Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10-23

AUTHORS

Joshua P. Earl, Nithin D. Adappa, Jaroslaw Krol, Archana S. Bhat, Sergey Balashov, Rachel L. Ehrlich, James N. Palmer, Alan D. Workman, Mariel Blasetti, Bhaswati Sen, Jocelyn Hammond, Noam A. Cohen, Garth D. Ehrlich, Joshua Chang Mell

ABSTRACT

BackgroundPan-bacterial 16S rRNA microbiome surveys performed with massively parallel DNA sequencing technologies have transformed community microbiological studies. Current 16S profiling methods, however, fail to provide sufficient taxonomic resolution and accuracy to adequately perform species-level associative studies for specific conditions. This is due to the amplification and sequencing of only short 16S rRNA gene regions, typically providing for only family- or genus-level taxonomy. Moreover, sequencing errors often inflate the number of taxa present. Pacific Biosciences’ (PacBio’s) long-read technology in particular suffers from high error rates per base. Herein, we present a microbiome analysis pipeline that takes advantage of PacBio circular consensus sequencing (CCS) technology to sequence and error correct full-length bacterial 16S rRNA genes, which provides high-fidelity species-level microbiome data.ResultsAnalysis of a mock community with 20 bacterial species demonstrated 100% specificity and sensitivity with regard to taxonomic classification. Examination of a 250-plus species mock community demonstrated correct species-level classification of > 90% of taxa, and relative abundances were accurately captured. The majority of the remaining taxa were demonstrated to be multiply, incorrectly, or incompletely classified. Using this methodology, we examined the microgeographic variation present among the microbiomes of six sinonasal sites, by both swab and biopsy, from the anterior nasal cavity to the sphenoid sinus from 12 subjects undergoing trans-sphenoidal hypophysectomy. We found greater variation among subjects than among sites within a subject, although significant within-individual differences were also observed. Propiniobacterium acnes (recently renamed Cutibacterium acnes) was the predominant species throughout, but was found at distinct relative abundances by site.ConclusionsOur microbial composition analysis pipeline for single-molecule real-time 16S rRNA gene sequencing (MCSMRT, https://github.com/jpearl01/mcsmrt) overcomes deficits of standard marker gene-based microbiome analyses by using CCS of entire 16S rRNA genes to provide increased taxonomic and phylogenetic resolution. Extensions of this approach to other marker genes could help refine taxonomic assignments of microbial species and improve reference databases, as well as strengthen the specificity of associations between microbial communities and dysbiotic states. More... »

PAGES

190

References to SciGraph publications

  • 2011-12-01. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2010-11. Meeting Report: The Terabase Metagenomics Workshop and the Vision of an Earth Microbiome Project in ENVIRONMENTAL MICROBIOME
  • 2014-10-17. Minimum entropy decomposition: Unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2013-03-04. Microbial phylogenetic profiling with the Pacific Biosciences sequencing platform in MICROBIOME
  • 2014-08-11. The nasal cavity microbiota of healthy adults in MICROBIOME
  • 2007. SeqinR 1.0-2: A Contributed Package to the R Project for Statistical Computing Devoted to Biological Sequences Retrieval and Analysis in STRUCTURAL APPROACHES TO SEQUENCE EVOLUTION
  • 2013-08-18. UPARSE: highly accurate OTU sequences from microbial amplicon reads in NATURE METHODS
  • 2011-12-14. Estimation of bacterial diversity using next generation sequencing of 16S rDNA: a comparison of different workflows in BMC BIOINFORMATICS
  • 2017-03-14. SILVA, RDP, Greengenes, NCBI and OTT — how do these taxonomies compare? in BMC GENOMICS
  • 2016-04-20. A perspective on 16S rRNA operational taxonomic unit clustering using sequence similarity in NPJ BIOFILMS AND MICROBIOMES
  • 2013-01-01. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing in NATURE METHODS
  • 2015-05-05. Deriving accurate microbiota profiles from human samples with low bacterial content through post-sequencing processing of Illumina MiSeq data in MICROBIOME
  • 2013-05-08. The microbiome of chronic rhinosinusitis: culture, molecular diagnostics and biofilm detection in BMC INFECTIOUS DISEASES
  • 2010-04-11. QIIME allows analysis of high-throughput community sequencing data in NATURE METHODS
  • 2014-09-16. 16S rRNA gene pyrosequencing of reference and clinical samples and investigation of the temperature stability of microbiome profiles in MICROBIOME
  • 2016-07-11. Metagenome-wide association studies: fine-mining the microbiome in NATURE REVIEWS MICROBIOLOGY
  • 2017-10-02. Critical Assessment of Metagenome Interpretation—a benchmark of metagenomics software in NATURE METHODS
  • 2011-06-25. Exploring internal features of 16S rRNA gene for identification of clinically relevant species of the genus Streptococcus in ANNALS OF CLINICAL MICROBIOLOGY AND ANTIMICROBIALS
  • 2016-11-14. Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification in BMC MICROBIOLOGY
  • 2016-02-09. High-resolution phylogenetic microbial community profiling in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2016-05-23. DADA2: High-resolution sample inference from Illumina amplicon data in NATURE METHODS
  • 2016-01-14. A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling in BMC GENOMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40168-018-0569-2

    DOI

    http://dx.doi.org/10.1186/s40168-018-0569-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107801533

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30352611


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "High-Throughput Nucleotide Sequencing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hypophysectomy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbiota", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Typing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Paranasal Sinuses", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Ribosomal, 16S", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, 19102, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.166341.7", 
              "name": [
                "Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, 19102, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Earl", 
            "givenName": "Joshua P.", 
            "id": "sg:person.015030316477.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015030316477.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Veteran\u2019s Administration Medical Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, 19104-4283, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.410355.6", 
              "name": [
                "Veteran\u2019s Administration Medical Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, 19104-4283, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Adappa", 
            "givenName": "Nithin D.", 
            "id": "sg:person.01153207273.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153207273.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, 19102, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.166341.7", 
              "name": [
                "Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, 19102, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krol", 
            "givenName": "Jaroslaw", 
            "id": "sg:person.0617133054.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617133054.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, 19102, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.166341.7", 
              "name": [
                "Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, 19102, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bhat", 
            "givenName": "Archana S.", 
            "id": "sg:person.013241426220.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013241426220.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, 19102, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.166341.7", 
              "name": [
                "Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, 19102, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Balashov", 
            "givenName": "Sergey", 
            "id": "sg:person.01275206652.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275206652.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, 19102, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.166341.7", 
              "name": [
                "Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, 19102, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ehrlich", 
            "givenName": "Rachel L.", 
            "id": "sg:person.015406727401.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015406727401.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Veteran\u2019s Administration Medical Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, 19104-4283, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.410355.6", 
              "name": [
                "Veteran\u2019s Administration Medical Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, 19104-4283, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Palmer", 
            "givenName": "James N.", 
            "id": "sg:person.01001071724.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001071724.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Veteran\u2019s Administration Medical Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, 19104-4283, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.410355.6", 
              "name": [
                "Veteran\u2019s Administration Medical Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, 19104-4283, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Workman", 
            "givenName": "Alan D.", 
            "id": "sg:person.0736425123.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736425123.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Veteran\u2019s Administration Medical Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, 19104-4283, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.410355.6", 
              "name": [
                "Veteran\u2019s Administration Medical Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, 19104-4283, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Blasetti", 
            "givenName": "Mariel", 
            "id": "sg:person.012117521633.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012117521633.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, 19102, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.166341.7", 
              "name": [
                "Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, 19102, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sen", 
            "givenName": "Bhaswati", 
            "id": "sg:person.01244654061.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244654061.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, 19102, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.166341.7", 
              "name": [
                "Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, 19102, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hammond", 
            "givenName": "Jocelyn", 
            "id": "sg:person.011136245472.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011136245472.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Veteran\u2019s Administration Medical Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, 19104-4283, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.410355.6", 
              "name": [
                "Veteran\u2019s Administration Medical Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, 19104-4283, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cohen", 
            "givenName": "Noam A.", 
            "id": "sg:person.01047205124.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047205124.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, 19102, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.166341.7", 
              "name": [
                "Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, 19102, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ehrlich", 
            "givenName": "Garth D.", 
            "id": "sg:person.01324252605.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324252605.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, 19102, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.166341.7", 
              "name": [
                "Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, 19102, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mell", 
            "givenName": "Joshua Chang", 
            "id": "sg:person.01346756711.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346756711.21"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1476-0711-10-28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001158379", 
              "https://doi.org/10.1186/1476-0711-10-28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-017-3501-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084250048", 
              "https://doi.org/10.1186/s12864-017-3501-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.f.303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009032055", 
              "https://doi.org/10.1038/nmeth.f.303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-015-2194-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027095113", 
              "https://doi.org/10.1186/s12864-015-2194-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2334-13-210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016577304", 
              "https://doi.org/10.1186/1471-2334-13-210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.4056/sigs.1433550", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015489166", 
              "https://doi.org/10.4056/sigs.1433550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2011.139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051863807", 
              "https://doi.org/10.1038/ismej.2011.139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40168-015-0083-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002478055", 
              "https://doi.org/10.1186/s40168-015-0083-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2014.195", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053327775", 
              "https://doi.org/10.1038/ismej.2014.195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2049-2618-2-27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008381636", 
              "https://doi.org/10.1186/2049-2618-2-27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro.2016.83", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023858855", 
              "https://doi.org/10.1038/nrmicro.2016.83"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027743851", 
              "https://doi.org/10.1038/nmeth.2604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013305415", 
              "https://doi.org/10.1186/1471-2105-12-473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2049-2618-1-10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028553379", 
              "https://doi.org/10.1186/2049-2618-1-10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039195944", 
              "https://doi.org/10.1038/nmeth.2276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016631324", 
              "https://doi.org/10.1038/nmeth.3869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.4458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092065319", 
              "https://doi.org/10.1038/nmeth.4458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/npjbiofilms.2016.4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007308813", 
              "https://doi.org/10.1038/npjbiofilms.2016.4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-35306-5_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019513363", 
              "https://doi.org/10.1007/978-3-540-35306-5_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12866-016-0891-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036827499", 
              "https://doi.org/10.1186/s12866-016-0891-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2015.249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001395180", 
              "https://doi.org/10.1038/ismej.2015.249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2049-2618-2-31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003755394", 
              "https://doi.org/10.1186/2049-2618-2-31"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-10-23", 
        "datePublishedReg": "2018-10-23", 
        "description": "BackgroundPan-bacterial 16S rRNA microbiome surveys performed with massively parallel DNA sequencing technologies have transformed community microbiological studies. Current 16S profiling methods, however, fail to provide sufficient taxonomic resolution and accuracy to adequately perform species-level associative studies for specific conditions. This is due to the amplification and sequencing of only short 16S rRNA gene regions, typically providing for only family- or genus-level taxonomy. Moreover, sequencing errors often inflate the number of taxa present. Pacific Biosciences\u2019 (PacBio\u2019s) long-read technology in particular suffers from high error rates per base. Herein, we present a microbiome analysis pipeline that takes advantage of PacBio circular consensus sequencing (CCS) technology to sequence and error correct full-length bacterial 16S rRNA genes, which provides high-fidelity species-level microbiome data.ResultsAnalysis of a mock community with 20 bacterial species demonstrated 100% specificity and sensitivity with regard to taxonomic classification. Examination of a 250-plus species mock community demonstrated correct species-level classification of >\u200990% of taxa, and relative abundances were accurately captured. The majority of the remaining taxa were demonstrated to be multiply, incorrectly, or incompletely classified. Using this methodology, we examined the microgeographic variation present among the microbiomes of six sinonasal sites, by both swab and biopsy, from the anterior nasal cavity to the sphenoid sinus from 12 subjects undergoing trans-sphenoidal hypophysectomy. We found greater variation among subjects than among sites within a subject, although significant within-individual differences were also observed. Propiniobacterium acnes (recently renamed Cutibacterium acnes) was the predominant species throughout, but was found at distinct relative abundances by site.ConclusionsOur microbial composition analysis pipeline for single-molecule real-time 16S rRNA gene sequencing (MCSMRT, https://github.com/jpearl01/mcsmrt) overcomes deficits of standard marker gene-based microbiome analyses by using CCS of entire 16S rRNA genes to provide increased taxonomic and phylogenetic resolution. Extensions of this approach to other marker genes could help refine taxonomic assignments of microbial species and improve reference databases, as well as strengthen the specificity of associations between microbial communities and dysbiotic states.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s40168-018-0569-2", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3624242", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2488072", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2690215", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1048878", 
            "issn": [
              "2049-2618"
            ], 
            "name": "Microbiome", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "rRNA gene", 
          "mock communities", 
          "sequencing technologies", 
          "parallel DNA sequencing technologies", 
          "relative abundance", 
          "distinct relative abundances", 
          "genus-level taxonomy", 
          "Pacific Biosciences sequencing", 
          "sufficient taxonomic resolution", 
          "rRNA gene region", 
          "DNA sequencing technologies", 
          "microbiome analysis pipeline", 
          "number of taxa", 
          "bacterial community profiling", 
          "species-level classification", 
          "analysis pipeline", 
          "rRNA gene sequencing", 
          "phylogenetic resolution", 
          "taxonomic resolution", 
          "microbial communities", 
          "microgeographic variation", 
          "microbial species", 
          "community profiling", 
          "microbiome surveys", 
          "Pacific Biosciences", 
          "taxonomic assignment", 
          "marker genes", 
          "taxonomic classification", 
          "gene region", 
          "bacterial species", 
          "taxa", 
          "genes", 
          "only family", 
          "gene sequencing", 
          "microbiome data", 
          "sequencing", 
          "species", 
          "microbiome analysis", 
          "reference database", 
          "specificity of association", 
          "profiling method", 
          "dysbiotic state", 
          "predominant species", 
          "abundance", 
          "microbiome", 
          "great variation", 
          "sites", 
          "associative studies", 
          "microbiological studies", 
          "profiling", 
          "particular suffers", 
          "community", 
          "specificity", 
          "taxonomy", 
          "family", 
          "variation", 
          "amplification", 
          "sinonasal sites", 
          "biosciences", 
          "high error rate", 
          "pipeline", 
          "specific conditions", 
          "region", 
          "study", 
          "multiply", 
          "resolution", 
          "sinonasal microbiome", 
          "Herein", 
          "association", 
          "analysis", 
          "number", 
          "majority", 
          "assignment", 
          "conditions", 
          "anterior nasal cavity", 
          "differences", 
          "database", 
          "sensitivity", 
          "data", 
          "trans-sphenoidal hypophysectomy", 
          "base", 
          "classification", 
          "technology", 
          "rate", 
          "individual differences", 
          "ResultsAnalysis", 
          "approach", 
          "state", 
          "deficits", 
          "regard", 
          "extension", 
          "cavity", 
          "swabs", 
          "advantages", 
          "hypophysectomy", 
          "survey", 
          "nasal cavity", 
          "method", 
          "acne", 
          "examination", 
          "CCS", 
          "methodology", 
          "error rate", 
          "suffers", 
          "biopsy", 
          "subjects", 
          "accuracy", 
          "error", 
          "sinus", 
          "sphenoid sinus"
        ], 
        "name": "Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes", 
        "pagination": "190", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107801533"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40168-018-0569-2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30352611"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40168-018-0569-2", 
          "https://app.dimensions.ai/details/publication/pub.1107801533"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_759.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s40168-018-0569-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0569-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0569-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0569-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0569-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    414 TRIPLES      21 PREDICATES      171 URIs      140 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40168-018-0569-2 schema:about N0b5f0e30187845b5b3c2f303521d394d
    2 N1eaf042dc5034d17b70359e288a8ccca
    3 N2d6da7dae5aa4c5c915a99d89a5d9692
    4 N53815602e33e4bd3b22e845309802aee
    5 N656567e645064adf975bfbe3ee66fb5c
    6 N80261696575e43d78fd9f04743d3561a
    7 N8470d2143ebe4eec978762f885449e65
    8 N8c531b806f5e4db2838b146f76e9d37f
    9 Na8908211590948ab9e8ff8bc5ade3aac
    10 Nd65b993cf44c437ca3c2c4b7d720caf2
    11 Ne6ad6c94e6014b5b892d6a7384be0247
    12 Nf647345fc4354d07852004ae3930d5f0
    13 Nf7b5ee3ba9ee40938f28c4e04460ff22
    14 anzsrc-for:06
    15 anzsrc-for:0604
    16 anzsrc-for:0605
    17 schema:author N622a993538894206b58d2b9007452b98
    18 schema:citation sg:pub.10.1007/978-3-540-35306-5_10
    19 sg:pub.10.1038/ismej.2011.139
    20 sg:pub.10.1038/ismej.2014.195
    21 sg:pub.10.1038/ismej.2015.249
    22 sg:pub.10.1038/nmeth.2276
    23 sg:pub.10.1038/nmeth.2604
    24 sg:pub.10.1038/nmeth.3869
    25 sg:pub.10.1038/nmeth.4458
    26 sg:pub.10.1038/nmeth.f.303
    27 sg:pub.10.1038/npjbiofilms.2016.4
    28 sg:pub.10.1038/nrmicro.2016.83
    29 sg:pub.10.1186/1471-2105-12-473
    30 sg:pub.10.1186/1471-2334-13-210
    31 sg:pub.10.1186/1476-0711-10-28
    32 sg:pub.10.1186/2049-2618-1-10
    33 sg:pub.10.1186/2049-2618-2-27
    34 sg:pub.10.1186/2049-2618-2-31
    35 sg:pub.10.1186/s12864-015-2194-9
    36 sg:pub.10.1186/s12864-017-3501-4
    37 sg:pub.10.1186/s12866-016-0891-4
    38 sg:pub.10.1186/s40168-015-0083-8
    39 sg:pub.10.4056/sigs.1433550
    40 schema:datePublished 2018-10-23
    41 schema:datePublishedReg 2018-10-23
    42 schema:description BackgroundPan-bacterial 16S rRNA microbiome surveys performed with massively parallel DNA sequencing technologies have transformed community microbiological studies. Current 16S profiling methods, however, fail to provide sufficient taxonomic resolution and accuracy to adequately perform species-level associative studies for specific conditions. This is due to the amplification and sequencing of only short 16S rRNA gene regions, typically providing for only family- or genus-level taxonomy. Moreover, sequencing errors often inflate the number of taxa present. Pacific Biosciences’ (PacBio’s) long-read technology in particular suffers from high error rates per base. Herein, we present a microbiome analysis pipeline that takes advantage of PacBio circular consensus sequencing (CCS) technology to sequence and error correct full-length bacterial 16S rRNA genes, which provides high-fidelity species-level microbiome data.ResultsAnalysis of a mock community with 20 bacterial species demonstrated 100% specificity and sensitivity with regard to taxonomic classification. Examination of a 250-plus species mock community demonstrated correct species-level classification of > 90% of taxa, and relative abundances were accurately captured. The majority of the remaining taxa were demonstrated to be multiply, incorrectly, or incompletely classified. Using this methodology, we examined the microgeographic variation present among the microbiomes of six sinonasal sites, by both swab and biopsy, from the anterior nasal cavity to the sphenoid sinus from 12 subjects undergoing trans-sphenoidal hypophysectomy. We found greater variation among subjects than among sites within a subject, although significant within-individual differences were also observed. Propiniobacterium acnes (recently renamed Cutibacterium acnes) was the predominant species throughout, but was found at distinct relative abundances by site.ConclusionsOur microbial composition analysis pipeline for single-molecule real-time 16S rRNA gene sequencing (MCSMRT, https://github.com/jpearl01/mcsmrt) overcomes deficits of standard marker gene-based microbiome analyses by using CCS of entire 16S rRNA genes to provide increased taxonomic and phylogenetic resolution. Extensions of this approach to other marker genes could help refine taxonomic assignments of microbial species and improve reference databases, as well as strengthen the specificity of associations between microbial communities and dysbiotic states.
    43 schema:genre article
    44 schema:isAccessibleForFree true
    45 schema:isPartOf N3178ffbc76da4151a155e78cb542f0bc
    46 Nb36af2502f1343b98d2c01eda766ada7
    47 sg:journal.1048878
    48 schema:keywords CCS
    49 DNA sequencing technologies
    50 Herein
    51 Pacific Biosciences
    52 Pacific Biosciences sequencing
    53 ResultsAnalysis
    54 abundance
    55 accuracy
    56 acne
    57 advantages
    58 amplification
    59 analysis
    60 analysis pipeline
    61 anterior nasal cavity
    62 approach
    63 assignment
    64 association
    65 associative studies
    66 bacterial community profiling
    67 bacterial species
    68 base
    69 biopsy
    70 biosciences
    71 cavity
    72 classification
    73 community
    74 community profiling
    75 conditions
    76 data
    77 database
    78 deficits
    79 differences
    80 distinct relative abundances
    81 dysbiotic state
    82 error
    83 error rate
    84 examination
    85 extension
    86 family
    87 gene region
    88 gene sequencing
    89 genes
    90 genus-level taxonomy
    91 great variation
    92 high error rate
    93 hypophysectomy
    94 individual differences
    95 majority
    96 marker genes
    97 method
    98 methodology
    99 microbial communities
    100 microbial species
    101 microbiological studies
    102 microbiome
    103 microbiome analysis
    104 microbiome analysis pipeline
    105 microbiome data
    106 microbiome surveys
    107 microgeographic variation
    108 mock communities
    109 multiply
    110 nasal cavity
    111 number
    112 number of taxa
    113 only family
    114 parallel DNA sequencing technologies
    115 particular suffers
    116 phylogenetic resolution
    117 pipeline
    118 predominant species
    119 profiling
    120 profiling method
    121 rRNA gene
    122 rRNA gene region
    123 rRNA gene sequencing
    124 rate
    125 reference database
    126 regard
    127 region
    128 relative abundance
    129 resolution
    130 sensitivity
    131 sequencing
    132 sequencing technologies
    133 sinonasal microbiome
    134 sinonasal sites
    135 sinus
    136 sites
    137 species
    138 species-level classification
    139 specific conditions
    140 specificity
    141 specificity of association
    142 sphenoid sinus
    143 state
    144 study
    145 subjects
    146 suffers
    147 sufficient taxonomic resolution
    148 survey
    149 swabs
    150 taxa
    151 taxonomic assignment
    152 taxonomic classification
    153 taxonomic resolution
    154 taxonomy
    155 technology
    156 trans-sphenoidal hypophysectomy
    157 variation
    158 schema:name Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes
    159 schema:pagination 190
    160 schema:productId N3c5abcfc4843431c8fab02ed8d86c51f
    161 N51afe479656a4af089e2a68b20e190e3
    162 Nd02b060ed0884ac1b4f92dffafb8a614
    163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107801533
    164 https://doi.org/10.1186/s40168-018-0569-2
    165 schema:sdDatePublished 2022-08-04T17:07
    166 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    167 schema:sdPublisher N419274c246ca4147a30cc84d0ce6315a
    168 schema:url https://doi.org/10.1186/s40168-018-0569-2
    169 sgo:license sg:explorer/license/
    170 sgo:sdDataset articles
    171 rdf:type schema:ScholarlyArticle
    172 N0b5f0e30187845b5b3c2f303521d394d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Paranasal Sinuses
    174 rdf:type schema:DefinedTerm
    175 N17fad844dd9b4b0e8f94b9b09b04eb14 rdf:first sg:person.01324252605.57
    176 rdf:rest Nffd20cf5f8b44665adaa7ea6f4f106db
    177 N1eaf042dc5034d17b70359e288a8ccca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Microbiota
    179 rdf:type schema:DefinedTerm
    180 N2d6da7dae5aa4c5c915a99d89a5d9692 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Phylogeny
    182 rdf:type schema:DefinedTerm
    183 N3178ffbc76da4151a155e78cb542f0bc schema:volumeNumber 6
    184 rdf:type schema:PublicationVolume
    185 N343c1874303e41c58dfcf58e943ad61d rdf:first sg:person.01275206652.37
    186 rdf:rest N70dd4fae346a4f07be641669bc09fca8
    187 N3c5abcfc4843431c8fab02ed8d86c51f schema:name dimensions_id
    188 schema:value pub.1107801533
    189 rdf:type schema:PropertyValue
    190 N419274c246ca4147a30cc84d0ce6315a schema:name Springer Nature - SN SciGraph project
    191 rdf:type schema:Organization
    192 N51afe479656a4af089e2a68b20e190e3 schema:name doi
    193 schema:value 10.1186/s40168-018-0569-2
    194 rdf:type schema:PropertyValue
    195 N53815602e33e4bd3b22e845309802aee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    196 schema:name Humans
    197 rdf:type schema:DefinedTerm
    198 N622a993538894206b58d2b9007452b98 rdf:first sg:person.015030316477.18
    199 rdf:rest N9c59204e0c5d4bb2ab83949594df0292
    200 N656567e645064adf975bfbe3ee66fb5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    201 schema:name Sequence Analysis, DNA
    202 rdf:type schema:DefinedTerm
    203 N6c8eb719b6aa4fd893dea826ef3ebf88 rdf:first sg:person.01047205124.20
    204 rdf:rest N17fad844dd9b4b0e8f94b9b09b04eb14
    205 N6e6ecf0ea27246d4a0a743232fb423cd rdf:first sg:person.0736425123.54
    206 rdf:rest Nd02cfbca6be74054b0e791ab30014211
    207 N70dd4fae346a4f07be641669bc09fca8 rdf:first sg:person.015406727401.39
    208 rdf:rest Nac4fd8d3b36f40fdb45f28d28e45e2b8
    209 N74adac95689a4c4aaf611c4a9e55fb30 rdf:first sg:person.01244654061.86
    210 rdf:rest N8a74f895a0f942879aa2295b2bd1eec3
    211 N80261696575e43d78fd9f04743d3561a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    212 schema:name Metagenome
    213 rdf:type schema:DefinedTerm
    214 N8470d2143ebe4eec978762f885449e65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    215 schema:name Molecular Typing
    216 rdf:type schema:DefinedTerm
    217 N8a74f895a0f942879aa2295b2bd1eec3 rdf:first sg:person.011136245472.32
    218 rdf:rest N6c8eb719b6aa4fd893dea826ef3ebf88
    219 N8c531b806f5e4db2838b146f76e9d37f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    220 schema:name Hypophysectomy
    221 rdf:type schema:DefinedTerm
    222 N99b61ba6e4dc410ba6ceb3c5f2766d45 rdf:first sg:person.0617133054.52
    223 rdf:rest Na200bb0efd7e4d6ab055a0d88450a13d
    224 N9c59204e0c5d4bb2ab83949594df0292 rdf:first sg:person.01153207273.00
    225 rdf:rest N99b61ba6e4dc410ba6ceb3c5f2766d45
    226 Na200bb0efd7e4d6ab055a0d88450a13d rdf:first sg:person.013241426220.82
    227 rdf:rest N343c1874303e41c58dfcf58e943ad61d
    228 Na8908211590948ab9e8ff8bc5ade3aac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    229 schema:name DNA, Bacterial
    230 rdf:type schema:DefinedTerm
    231 Nac4fd8d3b36f40fdb45f28d28e45e2b8 rdf:first sg:person.01001071724.57
    232 rdf:rest N6e6ecf0ea27246d4a0a743232fb423cd
    233 Nb36af2502f1343b98d2c01eda766ada7 schema:issueNumber 1
    234 rdf:type schema:PublicationIssue
    235 Nd02b060ed0884ac1b4f92dffafb8a614 schema:name pubmed_id
    236 schema:value 30352611
    237 rdf:type schema:PropertyValue
    238 Nd02cfbca6be74054b0e791ab30014211 rdf:first sg:person.012117521633.47
    239 rdf:rest N74adac95689a4c4aaf611c4a9e55fb30
    240 Nd65b993cf44c437ca3c2c4b7d720caf2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    241 schema:name Bacteria
    242 rdf:type schema:DefinedTerm
    243 Ne6ad6c94e6014b5b892d6a7384be0247 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    244 schema:name Base Sequence
    245 rdf:type schema:DefinedTerm
    246 Nf647345fc4354d07852004ae3930d5f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    247 schema:name High-Throughput Nucleotide Sequencing
    248 rdf:type schema:DefinedTerm
    249 Nf7b5ee3ba9ee40938f28c4e04460ff22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    250 schema:name RNA, Ribosomal, 16S
    251 rdf:type schema:DefinedTerm
    252 Nffd20cf5f8b44665adaa7ea6f4f106db rdf:first sg:person.01346756711.21
    253 rdf:rest rdf:nil
    254 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    255 schema:name Biological Sciences
    256 rdf:type schema:DefinedTerm
    257 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    258 schema:name Genetics
    259 rdf:type schema:DefinedTerm
    260 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    261 schema:name Microbiology
    262 rdf:type schema:DefinedTerm
    263 sg:grant.2488072 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-018-0569-2
    264 rdf:type schema:MonetaryGrant
    265 sg:grant.2690215 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-018-0569-2
    266 rdf:type schema:MonetaryGrant
    267 sg:grant.3624242 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-018-0569-2
    268 rdf:type schema:MonetaryGrant
    269 sg:journal.1048878 schema:issn 2049-2618
    270 schema:name Microbiome
    271 schema:publisher Springer Nature
    272 rdf:type schema:Periodical
    273 sg:person.01001071724.57 schema:affiliation grid-institutes:grid.410355.6
    274 schema:familyName Palmer
    275 schema:givenName James N.
    276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001071724.57
    277 rdf:type schema:Person
    278 sg:person.01047205124.20 schema:affiliation grid-institutes:grid.410355.6
    279 schema:familyName Cohen
    280 schema:givenName Noam A.
    281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047205124.20
    282 rdf:type schema:Person
    283 sg:person.011136245472.32 schema:affiliation grid-institutes:grid.166341.7
    284 schema:familyName Hammond
    285 schema:givenName Jocelyn
    286 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011136245472.32
    287 rdf:type schema:Person
    288 sg:person.01153207273.00 schema:affiliation grid-institutes:grid.410355.6
    289 schema:familyName Adappa
    290 schema:givenName Nithin D.
    291 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153207273.00
    292 rdf:type schema:Person
    293 sg:person.012117521633.47 schema:affiliation grid-institutes:grid.410355.6
    294 schema:familyName Blasetti
    295 schema:givenName Mariel
    296 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012117521633.47
    297 rdf:type schema:Person
    298 sg:person.01244654061.86 schema:affiliation grid-institutes:grid.166341.7
    299 schema:familyName Sen
    300 schema:givenName Bhaswati
    301 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244654061.86
    302 rdf:type schema:Person
    303 sg:person.01275206652.37 schema:affiliation grid-institutes:grid.166341.7
    304 schema:familyName Balashov
    305 schema:givenName Sergey
    306 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275206652.37
    307 rdf:type schema:Person
    308 sg:person.013241426220.82 schema:affiliation grid-institutes:grid.166341.7
    309 schema:familyName Bhat
    310 schema:givenName Archana S.
    311 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013241426220.82
    312 rdf:type schema:Person
    313 sg:person.01324252605.57 schema:affiliation grid-institutes:grid.166341.7
    314 schema:familyName Ehrlich
    315 schema:givenName Garth D.
    316 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324252605.57
    317 rdf:type schema:Person
    318 sg:person.01346756711.21 schema:affiliation grid-institutes:grid.166341.7
    319 schema:familyName Mell
    320 schema:givenName Joshua Chang
    321 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346756711.21
    322 rdf:type schema:Person
    323 sg:person.015030316477.18 schema:affiliation grid-institutes:grid.166341.7
    324 schema:familyName Earl
    325 schema:givenName Joshua P.
    326 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015030316477.18
    327 rdf:type schema:Person
    328 sg:person.015406727401.39 schema:affiliation grid-institutes:grid.166341.7
    329 schema:familyName Ehrlich
    330 schema:givenName Rachel L.
    331 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015406727401.39
    332 rdf:type schema:Person
    333 sg:person.0617133054.52 schema:affiliation grid-institutes:grid.166341.7
    334 schema:familyName Krol
    335 schema:givenName Jaroslaw
    336 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617133054.52
    337 rdf:type schema:Person
    338 sg:person.0736425123.54 schema:affiliation grid-institutes:grid.410355.6
    339 schema:familyName Workman
    340 schema:givenName Alan D.
    341 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736425123.54
    342 rdf:type schema:Person
    343 sg:pub.10.1007/978-3-540-35306-5_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019513363
    344 https://doi.org/10.1007/978-3-540-35306-5_10
    345 rdf:type schema:CreativeWork
    346 sg:pub.10.1038/ismej.2011.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051863807
    347 https://doi.org/10.1038/ismej.2011.139
    348 rdf:type schema:CreativeWork
    349 sg:pub.10.1038/ismej.2014.195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053327775
    350 https://doi.org/10.1038/ismej.2014.195
    351 rdf:type schema:CreativeWork
    352 sg:pub.10.1038/ismej.2015.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001395180
    353 https://doi.org/10.1038/ismej.2015.249
    354 rdf:type schema:CreativeWork
    355 sg:pub.10.1038/nmeth.2276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039195944
    356 https://doi.org/10.1038/nmeth.2276
    357 rdf:type schema:CreativeWork
    358 sg:pub.10.1038/nmeth.2604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027743851
    359 https://doi.org/10.1038/nmeth.2604
    360 rdf:type schema:CreativeWork
    361 sg:pub.10.1038/nmeth.3869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016631324
    362 https://doi.org/10.1038/nmeth.3869
    363 rdf:type schema:CreativeWork
    364 sg:pub.10.1038/nmeth.4458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092065319
    365 https://doi.org/10.1038/nmeth.4458
    366 rdf:type schema:CreativeWork
    367 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
    368 https://doi.org/10.1038/nmeth.f.303
    369 rdf:type schema:CreativeWork
    370 sg:pub.10.1038/npjbiofilms.2016.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007308813
    371 https://doi.org/10.1038/npjbiofilms.2016.4
    372 rdf:type schema:CreativeWork
    373 sg:pub.10.1038/nrmicro.2016.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023858855
    374 https://doi.org/10.1038/nrmicro.2016.83
    375 rdf:type schema:CreativeWork
    376 sg:pub.10.1186/1471-2105-12-473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013305415
    377 https://doi.org/10.1186/1471-2105-12-473
    378 rdf:type schema:CreativeWork
    379 sg:pub.10.1186/1471-2334-13-210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016577304
    380 https://doi.org/10.1186/1471-2334-13-210
    381 rdf:type schema:CreativeWork
    382 sg:pub.10.1186/1476-0711-10-28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001158379
    383 https://doi.org/10.1186/1476-0711-10-28
    384 rdf:type schema:CreativeWork
    385 sg:pub.10.1186/2049-2618-1-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028553379
    386 https://doi.org/10.1186/2049-2618-1-10
    387 rdf:type schema:CreativeWork
    388 sg:pub.10.1186/2049-2618-2-27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008381636
    389 https://doi.org/10.1186/2049-2618-2-27
    390 rdf:type schema:CreativeWork
    391 sg:pub.10.1186/2049-2618-2-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003755394
    392 https://doi.org/10.1186/2049-2618-2-31
    393 rdf:type schema:CreativeWork
    394 sg:pub.10.1186/s12864-015-2194-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027095113
    395 https://doi.org/10.1186/s12864-015-2194-9
    396 rdf:type schema:CreativeWork
    397 sg:pub.10.1186/s12864-017-3501-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084250048
    398 https://doi.org/10.1186/s12864-017-3501-4
    399 rdf:type schema:CreativeWork
    400 sg:pub.10.1186/s12866-016-0891-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036827499
    401 https://doi.org/10.1186/s12866-016-0891-4
    402 rdf:type schema:CreativeWork
    403 sg:pub.10.1186/s40168-015-0083-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002478055
    404 https://doi.org/10.1186/s40168-015-0083-8
    405 rdf:type schema:CreativeWork
    406 sg:pub.10.4056/sigs.1433550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015489166
    407 https://doi.org/10.4056/sigs.1433550
    408 rdf:type schema:CreativeWork
    409 grid-institutes:grid.166341.7 schema:alternateName Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, 19102, Philadelphia, PA, USA
    410 schema:name Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, 19102, Philadelphia, PA, USA
    411 rdf:type schema:Organization
    412 grid-institutes:grid.410355.6 schema:alternateName Veteran’s Administration Medical Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, 19104-4283, Philadelphia, PA, USA
    413 schema:name Veteran’s Administration Medical Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, 19104-4283, Philadelphia, PA, USA
    414 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...