CLOUD: a non-parametric detection test for microbiome outliers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-08-06

AUTHORS

Emmanuel Montassier, Gabriel A. Al-Ghalith, Benjamin Hillmann, Kimberly Viskocil, Amanda J. Kabage, Christopher E. McKinlay, Michael J. Sadowsky, Alexander Khoruts, Dan Knights

ABSTRACT

BACKGROUND: Dysbiosis of the human gut microbiome is defined as a maladaptive or clinically relevant deviation of the community profile from the healthy or normal state. Dysbiosis has been implicated in an extensive set of metabolic, auto-immune, and infectious diseases, and yet there is substantial inter-individual variation in microbiome composition even within body sites of healthy humans. An individual's microbiome varies over time in a high-dimensional space to form their personal microbiome cloud. This cloud may or may not be similar to that of other people, both in terms of the average microbiome profile (conformity) and the diameter of the cloud (stability). However, there is currently no robust non-parametric test that determines whether a patient's microbiome cloud is an outlier with respect to a reference group of healthy individuals with widely varying microbiome profiles. METHODS: Here, we propose a test for outliers' detection in the human gut microbiome that accounts for the wide range of microbiome phenotypes observed in a typical set of healthy individuals and for intra-individual temporal variation. Our robust nonparametric outlier detection test, the CLOUD test, performs two assessments of a patient's microbiome health: conformity, the extent to which the patient's microbiome cloud is ecologically similar to a subset of healthy subjects; and stability, which compares the cloud diameter of a patient to those of healthy subjects. The CLOUD test is based on locally linear embedded ecological distances, allowing it to account for widely varying microbiome compositions among reference individuals. It also leverages temporal variability within patients and reference individuals to increase the robustness of the test. RESULTS: We describe the CLOUD test, and we apply it to one novel and two previously published cohorts of patients receiving fecal microbiota transplantation for recurrent Clostridium difficile colitis, as well as to two known healthy cohorts, demonstrating high concordance of the CLOUD conformity and stability indices with clinical outcomes. CONCLUSIONS: Although the CLOUD test is not, on its own, a test for clinical dysbiosis, it nonetheless provides a framework for outlier testing that could be incorporated into evaluation of suspected dysbiosis, which may play a role in diagnosis and prognosis of numerous pediatric and adult diseases. More... »

PAGES

137

References to SciGraph publications

  • 2010-04-11. QIIME allows analysis of high-throughput community sequencing data in NATURE METHODS
  • 2012-01-31. Standardized Frozen Preparation for Transplantation of Fecal Microbiota for Recurrent Clostridium difficile Infection in THE AMERICAN JOURNAL OF GASTROENTEROLOGY
  • 2016-04-27. Dynamics of the fecal microbiome in patients with recurrent and nonrecurrent Clostridium difficile infection in GENOME MEDICINE
  • 2015-03-30. Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection in MICROBIOME
  • 2011-12-01. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2012-03-08. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2013-01-01. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing in NATURE METHODS
  • 2011-06-24. Metagenomic biomarker discovery and explanation in GENOME BIOLOGY
  • 2012-06-13. Structure, Function and Diversity of the Healthy Human Microbiome in NATURE
  • 2013-11-19. Comparison of the Mahalanobis Distance and Pearson’s χ2 Statistic as Measures of Similarity of Isotope Patterns in JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
  • 2012-05-09. Human gut microbiome viewed across age and geography in NATURE
  • 2013-09-29. Robust methods for differential abundance analysis in marker gene surveys in NATURE METHODS
  • 2011-04-20. Enterotypes of the human gut microbiome in NATURE
  • 2017-02-13. Dynamics of the human gut microbiome in Inflammatory Bowel Disease in NATURE MICROBIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40168-018-0514-4

    DOI

    http://dx.doi.org/10.1186/s40168-018-0514-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106015325

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30081949


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Clostridioides difficile", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Clostridium Infections", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Dysbiosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Enterocolitis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fecal Microbiota Transplantation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gastrointestinal Microbiome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Emergency Medicine, CHU Nantes, Nantes, France", 
              "id": "http://www.grid.ac/institutes/grid.277151.7", 
              "name": [
                "MiHAR lab, Universit\u00e9 de Nantes, 44000 Nantes, France", 
                "Department of Emergency Medicine, CHU Nantes, Nantes, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Montassier", 
            "givenName": "Emmanuel", 
            "id": "sg:person.0577233753.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577233753.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA", 
              "id": "http://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Al-Ghalith", 
            "givenName": "Gabriel A.", 
            "id": "sg:person.01331641010.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331641010.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA", 
              "id": "http://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hillmann", 
            "givenName": "Benjamin", 
            "id": "sg:person.011161717335.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011161717335.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Gastroenterology, Hepatology, and Nutrition in the Department of Medicine, University of Minnesota, Minneapolis, MN USA", 
              "id": "http://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Division of Gastroenterology, Hepatology, and Nutrition in the Department of Medicine, University of Minnesota, Minneapolis, MN USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Viskocil", 
            "givenName": "Kimberly", 
            "id": "sg:person.0771621126.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771621126.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Gastroenterology, Hepatology, and Nutrition in the Department of Medicine, University of Minnesota, Minneapolis, MN USA", 
              "id": "http://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Division of Gastroenterology, Hepatology, and Nutrition in the Department of Medicine, University of Minnesota, Minneapolis, MN USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kabage", 
            "givenName": "Amanda J.", 
            "id": "sg:person.011702322357.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011702322357.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA", 
              "id": "http://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McKinlay", 
            "givenName": "Christopher E.", 
            "id": "sg:person.0641125620.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641125620.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108 USA", 
              "id": "http://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Biotechnology Institute, University of Minnesota, St. Paul, MN 55108 USA", 
                "Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sadowsky", 
            "givenName": "Michael J.", 
            "id": "sg:person.01073261101.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073261101.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Biotechnology Institute, University of Minnesota, St. Paul, MN 55108 USA", 
              "id": "http://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Division of Gastroenterology, Hepatology, and Nutrition in the Department of Medicine, University of Minnesota, Minneapolis, MN USA", 
                "Biotechnology Institute, University of Minnesota, St. Paul, MN 55108 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khoruts", 
            "givenName": "Alexander", 
            "id": "sg:person.010341451647.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010341451647.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Biotechnology Institute, University of Minnesota, St. Paul, MN 55108 USA", 
              "id": "http://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA", 
                "Biotechnology Institute, University of Minnesota, St. Paul, MN 55108 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Knights", 
            "givenName": "Dan", 
            "id": "sg:person.01054701157.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054701157.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmeth.2276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039195944", 
              "https://doi.org/10.1038/nmeth.2276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007740093", 
              "https://doi.org/10.1038/nature11234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052378845", 
              "https://doi.org/10.1038/nature11053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13361-013-0773-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019878196", 
              "https://doi.org/10.1007/s13361-013-0773-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2017.4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083801915", 
              "https://doi.org/10.1038/nmicrobiol.2017.4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40168-015-0070-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052787542", 
              "https://doi.org/10.1186/s40168-015-0070-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2012.8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038992953", 
              "https://doi.org/10.1038/ismej.2012.8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ajg.2011.482", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017120105", 
              "https://doi.org/10.1038/ajg.2011.482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.f.303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009032055", 
              "https://doi.org/10.1038/nmeth.f.303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13073-016-0298-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045174043", 
              "https://doi.org/10.1186/s13073-016-0298-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2011-12-6-r60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000243423", 
              "https://doi.org/10.1186/gb-2011-12-6-r60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002139060", 
              "https://doi.org/10.1038/nmeth.2658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09944", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026204536", 
              "https://doi.org/10.1038/nature09944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2011.139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051863807", 
              "https://doi.org/10.1038/ismej.2011.139"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-08-06", 
        "datePublishedReg": "2018-08-06", 
        "description": "BACKGROUND: Dysbiosis of the human gut microbiome is defined as a maladaptive or clinically relevant deviation of the community profile from the healthy or normal state. Dysbiosis has been implicated in an extensive set of metabolic, auto-immune, and infectious diseases, and yet there is substantial inter-individual variation in microbiome composition even within body sites of healthy humans. An individual's microbiome varies over time in a high-dimensional space to form their personal microbiome cloud. This cloud may or may not be similar to that of other people, both in terms of the average microbiome profile (conformity) and the diameter of the cloud (stability). However, there is currently no robust non-parametric test that determines whether a patient's microbiome cloud is an outlier with respect to a reference group of healthy individuals with widely varying microbiome profiles.\nMETHODS: Here, we propose a test for outliers' detection in the human gut microbiome that accounts for the wide range of microbiome phenotypes observed in a typical set of healthy individuals and for intra-individual temporal variation. Our robust nonparametric outlier detection test, the CLOUD test, performs two assessments of a patient's microbiome health: conformity, the extent to which the patient's microbiome cloud is ecologically similar to a subset of healthy subjects; and stability, which compares the cloud diameter of a patient to those of healthy subjects. The CLOUD test is based on locally linear embedded ecological distances, allowing it to account for widely varying microbiome compositions among reference individuals. It also leverages temporal variability within patients and reference individuals to increase the robustness of the test.\nRESULTS: We describe the CLOUD test, and we apply it to one novel and two previously published cohorts of patients receiving fecal microbiota transplantation for recurrent Clostridium difficile colitis, as well as to two known healthy cohorts, demonstrating high concordance of the CLOUD conformity and stability indices with clinical outcomes.\nCONCLUSIONS: Although the CLOUD test is not, on its own, a test for clinical dysbiosis, it nonetheless provides a framework for outlier testing that could be incorporated into evaluation of suspected dysbiosis, which may play a role in diagnosis and prognosis of numerous pediatric and adult diseases.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s40168-018-0514-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1048878", 
            "issn": [
              "2049-2618"
            ], 
            "name": "Microbiome", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "healthy subjects", 
          "healthy individuals", 
          "recurrent Clostridium difficile colitis", 
          "human gut microbiome", 
          "gut microbiome", 
          "microbiome health", 
          "microbiome profiles", 
          "Clostridium difficile colitis", 
          "cohort of patients", 
          "fecal microbiota transplantation", 
          "microbiome composition", 
          "reference individuals", 
          "difficile colitis", 
          "microbiota transplantation", 
          "clinical outcomes", 
          "microbiome varies", 
          "healthy cohort", 
          "adult disease", 
          "substantial inter-individual variation", 
          "healthy humans", 
          "detection test", 
          "dysbiosis", 
          "infectious diseases", 
          "body sites", 
          "patients", 
          "inter-individual variation", 
          "intra-individual temporal variation", 
          "reference group", 
          "high concordance", 
          "microbiome phenotypes", 
          "non-parametric tests", 
          "cohort", 
          "disease", 
          "subjects", 
          "individuals", 
          "microbiome", 
          "colitis", 
          "transplantation", 
          "prognosis", 
          "pediatrics", 
          "diagnosis", 
          "relevant deviations", 
          "test", 
          "outcomes", 
          "health", 
          "concordance", 
          "profile", 
          "phenotype", 
          "humans", 
          "group", 
          "subset", 
          "assessment", 
          "index", 
          "testing", 
          "evaluation", 
          "detection", 
          "role", 
          "maladaptive", 
          "diameter", 
          "people", 
          "extent", 
          "sites", 
          "outlier testing", 
          "time", 
          "varies", 
          "variability", 
          "community profiles", 
          "normal state", 
          "robust non-parametric test", 
          "wide range", 
          "variation", 
          "conformity", 
          "respect", 
          "novel", 
          "composition", 
          "state", 
          "deviation", 
          "range", 
          "terms", 
          "stability index", 
          "outliers", 
          "distance", 
          "set", 
          "stability", 
          "space", 
          "temporal variation", 
          "linear", 
          "typical set", 
          "extensive set", 
          "cloud diameter", 
          "framework", 
          "temporal variability", 
          "outlier detection tests", 
          "cloud tests", 
          "robustness", 
          "ecological distance", 
          "outlier detection", 
          "high-dimensional space", 
          "cloud", 
          "individual's microbiome varies", 
          "personal microbiome cloud", 
          "microbiome cloud", 
          "average microbiome profile", 
          "patient's microbiome cloud", 
          "robust nonparametric outlier detection test", 
          "nonparametric outlier detection test", 
          "patient's microbiome health", 
          "CLOUD conformity", 
          "clinical dysbiosis", 
          "numerous pediatric", 
          "non-parametric detection test", 
          "microbiome outliers"
        ], 
        "name": "CLOUD: a non-parametric detection test for microbiome outliers", 
        "pagination": "137", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106015325"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40168-018-0514-4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30081949"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40168-018-0514-4", 
          "https://app.dimensions.ai/details/publication/pub.1106015325"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_785.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s40168-018-0514-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0514-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0514-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0514-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0514-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    331 TRIPLES      22 PREDICATES      161 URIs      139 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40168-018-0514-4 schema:about N091ee68509ff4a6d961078983fbeee8a
    2 N18306e91c8244822b36e0aa9ef88166c
    3 N1869be513aab423b9b230d44a979da6d
    4 N262f86d4a0c14449af6a953f5d5249b5
    5 N71a5ea6bcac744d182f236f0056ff767
    6 N994439c92b234194b4f64cd6fc7c6714
    7 Na922547a85f645bab07e7e6f9f28fb21
    8 Nb228eb3b098b4b8dbdd305e040445070
    9 Ncd4f8b64c9e6458a9b22c60480e67125
    10 anzsrc-for:11
    11 anzsrc-for:1103
    12 schema:author N290c5e9962ba4a3d87d394976da7281c
    13 schema:citation sg:pub.10.1007/s13361-013-0773-z
    14 sg:pub.10.1038/ajg.2011.482
    15 sg:pub.10.1038/ismej.2011.139
    16 sg:pub.10.1038/ismej.2012.8
    17 sg:pub.10.1038/nature09944
    18 sg:pub.10.1038/nature11053
    19 sg:pub.10.1038/nature11234
    20 sg:pub.10.1038/nmeth.2276
    21 sg:pub.10.1038/nmeth.2658
    22 sg:pub.10.1038/nmeth.f.303
    23 sg:pub.10.1038/nmicrobiol.2017.4
    24 sg:pub.10.1186/gb-2011-12-6-r60
    25 sg:pub.10.1186/s13073-016-0298-8
    26 sg:pub.10.1186/s40168-015-0070-0
    27 schema:datePublished 2018-08-06
    28 schema:datePublishedReg 2018-08-06
    29 schema:description BACKGROUND: Dysbiosis of the human gut microbiome is defined as a maladaptive or clinically relevant deviation of the community profile from the healthy or normal state. Dysbiosis has been implicated in an extensive set of metabolic, auto-immune, and infectious diseases, and yet there is substantial inter-individual variation in microbiome composition even within body sites of healthy humans. An individual's microbiome varies over time in a high-dimensional space to form their personal microbiome cloud. This cloud may or may not be similar to that of other people, both in terms of the average microbiome profile (conformity) and the diameter of the cloud (stability). However, there is currently no robust non-parametric test that determines whether a patient's microbiome cloud is an outlier with respect to a reference group of healthy individuals with widely varying microbiome profiles. METHODS: Here, we propose a test for outliers' detection in the human gut microbiome that accounts for the wide range of microbiome phenotypes observed in a typical set of healthy individuals and for intra-individual temporal variation. Our robust nonparametric outlier detection test, the CLOUD test, performs two assessments of a patient's microbiome health: conformity, the extent to which the patient's microbiome cloud is ecologically similar to a subset of healthy subjects; and stability, which compares the cloud diameter of a patient to those of healthy subjects. The CLOUD test is based on locally linear embedded ecological distances, allowing it to account for widely varying microbiome compositions among reference individuals. It also leverages temporal variability within patients and reference individuals to increase the robustness of the test. RESULTS: We describe the CLOUD test, and we apply it to one novel and two previously published cohorts of patients receiving fecal microbiota transplantation for recurrent Clostridium difficile colitis, as well as to two known healthy cohorts, demonstrating high concordance of the CLOUD conformity and stability indices with clinical outcomes. CONCLUSIONS: Although the CLOUD test is not, on its own, a test for clinical dysbiosis, it nonetheless provides a framework for outlier testing that could be incorporated into evaluation of suspected dysbiosis, which may play a role in diagnosis and prognosis of numerous pediatric and adult diseases.
    30 schema:genre article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree true
    33 schema:isPartOf N071fff8bb4d041c9ba8e8d6c5a03c018
    34 N4159cf3473564200a9fd1325cef2e15c
    35 sg:journal.1048878
    36 schema:keywords CLOUD conformity
    37 Clostridium difficile colitis
    38 adult disease
    39 assessment
    40 average microbiome profile
    41 body sites
    42 clinical dysbiosis
    43 clinical outcomes
    44 cloud
    45 cloud diameter
    46 cloud tests
    47 cohort
    48 cohort of patients
    49 colitis
    50 community profiles
    51 composition
    52 concordance
    53 conformity
    54 detection
    55 detection test
    56 deviation
    57 diagnosis
    58 diameter
    59 difficile colitis
    60 disease
    61 distance
    62 dysbiosis
    63 ecological distance
    64 evaluation
    65 extensive set
    66 extent
    67 fecal microbiota transplantation
    68 framework
    69 group
    70 gut microbiome
    71 health
    72 healthy cohort
    73 healthy humans
    74 healthy individuals
    75 healthy subjects
    76 high concordance
    77 high-dimensional space
    78 human gut microbiome
    79 humans
    80 index
    81 individual's microbiome varies
    82 individuals
    83 infectious diseases
    84 inter-individual variation
    85 intra-individual temporal variation
    86 linear
    87 maladaptive
    88 microbiome
    89 microbiome cloud
    90 microbiome composition
    91 microbiome health
    92 microbiome outliers
    93 microbiome phenotypes
    94 microbiome profiles
    95 microbiome varies
    96 microbiota transplantation
    97 non-parametric detection test
    98 non-parametric tests
    99 nonparametric outlier detection test
    100 normal state
    101 novel
    102 numerous pediatric
    103 outcomes
    104 outlier detection
    105 outlier detection tests
    106 outlier testing
    107 outliers
    108 patient's microbiome cloud
    109 patient's microbiome health
    110 patients
    111 pediatrics
    112 people
    113 personal microbiome cloud
    114 phenotype
    115 profile
    116 prognosis
    117 range
    118 recurrent Clostridium difficile colitis
    119 reference group
    120 reference individuals
    121 relevant deviations
    122 respect
    123 robust non-parametric test
    124 robust nonparametric outlier detection test
    125 robustness
    126 role
    127 set
    128 sites
    129 space
    130 stability
    131 stability index
    132 state
    133 subjects
    134 subset
    135 substantial inter-individual variation
    136 temporal variability
    137 temporal variation
    138 terms
    139 test
    140 testing
    141 time
    142 transplantation
    143 typical set
    144 variability
    145 variation
    146 varies
    147 wide range
    148 schema:name CLOUD: a non-parametric detection test for microbiome outliers
    149 schema:pagination 137
    150 schema:productId N582e2268d3de4400a01c5a27c93a6516
    151 N5cb15bc927e841d183385840bb0dd148
    152 Nd695fe3e5149431cb0ab51127174120c
    153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106015325
    154 https://doi.org/10.1186/s40168-018-0514-4
    155 schema:sdDatePublished 2021-11-01T18:33
    156 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    157 schema:sdPublisher Na073b040e727409aa1bcce15613ede93
    158 schema:url https://doi.org/10.1186/s40168-018-0514-4
    159 sgo:license sg:explorer/license/
    160 sgo:sdDataset articles
    161 rdf:type schema:ScholarlyArticle
    162 N071fff8bb4d041c9ba8e8d6c5a03c018 schema:issueNumber 1
    163 rdf:type schema:PublicationIssue
    164 N091ee68509ff4a6d961078983fbeee8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Humans
    166 rdf:type schema:DefinedTerm
    167 N18306e91c8244822b36e0aa9ef88166c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Clostridioides difficile
    169 rdf:type schema:DefinedTerm
    170 N1869be513aab423b9b230d44a979da6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Gastrointestinal Microbiome
    172 rdf:type schema:DefinedTerm
    173 N262f86d4a0c14449af6a953f5d5249b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Clostridium Infections
    175 rdf:type schema:DefinedTerm
    176 N290c5e9962ba4a3d87d394976da7281c rdf:first sg:person.0577233753.78
    177 rdf:rest N54a1605d8f744e0c9c6f58f8545116cb
    178 N32da7d78ee044893aea902d3f02096ad rdf:first sg:person.011702322357.02
    179 rdf:rest N97702dcd0a28428bacae5c50754d248c
    180 N3389bce31a2f4b3a8241b9568fe57711 rdf:first sg:person.0771621126.58
    181 rdf:rest N32da7d78ee044893aea902d3f02096ad
    182 N4159cf3473564200a9fd1325cef2e15c schema:volumeNumber 6
    183 rdf:type schema:PublicationVolume
    184 N54a1605d8f744e0c9c6f58f8545116cb rdf:first sg:person.01331641010.22
    185 rdf:rest Ncb4cc2db8ee34afaa951f80b8f494adf
    186 N582e2268d3de4400a01c5a27c93a6516 schema:name dimensions_id
    187 schema:value pub.1106015325
    188 rdf:type schema:PropertyValue
    189 N5cb15bc927e841d183385840bb0dd148 schema:name pubmed_id
    190 schema:value 30081949
    191 rdf:type schema:PropertyValue
    192 N71a5ea6bcac744d182f236f0056ff767 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Computational Biology
    194 rdf:type schema:DefinedTerm
    195 N8fbd3ffc251d4ec6bef11386bb1863bf rdf:first sg:person.01073261101.46
    196 rdf:rest Nbe2a4291d615447cba1fe82c74fd365d
    197 N97702dcd0a28428bacae5c50754d248c rdf:first sg:person.0641125620.37
    198 rdf:rest N8fbd3ffc251d4ec6bef11386bb1863bf
    199 N994439c92b234194b4f64cd6fc7c6714 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    200 schema:name Dysbiosis
    201 rdf:type schema:DefinedTerm
    202 Na073b040e727409aa1bcce15613ede93 schema:name Springer Nature - SN SciGraph project
    203 rdf:type schema:Organization
    204 Na922547a85f645bab07e7e6f9f28fb21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    205 schema:name Enterocolitis
    206 rdf:type schema:DefinedTerm
    207 Nb228eb3b098b4b8dbdd305e040445070 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    208 schema:name Fecal Microbiota Transplantation
    209 rdf:type schema:DefinedTerm
    210 Nbe2a4291d615447cba1fe82c74fd365d rdf:first sg:person.010341451647.29
    211 rdf:rest Nf61786a473254c048421e727b846bbfd
    212 Ncb4cc2db8ee34afaa951f80b8f494adf rdf:first sg:person.011161717335.32
    213 rdf:rest N3389bce31a2f4b3a8241b9568fe57711
    214 Ncd4f8b64c9e6458a9b22c60480e67125 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    215 schema:name Bacteria
    216 rdf:type schema:DefinedTerm
    217 Nd695fe3e5149431cb0ab51127174120c schema:name doi
    218 schema:value 10.1186/s40168-018-0514-4
    219 rdf:type schema:PropertyValue
    220 Nf61786a473254c048421e727b846bbfd rdf:first sg:person.01054701157.41
    221 rdf:rest rdf:nil
    222 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    223 schema:name Medical and Health Sciences
    224 rdf:type schema:DefinedTerm
    225 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    226 schema:name Clinical Sciences
    227 rdf:type schema:DefinedTerm
    228 sg:journal.1048878 schema:issn 2049-2618
    229 schema:name Microbiome
    230 schema:publisher Springer Nature
    231 rdf:type schema:Periodical
    232 sg:person.010341451647.29 schema:affiliation grid-institutes:grid.17635.36
    233 schema:familyName Khoruts
    234 schema:givenName Alexander
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010341451647.29
    236 rdf:type schema:Person
    237 sg:person.01054701157.41 schema:affiliation grid-institutes:grid.17635.36
    238 schema:familyName Knights
    239 schema:givenName Dan
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054701157.41
    241 rdf:type schema:Person
    242 sg:person.01073261101.46 schema:affiliation grid-institutes:grid.17635.36
    243 schema:familyName Sadowsky
    244 schema:givenName Michael J.
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073261101.46
    246 rdf:type schema:Person
    247 sg:person.011161717335.32 schema:affiliation grid-institutes:grid.17635.36
    248 schema:familyName Hillmann
    249 schema:givenName Benjamin
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011161717335.32
    251 rdf:type schema:Person
    252 sg:person.011702322357.02 schema:affiliation grid-institutes:grid.17635.36
    253 schema:familyName Kabage
    254 schema:givenName Amanda J.
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011702322357.02
    256 rdf:type schema:Person
    257 sg:person.01331641010.22 schema:affiliation grid-institutes:grid.17635.36
    258 schema:familyName Al-Ghalith
    259 schema:givenName Gabriel A.
    260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331641010.22
    261 rdf:type schema:Person
    262 sg:person.0577233753.78 schema:affiliation grid-institutes:grid.277151.7
    263 schema:familyName Montassier
    264 schema:givenName Emmanuel
    265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577233753.78
    266 rdf:type schema:Person
    267 sg:person.0641125620.37 schema:affiliation grid-institutes:grid.17635.36
    268 schema:familyName McKinlay
    269 schema:givenName Christopher E.
    270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641125620.37
    271 rdf:type schema:Person
    272 sg:person.0771621126.58 schema:affiliation grid-institutes:grid.17635.36
    273 schema:familyName Viskocil
    274 schema:givenName Kimberly
    275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771621126.58
    276 rdf:type schema:Person
    277 sg:pub.10.1007/s13361-013-0773-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1019878196
    278 https://doi.org/10.1007/s13361-013-0773-z
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/ajg.2011.482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017120105
    281 https://doi.org/10.1038/ajg.2011.482
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/ismej.2011.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051863807
    284 https://doi.org/10.1038/ismej.2011.139
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/ismej.2012.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038992953
    287 https://doi.org/10.1038/ismej.2012.8
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/nature09944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026204536
    290 https://doi.org/10.1038/nature09944
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/nature11053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052378845
    293 https://doi.org/10.1038/nature11053
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1038/nature11234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007740093
    296 https://doi.org/10.1038/nature11234
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1038/nmeth.2276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039195944
    299 https://doi.org/10.1038/nmeth.2276
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1038/nmeth.2658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002139060
    302 https://doi.org/10.1038/nmeth.2658
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
    305 https://doi.org/10.1038/nmeth.f.303
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1038/nmicrobiol.2017.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083801915
    308 https://doi.org/10.1038/nmicrobiol.2017.4
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1186/gb-2011-12-6-r60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000243423
    311 https://doi.org/10.1186/gb-2011-12-6-r60
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1186/s13073-016-0298-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045174043
    314 https://doi.org/10.1186/s13073-016-0298-8
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1186/s40168-015-0070-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052787542
    317 https://doi.org/10.1186/s40168-015-0070-0
    318 rdf:type schema:CreativeWork
    319 grid-institutes:grid.17635.36 schema:alternateName Biotechnology Institute, University of Minnesota, St. Paul, MN 55108 USA
    320 Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
    321 Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108 USA
    322 Division of Gastroenterology, Hepatology, and Nutrition in the Department of Medicine, University of Minnesota, Minneapolis, MN USA
    323 schema:name Biotechnology Institute, University of Minnesota, St. Paul, MN 55108 USA
    324 Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
    325 Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108 USA
    326 Division of Gastroenterology, Hepatology, and Nutrition in the Department of Medicine, University of Minnesota, Minneapolis, MN USA
    327 rdf:type schema:Organization
    328 grid-institutes:grid.277151.7 schema:alternateName Department of Emergency Medicine, CHU Nantes, Nantes, France
    329 schema:name Department of Emergency Medicine, CHU Nantes, Nantes, France
    330 MiHAR lab, Université de Nantes, 44000 Nantes, France
    331 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...