes is essentially based on surface or human-associated environments. We started uncovering the spring water microbiome, highlighting an unexpected diversity that should be further investigated. This study confirms that groundwater environments host highly adapted, stable microbial communities composed of many unknown taxa, even among the culturable fraction.
    69 schema:genre research_article
    70 schema:inLanguage en
    71 schema:isAccessibleForFree true
    72 schema:isPartOf N46e459ce1d614646b58b644154aac74c
    73 Nf8497d01baed4071873b9fbde9d6c5a7
    74 sg:journal.1048878
    75 schema:name Genomic and metagenomic insights into the microbial community of a thermal spring
    76 schema:pagination 8
    77 schema:productId N6be27840eaf545a3866dbdd50eadfc53
    78 N91644c1484264a84aefbb1bad005633f
    79 N989e26fb75dd4d0ca488b5053472122d
    80 Nd8f57e83e45a471d8f9cd9a48662d5ef
    81 Nf91dd5f677d64e7cb03f02368b15faa3
    82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111593760
    83 https://doi.org/10.1186/s40168-019-0625-6
    84 schema:sdDatePublished 2019-04-11T12:40
    85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    86 schema:sdPublisher Nb698d34c5eba487bace7139091c214f6
    87 schema:url https://link.springer.com/10.1186%2Fs40168-019-0625-6
    88 sgo:license sg:explorer/license/
    89 sgo:sdDataset articles
    90 rdf:type schema:ScholarlyArticle
    91 N050f29c7b2334b8db8faead8680082fc rdf:first N7b723798f5134e6cbcb8eb4a21fadc52
    92 rdf:rest N824ff3fd01694876a0dddb39299f766d
    93 N1ae411dca0204140b8439ced1afb23a7 rdf:first sg:person.013171507055.32
    94 rdf:rest Nd2e1964591b347ab8ba627c6da414478
    95 N306248f5f7024b2e8c4e20a655023d5e rdf:first sg:person.0644076461.08
    96 rdf:rest N1ae411dca0204140b8439ced1afb23a7
    97 N39e9f914e80a4850b2865da62ee23c07 schema:name Istituto G.B. Mattei, Stenico, Italy
    98 rdf:type schema:Organization
    99 N46e459ce1d614646b58b644154aac74c schema:issueNumber 1
    100 rdf:type schema:PublicationIssue
    101 N557cf4d8c9ca430b82830cebd8cbff51 rdf:first sg:person.01135561001.54
    102 rdf:rest N306248f5f7024b2e8c4e20a655023d5e
    103 N61a497bb1a4e45c395cd3ac84f3c93e2 rdf:first sg:person.010042776075.78
    104 rdf:rest N6db1856a1f1e495aae15ffcd64e230ea
    105 N6be27840eaf545a3866dbdd50eadfc53 schema:name nlm_unique_id
    106 schema:value 101615147
    107 rdf:type schema:PropertyValue
    108 N6db1856a1f1e495aae15ffcd64e230ea rdf:first sg:person.012425575203.58
    109 rdf:rest N557cf4d8c9ca430b82830cebd8cbff51
    110 N7b723798f5134e6cbcb8eb4a21fadc52 schema:affiliation https://www.grid.ac/institutes/grid.11696.39
    111 schema:familyName Pedron
    112 schema:givenName Renato
    113 rdf:type schema:Person
    114 N824ff3fd01694876a0dddb39299f766d rdf:first sg:person.0645723132.21
    115 rdf:rest N61a497bb1a4e45c395cd3ac84f3c93e2
    116 N8c5a5066d3744e99a6cbdc96709f355f rdf:first sg:person.01301432535.25
    117 rdf:rest rdf:nil
    118 N91644c1484264a84aefbb1bad005633f schema:name readcube_id
    119 schema:value 6152892ba1ebe968fbe8c6d2882fa3bb45adb0917976af5e980fb972162961c5
    120 rdf:type schema:PropertyValue
    121 N989e26fb75dd4d0ca488b5053472122d schema:name doi
    122 schema:value 10.1186/s40168-019-0625-6
    123 rdf:type schema:PropertyValue
    124 Nb698d34c5eba487bace7139091c214f6 schema:name Springer Nature - SN SciGraph project
    125 rdf:type schema:Organization
    126 Nd2e1964591b347ab8ba627c6da414478 rdf:first sg:person.0736227144.03
    127 rdf:rest N8c5a5066d3744e99a6cbdc96709f355f
    128 Nd8f57e83e45a471d8f9cd9a48662d5ef schema:name dimensions_id
    129 schema:value pub.1111593760
    130 rdf:type schema:PropertyValue
    131 Nf8497d01baed4071873b9fbde9d6c5a7 schema:volumeNumber 7
    132 rdf:type schema:PublicationVolume
    133 Nf91dd5f677d64e7cb03f02368b15faa3 schema:name pubmed_id
    134 schema:value 30674352
    135 rdf:type schema:PropertyValue
    136 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Biological Sciences
    138 rdf:type schema:DefinedTerm
    139 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Microbiology
    141 rdf:type schema:DefinedTerm
    142 sg:journal.1048878 schema:issn 2049-2618
    143 schema:name Microbiome
    144 rdf:type schema:Periodical
    145 sg:person.010042776075.78 schema:affiliation https://www.grid.ac/institutes/grid.11696.39
    146 schema:familyName Bianconi
    147 schema:givenName Irene
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042776075.78
    149 rdf:type schema:Person
    150 sg:person.01135561001.54 schema:affiliation https://www.grid.ac/institutes/grid.11696.39
    151 schema:familyName Tett
    152 schema:givenName Adrian
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135561001.54
    154 rdf:type schema:Person
    155 sg:person.012425575203.58 schema:affiliation https://www.grid.ac/institutes/grid.11696.39
    156 schema:familyName Pasolli
    157 schema:givenName Edoardo
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012425575203.58
    159 rdf:type schema:Person
    160 sg:person.01301432535.25 schema:affiliation https://www.grid.ac/institutes/grid.11696.39
    161 schema:familyName Jousson
    162 schema:givenName Olivier
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301432535.25
    164 rdf:type schema:Person
    165 sg:person.013171507055.32 schema:affiliation N39e9f914e80a4850b2865da62ee23c07
    166 schema:familyName Cristofolini
    167 schema:givenName Mario
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013171507055.32
    169 rdf:type schema:Person
    170 sg:person.0644076461.08 schema:affiliation https://www.grid.ac/institutes/grid.11696.39
    171 schema:familyName Asnicar
    172 schema:givenName Francesco
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644076461.08
    174 rdf:type schema:Person
    175 sg:person.0645723132.21 schema:affiliation https://www.grid.ac/institutes/grid.11696.39
    176 schema:familyName Esposito
    177 schema:givenName Alfonso
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645723132.21
    179 rdf:type schema:Person
    180 sg:person.0736227144.03 schema:affiliation https://www.grid.ac/institutes/grid.11696.39
    181 schema:familyName Segata
    182 schema:givenName Nicola
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736227144.03
    184 rdf:type schema:Person
    185 sg:pub.10.1007/s00248-016-0879-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027675365
    186 https://doi.org/10.1007/s00248-016-0879-5
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/s00284-014-0659-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015954150
    189 https://doi.org/10.1007/s00284-014-0659-8
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s10040-005-0009-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025602432
    192 https://doi.org/10.1007/s10040-005-0009-9
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s10533-014-0029-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011642616
    195 https://doi.org/10.1007/s10533-014-0029-4
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s10750-005-1806-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036100076
    198 https://doi.org/10.1007/s10750-005-1806-9
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/ismej.2013.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032014220
    201 https://doi.org/10.1038/ismej.2013.3
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/ismej.2017.140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091505832
    204 https://doi.org/10.1038/ismej.2017.140
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nature14486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029031769
    207 https://doi.org/10.1038/nature14486
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nbt.3893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091105392
    210 https://doi.org/10.1038/nbt.3893
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/ncomms3304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040093094
    213 https://doi.org/10.1038/ncomms3304
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
    216 https://doi.org/10.1038/nmeth.1923
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nmeth.3103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034514160
    219 https://doi.org/10.1038/nmeth.3103
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nmeth.3589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028162909
    222 https://doi.org/10.1038/nmeth.3589
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
    225 https://doi.org/10.1038/nmeth.f.303
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/nrmicro.2017.87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091281431
    228 https://doi.org/10.1038/nrmicro.2017.87
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/nrmicro3400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046380461
    231 https://doi.org/10.1038/nrmicro3400
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/s41564-017-0012-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091527308
    234 https://doi.org/10.1038/s41564-017-0012-7
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/s41579-018-0029-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104142067
    237 https://doi.org/10.1038/s41579-018-0029-9
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/s41592-018-0176-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1107804224
    240 https://doi.org/10.1038/s41592-018-0176-y
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1186/1471-2180-13-146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039405621
    243 https://doi.org/10.1186/1471-2180-13-146
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1186/s13059-016-1108-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016471298
    246 https://doi.org/10.1186/s13059-016-1108-8
    247 rdf:type schema:CreativeWork
    248 https://app.dimensions.ai/details/publication/pub.1075526270 schema:CreativeWork
    249 https://app.dimensions.ai/details/publication/pub.1077155949 schema:CreativeWork
    250 https://app.dimensions.ai/details/publication/pub.1080013201 schema:CreativeWork
    251 https://doi.org/10.1002/aqc.884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034938558
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1016/0168-1605(94)90011-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021234514
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1016/j.clindermatol.2018.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101521741
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1016/j.copbio.2014.01.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006001969
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1016/j.jhydrol.2012.05.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020499567
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1016/j.resmic.2015.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029607227
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1016/j.ymeth.2016.02.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029409494
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1039/c5ay02550h schema:sameAs https://app.dimensions.ai/details/publication/pub.1049093032
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1046/j.1529-8019.2003.01622.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022431836
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1073/pnas.1303090110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004272737
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1089/cmb.2012.0021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059246094
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1093/bioinformatics/btq461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025904619
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1093/bioinformatics/bts565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027022529
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1093/bioinformatics/btt086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000520351
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1093/bioinformatics/btu153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031501454
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1093/bioinformatics/btu739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020707112
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1093/bioinformatics/btw354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010049881
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1093/molbev/msx148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085225815
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1093/nar/gkt1244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024952637
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1093/nar/gkv1189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042394201
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1111/j.1365-2427.2008.02013.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003917001
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1111/j.1529-8019.2008.00200.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039855657
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1111/j.1574-6941.1999.tb00575.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011627765
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1128/aem.01303-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012229916
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1128/aem.03006-05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034568952
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1128/aem.68.8.3878-3885.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015572439
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1128/aem.71.12.8228-8235.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042157769
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1146/annurev-micro-090816-093449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090861530
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1155/2014/943824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040805752
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1684/ejd.2011.1576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078473056
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1899/11-111.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036396875
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.3389/fmicb.2015.00454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053706033
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.3389/fmicb.2015.00506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029704407
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.3389/fmicb.2016.00783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012785840
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.3389/fmicb.2017.01199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090584874
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.4319/lo.2004.49.6.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040323018
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.7717/peerj.1029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045626913
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.7717/peerj.1319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047354329
    326 rdf:type schema:CreativeWork
    327 https://www.grid.ac/institutes/grid.11696.39 schema:alternateName University of Trento
    328 schema:name Centre for Integrative Biology, University of Trento, 38123, Trento, Italy
    329 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...