Dynamic linear models guide design and analysis of microbiota studies within artificial human guts View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-11-12

AUTHORS

Justin D. Silverman, Heather K. Durand, Rachael J. Bloom, Sayan Mukherjee, Lawrence A. David

ABSTRACT

BackgroundArtificial gut models provide unique opportunities to study human-associated microbiota. Outstanding questions for these models’ fundamental biology include the timescales on which microbiota vary and the factors that drive such change. Answering these questions though requires overcoming analytical obstacles like estimating the effects of technical variation on observed microbiota dynamics, as well as the lack of appropriate benchmark datasets.ResultsTo address these obstacles, we created a modeling framework based on multinomial logistic-normal dynamic linear models (MALLARDs) and performed dense longitudinal sampling of four replicate artificial human guts over the course of 1 month. The resulting analyses revealed how the ratio of biological variation to technical variation from sample processing depends on sampling frequency. In particular, we find that at hourly sampling frequencies, 76% of observed variation could be ascribed to technical sources, which could also skew the observed covariation between taxa. We also found that the artificial guts demonstrated replicable trajectories even after a recovery from a transient feed disruption. Additionally, we observed irregular sub-daily oscillatory dynamics associated with the bacterial family Enterobacteriaceae within all four replicate vessels.ConclusionsOur analyses suggest that, beyond variation due to sequence counting, technical variation from sample processing can obscure temporal variation from biological sources in artificial gut studies. Our analyses also supported hypotheses that human gut microbiota fluctuates on sub-daily timescales in the absence of a host and that microbiota can follow replicable trajectories in the presence of environmental driving forces. Finally, multiple aspects of our approach are generalizable and could ultimately be used to facilitate the design and analysis of longitudinal microbiota studies in vivo. More... »

PAGES

202

References to SciGraph publications

  • 2012-03-08. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2017-10-30. Cereal products derived from wheat, sorghum, rice and oats alter the infant gut microbiota in vitro in SCIENTIFIC REPORTS
  • 1989. Bayesian Forecasting and Dynamic Models in NONE
  • 2011-05-30. Moving pictures of the human microbiome in GENOME BIOLOGY
  • 2011-08-15. Temporal and spatial oscillations in bacteria in NATURE REVIEWS MICROBIOLOGY
  • 2017-10-02. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium in NATURE BIOTECHNOLOGY
  • 2015-09-30. Cultivation of stable, reproducible microbial communities from different fecal donors using minibioreactor arrays (MBRAs) in MICROBIOME
  • 2011-06-06. RNA-seq: technical variability and sampling in BMC GENOMICS
  • 2015-04-08. Temporal and technical variability of human gut metagenomes in GENOME BIOLOGY
  • 1986. The Statistical Analysis of Compositional Data in NONE
  • 1999-11. Biodiversity of plankton by species oscillations and chaos in NATURE
  • 2017-01-12. Intestinal microbiota as a tetrahydrobiopterin exogenous source in hph-1 mice in SCIENTIFIC REPORTS
  • 2009-02-25. Microbial awakenings in NATURE
  • 2010-04-11. QIIME allows analysis of high-throughput community sequencing data in NATURE METHODS
  • 2015-12-09. The microbiome quality control project: baseline study design and future directions in GENOME BIOLOGY
  • 2003-04. Isometric Logratio Transformations for Compositional Data Analysis in MATHEMATICAL GEOSCIENCES
  • 1993-05. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2008-02. Chaos in a long-term experiment with a plankton community in NATURE
  • 2010-09-14. Tackling the widespread and critical impact of batch effects in high-throughput data in NATURE REVIEWS GENETICS
  • 2014-07-25. Host lifestyle affects human microbiota on daily timescales in GENOME BIOLOGY
  • 2016. ggplot2, Elegant Graphics for Data Analysis in NONE
  • 2008-04-03. Characterizing mixed microbial population dynamics using time-series analysis in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2016-05-23. DADA2: High-resolution sample inference from Illumina amplicon data in NATURE METHODS
  • 2014-05-05. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis in MICROBIOME
  • 2017-11-22. Advances in Principal Balances for Compositional Data in MATHEMATICAL GEOSCIENCES
  • 2011-01-13. Microbial seed banks: the ecological and evolutionary implications of dormancy in NATURE REVIEWS MICROBIOLOGY
  • 2017-09-20. Strains, functions and dynamics in the expanded Human Microbiome Project in NATURE
  • 2011-02-24. Reproducibility and quantitation of amplicon sequencing-based detection in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40168-018-0584-3

    DOI

    http://dx.doi.org/10.1186/s40168-018-0584-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1109820176

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30419949


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Ecology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Artificial Organs", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteroides", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Enterobacteriaceae", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gastrointestinal Microbiome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gastrointestinal Tract", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Linear Models", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Anatomic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Center for Genomic and Computational Biology, Duke University, 27708, Durham, NC, USA", 
              "id": "http://www.grid.ac/institutes/grid.26009.3d", 
              "name": [
                "Program in Computational Biology and Bioinformatics, Duke University, CIEMAS, Room 2171, 101 Science Drive, Box 3382, 27708, Durham, NC, USA", 
                "Medical Scientist Training Program, Duke University, 27708, Durham, NC, USA", 
                "Center for Genomic and Computational Biology, Duke University, 27708, Durham, NC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Silverman", 
            "givenName": "Justin D.", 
            "id": "sg:person.012060543237.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012060543237.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Genetics and Microbiology, Duke University, 27708, Durham, NC, USA", 
              "id": "http://www.grid.ac/institutes/grid.26009.3d", 
              "name": [
                "Department of Molecular Genetics and Microbiology, Duke University, 27708, Durham, NC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Durand", 
            "givenName": "Heather K.", 
            "id": "sg:person.011776670466.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011776670466.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University Program in Genetics and Genomics, Duke University, 27708, Durham, NC, USA", 
              "id": "http://www.grid.ac/institutes/grid.26009.3d", 
              "name": [
                "University Program in Genetics and Genomics, Duke University, 27708, Durham, NC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bloom", 
            "givenName": "Rachael J.", 
            "id": "sg:person.016275247562.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016275247562.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departments of Statistical Science, Mathematics, Computer Science, Biostatistics & Bioinformatics, Duke University, 27708, Durham, NC, USA", 
              "id": "http://www.grid.ac/institutes/grid.26009.3d", 
              "name": [
                "Program in Computational Biology and Bioinformatics, Duke University, CIEMAS, Room 2171, 101 Science Drive, Box 3382, 27708, Durham, NC, USA", 
                "Departments of Statistical Science, Mathematics, Computer Science, Biostatistics & Bioinformatics, Duke University, 27708, Durham, NC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mukherjee", 
            "givenName": "Sayan", 
            "id": "sg:person.01250557471.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250557471.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular Genetics and Microbiology, Duke University, 27708, Durham, NC, USA", 
              "id": "http://www.grid.ac/institutes/grid.26009.3d", 
              "name": [
                "Program in Computational Biology and Bioinformatics, Duke University, CIEMAS, Room 2171, 101 Science Drive, Box 3382, 27708, Durham, NC, USA", 
                "Center for Genomic and Computational Biology, Duke University, 27708, Durham, NC, USA", 
                "University Program in Genetics and Genomics, Duke University, 27708, Durham, NC, USA", 
                "Department of Molecular Genetics and Microbiology, Duke University, 27708, Durham, NC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "David", 
            "givenName": "Lawrence A.", 
            "id": "sg:person.0671027306.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671027306.61"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/2049-2618-2-15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046874717", 
              "https://doi.org/10.1186/2049-2618-2-15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/4571083a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008944548", 
              "https://doi.org/10.1038/4571083a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2008.36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029214375", 
              "https://doi.org/10.1038/ismej.2008.36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/46540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008660342", 
              "https://doi.org/10.1038/46540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00228615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017355387", 
              "https://doi.org/10.1007/bf00228615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-4109-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109716595", 
              "https://doi.org/10.1007/978-94-009-4109-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031448617", 
              "https://doi.org/10.1038/nature06512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019280213", 
              "https://doi.org/10.1038/nrmicro2504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1023818214614", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024177181", 
              "https://doi.org/10.1023/a:1023818214614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-015-0639-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039645572", 
              "https://doi.org/10.1186/s13059-015-0639-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2014-15-7-r89", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022685985", 
              "https://doi.org/10.1186/gb-2014-15-7-r89"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep39854", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023861194", 
              "https://doi.org/10.1038/srep39854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2012.8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038992953", 
              "https://doi.org/10.1038/ismej.2012.8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40168-015-0106-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024783259", 
              "https://doi.org/10.1186/s40168-015-0106-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-015-0841-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052977184", 
              "https://doi.org/10.1186/s13059-015-0841-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016631324", 
              "https://doi.org/10.1038/nmeth.3869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.f.303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009032055", 
              "https://doi.org/10.1038/nmeth.f.303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-293", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044559205", 
              "https://doi.org/10.1186/1471-2164-12-293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2011-12-5-r50", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050643751", 
              "https://doi.org/10.1186/gb-2011-12-5-r50"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3981", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092061423", 
              "https://doi.org/10.1038/nbt.3981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2612", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026961356", 
              "https://doi.org/10.1038/nrmicro2612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2825", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037809833", 
              "https://doi.org/10.1038/nrg2825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-9365-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024951157", 
              "https://doi.org/10.1007/978-1-4757-9365-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature23889", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091863851", 
              "https://doi.org/10.1038/nature23889"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2011.11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052803559", 
              "https://doi.org/10.1038/ismej.2011.11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-14707-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092381596", 
              "https://doi.org/10.1038/s41598-017-14707-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-017-9712-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092906154", 
              "https://doi.org/10.1007/s11004-017-9712-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-24277-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028525626", 
              "https://doi.org/10.1007/978-3-319-24277-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-11-12", 
        "datePublishedReg": "2018-11-12", 
        "description": "BackgroundArtificial gut models provide unique opportunities to study human-associated microbiota. Outstanding questions for these models\u2019 fundamental biology include the timescales on which microbiota vary and the factors that drive such change. Answering these questions though requires overcoming analytical obstacles like estimating the effects of technical variation on observed microbiota dynamics, as well as the lack of appropriate benchmark datasets.ResultsTo address these obstacles, we created a modeling framework based on multinomial logistic-normal dynamic linear models (MALLARDs) and performed dense longitudinal sampling of four replicate artificial human guts over the course of 1\u00a0month. The resulting analyses revealed how the ratio of biological variation to technical variation from sample processing depends on sampling frequency. In particular, we find that at hourly sampling frequencies, 76% of observed variation could be ascribed to technical sources, which could also skew the observed covariation between taxa. We also found that the artificial guts demonstrated replicable trajectories even after a recovery from a transient feed disruption. Additionally, we observed irregular sub-daily oscillatory dynamics associated with the bacterial family Enterobacteriaceae within all four replicate vessels.ConclusionsOur analyses suggest that, beyond variation due to sequence counting, technical variation from sample processing can obscure temporal variation from biological sources in artificial gut studies. Our analyses also supported hypotheses that human gut microbiota fluctuates on sub-daily timescales in the absence of a host and that microbiota can follow replicable trajectories in the presence of environmental driving forces. Finally, multiple aspects of our approach are generalizable and could ultimately be used to facilitate the design and analysis of longitudinal microbiota studies in vivo.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s40168-018-0584-3", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7171899", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3120034", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3005332", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4318685", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5126312", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3582459", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1048878", 
            "issn": [
              "2049-2618"
            ], 
            "name": "Microbiome", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "human gut", 
          "sub-daily timescales", 
          "human-associated microbiota", 
          "bacterial family Enterobacteriaceae", 
          "microbiota studies", 
          "human gut microbiota", 
          "environmental driving forces", 
          "fundamental biology", 
          "technical variation", 
          "microbiota dynamics", 
          "appropriate benchmark datasets", 
          "observed covariation", 
          "temporal variation", 
          "observed variation", 
          "model-guided design", 
          "outstanding questions", 
          "timescales", 
          "microbiota varies", 
          "dynamic linear model", 
          "family Enterobacteriaceae", 
          "biological sources", 
          "microbiota", 
          "variation", 
          "modeling framework", 
          "gut microbiota", 
          "multiple aspects", 
          "unique opportunity", 
          "such changes", 
          "analytical obstacles", 
          "linear model", 
          "longitudinal sampling", 
          "gut", 
          "biological variation", 
          "sample processing", 
          "taxa", 
          "oscillatory dynamics", 
          "sequence counting", 
          "biology", 
          "source", 
          "driving force", 
          "dynamics", 
          "artificial gut", 
          "host", 
          "covariation", 
          "trajectories", 
          "disruption", 
          "vivo", 
          "gut model", 
          "model", 
          "benchmark datasets", 
          "analysis", 
          "technical sources", 
          "varies", 
          "changes", 
          "dataset", 
          "ResultsTo", 
          "sampling", 
          "Enterobacteriaceae", 
          "hypothesis", 
          "absence", 
          "ratio", 
          "study", 
          "presence", 
          "factors", 
          "framework", 
          "frequency", 
          "ConclusionsOur analysis", 
          "force", 
          "approach", 
          "design", 
          "questions", 
          "obstacles", 
          "effect", 
          "lack", 
          "processing", 
          "counting", 
          "guide design", 
          "opportunities", 
          "aspects", 
          "months", 
          "recovery", 
          "vessels", 
          "course"
        ], 
        "name": "Dynamic linear models guide design and analysis of microbiota studies within artificial human guts", 
        "pagination": "202", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1109820176"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40168-018-0584-3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30419949"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40168-018-0584-3", 
          "https://app.dimensions.ai/details/publication/pub.1109820176"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_788.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s40168-018-0584-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0584-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0584-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0584-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0584-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    347 TRIPLES      21 PREDICATES      147 URIs      108 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40168-018-0584-3 schema:about N01defbfe06694d31ad6c8d6519b294c9
    2 N17b4238b9bfb4880af2b247f357c418d
    3 N28d23c820c2a43128e81b5e8996b8297
    4 N452fa9cd694f4ce9b5462fc014f27154
    5 N466c35cd415d472199687df5bdff097d
    6 N48fab206c36c4a759a20c16d7a1dee87
    7 N609a6a5dc3c343fcb411487bfb440e0e
    8 Nb54124d395e241afb8b9018893a95f68
    9 anzsrc-for:06
    10 anzsrc-for:0602
    11 anzsrc-for:0605
    12 anzsrc-for:11
    13 anzsrc-for:1108
    14 schema:author Ncf6c06b656f74f17b5afac397dc7d213
    15 schema:citation sg:pub.10.1007/978-1-4757-9365-9
    16 sg:pub.10.1007/978-3-319-24277-4
    17 sg:pub.10.1007/978-94-009-4109-0
    18 sg:pub.10.1007/bf00228615
    19 sg:pub.10.1007/s11004-017-9712-z
    20 sg:pub.10.1023/a:1023818214614
    21 sg:pub.10.1038/4571083a
    22 sg:pub.10.1038/46540
    23 sg:pub.10.1038/ismej.2008.36
    24 sg:pub.10.1038/ismej.2011.11
    25 sg:pub.10.1038/ismej.2012.8
    26 sg:pub.10.1038/nature06512
    27 sg:pub.10.1038/nature23889
    28 sg:pub.10.1038/nbt.3981
    29 sg:pub.10.1038/nmeth.3869
    30 sg:pub.10.1038/nmeth.f.303
    31 sg:pub.10.1038/nrg2825
    32 sg:pub.10.1038/nrmicro2504
    33 sg:pub.10.1038/nrmicro2612
    34 sg:pub.10.1038/s41598-017-14707-z
    35 sg:pub.10.1038/srep39854
    36 sg:pub.10.1186/1471-2164-12-293
    37 sg:pub.10.1186/2049-2618-2-15
    38 sg:pub.10.1186/gb-2011-12-5-r50
    39 sg:pub.10.1186/gb-2014-15-7-r89
    40 sg:pub.10.1186/s13059-015-0639-8
    41 sg:pub.10.1186/s13059-015-0841-8
    42 sg:pub.10.1186/s40168-015-0106-5
    43 schema:datePublished 2018-11-12
    44 schema:datePublishedReg 2018-11-12
    45 schema:description BackgroundArtificial gut models provide unique opportunities to study human-associated microbiota. Outstanding questions for these models’ fundamental biology include the timescales on which microbiota vary and the factors that drive such change. Answering these questions though requires overcoming analytical obstacles like estimating the effects of technical variation on observed microbiota dynamics, as well as the lack of appropriate benchmark datasets.ResultsTo address these obstacles, we created a modeling framework based on multinomial logistic-normal dynamic linear models (MALLARDs) and performed dense longitudinal sampling of four replicate artificial human guts over the course of 1 month. The resulting analyses revealed how the ratio of biological variation to technical variation from sample processing depends on sampling frequency. In particular, we find that at hourly sampling frequencies, 76% of observed variation could be ascribed to technical sources, which could also skew the observed covariation between taxa. We also found that the artificial guts demonstrated replicable trajectories even after a recovery from a transient feed disruption. Additionally, we observed irregular sub-daily oscillatory dynamics associated with the bacterial family Enterobacteriaceae within all four replicate vessels.ConclusionsOur analyses suggest that, beyond variation due to sequence counting, technical variation from sample processing can obscure temporal variation from biological sources in artificial gut studies. Our analyses also supported hypotheses that human gut microbiota fluctuates on sub-daily timescales in the absence of a host and that microbiota can follow replicable trajectories in the presence of environmental driving forces. Finally, multiple aspects of our approach are generalizable and could ultimately be used to facilitate the design and analysis of longitudinal microbiota studies in vivo.
    46 schema:genre article
    47 schema:isAccessibleForFree true
    48 schema:isPartOf N5aa0870edff84e9b9713a04ca8c78e06
    49 N5ce722a97e474836ab076b76956101d9
    50 sg:journal.1048878
    51 schema:keywords ConclusionsOur analysis
    52 Enterobacteriaceae
    53 ResultsTo
    54 absence
    55 analysis
    56 analytical obstacles
    57 approach
    58 appropriate benchmark datasets
    59 artificial gut
    60 aspects
    61 bacterial family Enterobacteriaceae
    62 benchmark datasets
    63 biological sources
    64 biological variation
    65 biology
    66 changes
    67 counting
    68 course
    69 covariation
    70 dataset
    71 design
    72 disruption
    73 driving force
    74 dynamic linear model
    75 dynamics
    76 effect
    77 environmental driving forces
    78 factors
    79 family Enterobacteriaceae
    80 force
    81 framework
    82 frequency
    83 fundamental biology
    84 guide design
    85 gut
    86 gut microbiota
    87 gut model
    88 host
    89 human gut
    90 human gut microbiota
    91 human-associated microbiota
    92 hypothesis
    93 lack
    94 linear model
    95 longitudinal sampling
    96 microbiota
    97 microbiota dynamics
    98 microbiota studies
    99 microbiota varies
    100 model
    101 model-guided design
    102 modeling framework
    103 months
    104 multiple aspects
    105 observed covariation
    106 observed variation
    107 obstacles
    108 opportunities
    109 oscillatory dynamics
    110 outstanding questions
    111 presence
    112 processing
    113 questions
    114 ratio
    115 recovery
    116 sample processing
    117 sampling
    118 sequence counting
    119 source
    120 study
    121 sub-daily timescales
    122 such changes
    123 taxa
    124 technical sources
    125 technical variation
    126 temporal variation
    127 timescales
    128 trajectories
    129 unique opportunity
    130 variation
    131 varies
    132 vessels
    133 vivo
    134 schema:name Dynamic linear models guide design and analysis of microbiota studies within artificial human guts
    135 schema:pagination 202
    136 schema:productId N5a1f439a2f374ab7bbd1367280d1f8ca
    137 N8cb39973efae4565bd1ad8212391b720
    138 Nc811d978d14f4ca9a7484440a4ef8e9c
    139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109820176
    140 https://doi.org/10.1186/s40168-018-0584-3
    141 schema:sdDatePublished 2022-10-01T06:44
    142 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    143 schema:sdPublisher N4933371444cf49c78ae0a85c565a7829
    144 schema:url https://doi.org/10.1186/s40168-018-0584-3
    145 sgo:license sg:explorer/license/
    146 sgo:sdDataset articles
    147 rdf:type schema:ScholarlyArticle
    148 N01defbfe06694d31ad6c8d6519b294c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Bacteroides
    150 rdf:type schema:DefinedTerm
    151 N17b4238b9bfb4880af2b247f357c418d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Humans
    153 rdf:type schema:DefinedTerm
    154 N28d23c820c2a43128e81b5e8996b8297 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Artificial Organs
    156 rdf:type schema:DefinedTerm
    157 N452fa9cd694f4ce9b5462fc014f27154 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Enterobacteriaceae
    159 rdf:type schema:DefinedTerm
    160 N466c35cd415d472199687df5bdff097d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Gastrointestinal Tract
    162 rdf:type schema:DefinedTerm
    163 N48fab206c36c4a759a20c16d7a1dee87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Linear Models
    165 rdf:type schema:DefinedTerm
    166 N4933371444cf49c78ae0a85c565a7829 schema:name Springer Nature - SN SciGraph project
    167 rdf:type schema:Organization
    168 N4eb048fe50d54b6f8e2a9e935908c371 rdf:first sg:person.0671027306.61
    169 rdf:rest rdf:nil
    170 N5a1f439a2f374ab7bbd1367280d1f8ca schema:name doi
    171 schema:value 10.1186/s40168-018-0584-3
    172 rdf:type schema:PropertyValue
    173 N5aa0870edff84e9b9713a04ca8c78e06 schema:volumeNumber 6
    174 rdf:type schema:PublicationVolume
    175 N5ce722a97e474836ab076b76956101d9 schema:issueNumber 1
    176 rdf:type schema:PublicationIssue
    177 N609a6a5dc3c343fcb411487bfb440e0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Models, Anatomic
    179 rdf:type schema:DefinedTerm
    180 N8aa3a3416bc441d78896758c74ff015b rdf:first sg:person.011776670466.62
    181 rdf:rest Ndc4752c4ff524b88ab194a4850d306a6
    182 N8cb39973efae4565bd1ad8212391b720 schema:name pubmed_id
    183 schema:value 30419949
    184 rdf:type schema:PropertyValue
    185 Nb54124d395e241afb8b9018893a95f68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Gastrointestinal Microbiome
    187 rdf:type schema:DefinedTerm
    188 Nbb183c6304754f40b9e0e1a6bf17c741 rdf:first sg:person.01250557471.79
    189 rdf:rest N4eb048fe50d54b6f8e2a9e935908c371
    190 Nc811d978d14f4ca9a7484440a4ef8e9c schema:name dimensions_id
    191 schema:value pub.1109820176
    192 rdf:type schema:PropertyValue
    193 Ncf6c06b656f74f17b5afac397dc7d213 rdf:first sg:person.012060543237.43
    194 rdf:rest N8aa3a3416bc441d78896758c74ff015b
    195 Ndc4752c4ff524b88ab194a4850d306a6 rdf:first sg:person.016275247562.92
    196 rdf:rest Nbb183c6304754f40b9e0e1a6bf17c741
    197 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    198 schema:name Biological Sciences
    199 rdf:type schema:DefinedTerm
    200 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
    201 schema:name Ecology
    202 rdf:type schema:DefinedTerm
    203 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    204 schema:name Microbiology
    205 rdf:type schema:DefinedTerm
    206 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    207 schema:name Medical and Health Sciences
    208 rdf:type schema:DefinedTerm
    209 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
    210 schema:name Medical Microbiology
    211 rdf:type schema:DefinedTerm
    212 sg:grant.3005332 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-018-0584-3
    213 rdf:type schema:MonetaryGrant
    214 sg:grant.3120034 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-018-0584-3
    215 rdf:type schema:MonetaryGrant
    216 sg:grant.3582459 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-018-0584-3
    217 rdf:type schema:MonetaryGrant
    218 sg:grant.4318685 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-018-0584-3
    219 rdf:type schema:MonetaryGrant
    220 sg:grant.5126312 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-018-0584-3
    221 rdf:type schema:MonetaryGrant
    222 sg:grant.7171899 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-018-0584-3
    223 rdf:type schema:MonetaryGrant
    224 sg:journal.1048878 schema:issn 2049-2618
    225 schema:name Microbiome
    226 schema:publisher Springer Nature
    227 rdf:type schema:Periodical
    228 sg:person.011776670466.62 schema:affiliation grid-institutes:grid.26009.3d
    229 schema:familyName Durand
    230 schema:givenName Heather K.
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011776670466.62
    232 rdf:type schema:Person
    233 sg:person.012060543237.43 schema:affiliation grid-institutes:grid.26009.3d
    234 schema:familyName Silverman
    235 schema:givenName Justin D.
    236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012060543237.43
    237 rdf:type schema:Person
    238 sg:person.01250557471.79 schema:affiliation grid-institutes:grid.26009.3d
    239 schema:familyName Mukherjee
    240 schema:givenName Sayan
    241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250557471.79
    242 rdf:type schema:Person
    243 sg:person.016275247562.92 schema:affiliation grid-institutes:grid.26009.3d
    244 schema:familyName Bloom
    245 schema:givenName Rachael J.
    246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016275247562.92
    247 rdf:type schema:Person
    248 sg:person.0671027306.61 schema:affiliation grid-institutes:grid.26009.3d
    249 schema:familyName David
    250 schema:givenName Lawrence A.
    251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671027306.61
    252 rdf:type schema:Person
    253 sg:pub.10.1007/978-1-4757-9365-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024951157
    254 https://doi.org/10.1007/978-1-4757-9365-9
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1007/978-3-319-24277-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028525626
    257 https://doi.org/10.1007/978-3-319-24277-4
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1007/978-94-009-4109-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109716595
    260 https://doi.org/10.1007/978-94-009-4109-0
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1007/bf00228615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017355387
    263 https://doi.org/10.1007/bf00228615
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1007/s11004-017-9712-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1092906154
    266 https://doi.org/10.1007/s11004-017-9712-z
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1023/a:1023818214614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024177181
    269 https://doi.org/10.1023/a:1023818214614
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/4571083a schema:sameAs https://app.dimensions.ai/details/publication/pub.1008944548
    272 https://doi.org/10.1038/4571083a
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/46540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008660342
    275 https://doi.org/10.1038/46540
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/ismej.2008.36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029214375
    278 https://doi.org/10.1038/ismej.2008.36
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/ismej.2011.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052803559
    281 https://doi.org/10.1038/ismej.2011.11
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/ismej.2012.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038992953
    284 https://doi.org/10.1038/ismej.2012.8
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/nature06512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031448617
    287 https://doi.org/10.1038/nature06512
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/nature23889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091863851
    290 https://doi.org/10.1038/nature23889
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/nbt.3981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092061423
    293 https://doi.org/10.1038/nbt.3981
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1038/nmeth.3869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016631324
    296 https://doi.org/10.1038/nmeth.3869
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
    299 https://doi.org/10.1038/nmeth.f.303
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1038/nrg2825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037809833
    302 https://doi.org/10.1038/nrg2825
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1038/nrmicro2504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019280213
    305 https://doi.org/10.1038/nrmicro2504
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1038/nrmicro2612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026961356
    308 https://doi.org/10.1038/nrmicro2612
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1038/s41598-017-14707-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1092381596
    311 https://doi.org/10.1038/s41598-017-14707-z
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1038/srep39854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023861194
    314 https://doi.org/10.1038/srep39854
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1186/1471-2164-12-293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044559205
    317 https://doi.org/10.1186/1471-2164-12-293
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1186/2049-2618-2-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046874717
    320 https://doi.org/10.1186/2049-2618-2-15
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1186/gb-2011-12-5-r50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050643751
    323 https://doi.org/10.1186/gb-2011-12-5-r50
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1186/gb-2014-15-7-r89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022685985
    326 https://doi.org/10.1186/gb-2014-15-7-r89
    327 rdf:type schema:CreativeWork
    328 sg:pub.10.1186/s13059-015-0639-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039645572
    329 https://doi.org/10.1186/s13059-015-0639-8
    330 rdf:type schema:CreativeWork
    331 sg:pub.10.1186/s13059-015-0841-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052977184
    332 https://doi.org/10.1186/s13059-015-0841-8
    333 rdf:type schema:CreativeWork
    334 sg:pub.10.1186/s40168-015-0106-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024783259
    335 https://doi.org/10.1186/s40168-015-0106-5
    336 rdf:type schema:CreativeWork
    337 grid-institutes:grid.26009.3d schema:alternateName Center for Genomic and Computational Biology, Duke University, 27708, Durham, NC, USA
    338 Department of Molecular Genetics and Microbiology, Duke University, 27708, Durham, NC, USA
    339 Departments of Statistical Science, Mathematics, Computer Science, Biostatistics & Bioinformatics, Duke University, 27708, Durham, NC, USA
    340 University Program in Genetics and Genomics, Duke University, 27708, Durham, NC, USA
    341 schema:name Center for Genomic and Computational Biology, Duke University, 27708, Durham, NC, USA
    342 Department of Molecular Genetics and Microbiology, Duke University, 27708, Durham, NC, USA
    343 Departments of Statistical Science, Mathematics, Computer Science, Biostatistics & Bioinformatics, Duke University, 27708, Durham, NC, USA
    344 Medical Scientist Training Program, Duke University, 27708, Durham, NC, USA
    345 Program in Computational Biology and Bioinformatics, Duke University, CIEMAS, Room 2171, 101 Science Drive, Box 3382, 27708, Durham, NC, USA
    346 University Program in Genetics and Genomics, Duke University, 27708, Durham, NC, USA
    347 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...