Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-07-03

AUTHORS

Evan P. Starr, Shengjing Shi, Steven J. Blazewicz, Alexander J. Probst, Donald J. Herman, Mary K. Firestone, Jillian F. Banfield

ABSTRACT

BACKGROUND: The transformation of plant photosynthate into soil organic carbon and its recycling to CO2 by soil microorganisms is one of the central components of the terrestrial carbon cycle. There are currently large knowledge gaps related to which soil-associated microorganisms take up plant carbon in the rhizosphere and the fate of that carbon. RESULTS: We conducted an experiment in which common wild oats (Avena fatua) were grown in a 13CO2 atmosphere and the rhizosphere and non-rhizosphere soil was sampled for genomic analyses. Density gradient centrifugation of DNA extracted from soil samples enabled distinction of microbes that did and did not incorporate the 13C into their DNA. A 1.45-Mbp genome of a Saccharibacteria (TM7) was identified and, despite the microbial complexity of rhizosphere soil, curated to completion. The genome lacks many biosynthetic pathways, including genes required to synthesize DNA de novo. Rather, it requires externally derived nucleotides for DNA and RNA synthesis. Given this, we conclude that rhizosphere-associated Saccharibacteria recycle DNA from bacteria that live off plant exudates and/or phage that acquired 13C because they preyed upon these bacteria and/or directly from the labeled plant DNA. Isotopic labeling indicates that the population was replicating during the 6-week period of plant growth. Interestingly, the genome is ~ 30% larger than other complete Saccharibacteria genomes from non-soil environments, largely due to more genes for complex carbon utilization and amino acid metabolism. Given the ability to degrade cellulose, hemicellulose, pectin, starch, and 1,3-β-glucan, we predict that this Saccharibacteria generates energy by fermentation of soil necromass and plant root exudates to acetate and lactate. The genome also encodes a linear electron transport chain featuring a terminal oxidase, suggesting that this Saccharibacteria may respire aerobically. The genome encodes a hydrolase that could breakdown salicylic acid, a plant defense signaling molecule, and genes to interconvert a variety of isoprenoids, including the plant hormone zeatin. CONCLUSIONS: Rhizosphere Saccharibacteria likely depend on other bacteria for basic cellular building blocks. We propose that isotopically labeled CO2 is incorporated into plant-derived carbon and then into the DNA of rhizosphere organisms capable of nucleotide synthesis, and the nucleotides are recycled into Saccharibacterial genomes. More... »

PAGES

122

References to SciGraph publications

  • 2008-08-28. Plant host habitat and root exudates shape soil bacterial community structure in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2016-11-07. Measurement of bacterial replication rates in microbial communities in NATURE BIOTECHNOLOGY
  • 2000-10. The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2015-06-15. Unusual biology across a group comprising more than 15% of domain Bacteria in NATURE
  • 2013-05-26. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes in NATURE BIOTECHNOLOGY
  • 2016-04-11. A new view of the tree of life in NATURE MICROBIOLOGY
  • 2014-02-04. Insights into the distribution and abundance of the ubiquitous Candidatus Saccharibacteria phylum following tag pyrosequencing in SCIENTIFIC REPORTS
  • 2009-06-12. The conservation and evolutionary modularity of metabolism in GENOME BIOLOGY
  • 2015-11-19. Genome sequence and description of the anaerobic lignin-degrading bacterium Tolumonas lignolytica sp. nov. in ENVIRONMENTAL MICROBIOME
  • 2010-03-08. Prodigal: prokaryotic gene recognition and translation initiation site identification in BMC BIOINFORMATICS
  • 2018-03-19. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly in NATURE MICROBIOLOGY
  • 2012-03-04. Fast gapped-read alignment with Bowtie 2 in NATURE METHODS
  • 2015-11-23. Phenotypic and Physiological Characterization of the Epibiotic Interaction Between TM7x and Its Basibiont Actinomyces in MICROBIAL ECOLOGY
  • 2014-12-03. Structure of the V. cholerae Na+-pumping NADH:quinone oxidoreductase in NATURE
  • 2017-02-23. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees in MICROBIOME
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40168-018-0499-z

    DOI

    http://dx.doi.org/10.1186/s40168-018-0499-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105297645

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29970182


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Avena", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbon Dioxide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Energy Metabolism", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Isotope Labeling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plant Roots", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Rhizosphere", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Soil Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Symbiosis", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Starr", 
            "givenName": "Evan P.", 
            "id": "sg:person.015342312453.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015342312453.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lincoln Science Centre, AgResearch Ltd, Christchurch, 8140 New Zealand", 
              "id": "http://www.grid.ac/institutes/grid.417738.e", 
              "name": [
                "Lincoln Science Centre, AgResearch Ltd, Christchurch, 8140 New Zealand"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "Shengjing", 
            "id": "sg:person.0737065472.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737065472.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, 94550 USA", 
              "id": "http://www.grid.ac/institutes/grid.250008.f", 
              "name": [
                "Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, 94550 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Blazewicz", 
            "givenName": "Steven J.", 
            "id": "sg:person.01335601466.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335601466.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Biofilm Center, University of Duisburg-Essen, 45141 Essen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.5718.b", 
              "name": [
                "Biofilm Center, University of Duisburg-Essen, 45141 Essen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Probst", 
            "givenName": "Alexander J.", 
            "id": "sg:person.0757405471.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757405471.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94704 USA", 
              "id": "http://www.grid.ac/institutes/grid.184769.5", 
              "name": [
                "Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA", 
                "Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94704 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Herman", 
            "givenName": "Donald J.", 
            "id": "sg:person.01222724067.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222724067.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94704 USA", 
              "id": "http://www.grid.ac/institutes/grid.184769.5", 
              "name": [
                "Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA", 
                "Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94704 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Firestone", 
            "givenName": "Mary K.", 
            "id": "sg:person.01344076147.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344076147.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720 USA", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA", 
                "Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94704 USA", 
                "Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Banfield", 
            "givenName": "Jillian F.", 
            "id": "sg:person.01350542775.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350542775.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010598799", 
              "https://doi.org/10.1038/nmicrobiol.2016.48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/82824", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030736489", 
              "https://doi.org/10.1038/82824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3704", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020940033", 
              "https://doi.org/10.1038/nbt.3704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029031769", 
              "https://doi.org/10.1038/nature14486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2008.80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044545406", 
              "https://doi.org/10.1038/ismej.2008.80"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010652073", 
              "https://doi.org/10.1038/nbt.2579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep03957", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024562617", 
              "https://doi.org/10.1038/srep03957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40793-015-0100-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005739045", 
              "https://doi.org/10.1186/s40793-015-0100-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026423599", 
              "https://doi.org/10.1186/1471-2105-11-119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006541515", 
              "https://doi.org/10.1038/nmeth.1923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40168-017-0241-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083861560", 
              "https://doi.org/10.1186/s40168-017-0241-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00248-015-0711-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020381965", 
              "https://doi.org/10.1007/s00248-015-0711-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020333024", 
              "https://doi.org/10.1038/nature14003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41564-018-0129-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101560483", 
              "https://doi.org/10.1038/s41564-018-0129-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2009-10-6-r63", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048932355", 
              "https://doi.org/10.1186/gb-2009-10-6-r63"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-07-03", 
        "datePublishedReg": "2018-07-03", 
        "description": "BACKGROUND: The transformation of plant photosynthate into soil organic carbon and its recycling to CO2 by soil microorganisms is one of the central components of the terrestrial carbon cycle. There are currently large knowledge gaps related to which soil-associated microorganisms take up plant carbon in the rhizosphere and the fate of that carbon.\nRESULTS: We conducted an experiment in which common wild oats (Avena fatua) were grown in a 13CO2 atmosphere and the rhizosphere and non-rhizosphere soil was sampled for genomic analyses. Density gradient centrifugation of DNA extracted from soil samples enabled distinction of microbes that did and did not incorporate the 13C into their DNA. A 1.45-Mbp genome of a Saccharibacteria (TM7) was identified and, despite the microbial complexity of rhizosphere soil, curated to completion. The genome lacks many biosynthetic pathways, including genes required to synthesize DNA de novo. Rather, it requires externally derived nucleotides for DNA and RNA synthesis. Given this, we conclude that rhizosphere-associated Saccharibacteria recycle DNA from bacteria that live off plant exudates and/or phage that acquired 13C because they preyed upon these bacteria and/or directly from the labeled plant DNA. Isotopic labeling indicates that the population was replicating during the 6-week period of plant growth. Interestingly, the genome is ~\u200930% larger than other complete Saccharibacteria genomes from non-soil environments, largely due to more genes for complex carbon utilization and amino acid metabolism. Given the ability to degrade cellulose, hemicellulose, pectin, starch, and 1,3-\u03b2-glucan, we predict that this Saccharibacteria generates energy by fermentation of soil necromass and plant root exudates to acetate and lactate. The genome also encodes a linear electron transport chain featuring a terminal oxidase, suggesting that this Saccharibacteria may respire aerobically. The genome encodes a hydrolase that could breakdown salicylic acid, a plant defense signaling molecule, and genes to interconvert a variety of isoprenoids, including the plant hormone zeatin.\nCONCLUSIONS: Rhizosphere Saccharibacteria likely depend on other bacteria for basic cellular building blocks. We propose that isotopically labeled CO2 is incorporated into plant-derived carbon and then into the DNA of rhizosphere organisms capable of nucleotide synthesis, and the nucleotides are recycled into Saccharibacterial genomes.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s40168-018-0499-z", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4322244", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5509412", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3487870", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1048878", 
            "issn": [
              "2049-2618"
            ], 
            "name": "Microbiome", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "plant-derived carbon", 
          "variety of isoprenoids", 
          "cellular building blocks", 
          "electron transport chain", 
          "soil-associated microorganisms", 
          "common wild oat", 
          "linear electron transport chain", 
          "plant defense", 
          "plant photosynthates", 
          "non-rhizosphere soil", 
          "amino acid metabolism", 
          "plant DNA", 
          "plant carbon", 
          "plant growth", 
          "rhizosphere organisms", 
          "genomic analysis", 
          "soil microorganisms", 
          "more genes", 
          "microbial complexity", 
          "biosynthetic pathway", 
          "plant roots", 
          "genome", 
          "plant exudates", 
          "wild oat", 
          "rhizosphere soil", 
          "transport chain", 
          "carbon utilization", 
          "terminal oxidase", 
          "salicylic acid", 
          "RNA synthesis", 
          "Saccharibacteria", 
          "nucleotide synthesis", 
          "large knowledge gaps", 
          "genes", 
          "DNA", 
          "density gradient centrifugation", 
          "acid metabolism", 
          "de novo", 
          "rhizosphere", 
          "isotopic labeling", 
          "terrestrial carbon cycle", 
          "bacteria", 
          "stable isotopes", 
          "gradient centrifugation", 
          "nucleotides", 
          "microorganisms", 
          "central component", 
          "carbon cycle", 
          "soil organic carbon", 
          "metagenomics", 
          "photosynthate", 
          "soil samples", 
          "microbes", 
          "isoprenoids", 
          "knowledge gaps", 
          "organisms", 
          "necromass", 
          "phages", 
          "zeatin", 
          "soil", 
          "pathway", 
          "hydrolase", 
          "novo", 
          "fate", 
          "organic carbon", 
          "metabolism", 
          "defense", 
          "oxidase", 
          "fermentation", 
          "roots", 
          "oats", 
          "exudates", 
          "carbon", 
          "growth", 
          "pectin", 
          "labeling", 
          "synthesis", 
          "molecules", 
          "centrifugation", 
          "acid", 
          "hemicellulose", 
          "population", 
          "recycling", 
          "starch", 
          "cycle", 
          "cellulose", 
          "variety", 
          "ability", 
          "chain", 
          "components", 
          "building blocks", 
          "environment", 
          "analysis", 
          "isotopes", 
          "experiments", 
          "transformation", 
          "utilization", 
          "CO", 
          "complexity", 
          "distinction", 
          "samples", 
          "block", 
          "completion", 
          "period", 
          "gap", 
          "atmosphere", 
          "energy", 
          "distinction of microbes", 
          "DNA de novo", 
          "Saccharibacteria recycle DNA", 
          "recycle DNA", 
          "complete Saccharibacteria", 
          "non-soil environments", 
          "complex carbon utilization", 
          "soil necromass", 
          "plant hormone zeatin", 
          "hormone zeatin", 
          "basic cellular building blocks", 
          "Saccharibacterial genomes"
        ], 
        "name": "Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon", 
        "pagination": "122", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105297645"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40168-018-0499-z"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29970182"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40168-018-0499-z", 
          "https://app.dimensions.ai/details/publication/pub.1105297645"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_787.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s40168-018-0499-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0499-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0499-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0499-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0499-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    365 TRIPLES      22 PREDICATES      175 URIs      151 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40168-018-0499-z schema:about N118e797121de410fa5cd8e7dbc46aee7
    2 N14121a0937434039a83977636c9f319a
    3 N1bd95d352ad34f07a9862373d6086938
    4 N1f786f4bcae648ec984d650516d36d9f
    5 N7548164d630743d48944a2432ac0fe43
    6 N7a94ca0cdc6242abb88982a2b9c48b2f
    7 N7e3bbce8763d424b807f0f58c276f29f
    8 Nc50e7294c84f477180f8aa40f62287df
    9 Ncac0841465d54ea98b5222d5b25faf9c
    10 Ncc04ae9904904ca982ca510df48b3627
    11 Nd156718ce6f94603a82bbc2c79e28be2
    12 Nd2855fad3c03496c9f00956e7c8dbe7b
    13 Ne5c36f67f1a94a31b59ddfedece18c71
    14 Nfe146340995a4221a806fbc06b389e1d
    15 anzsrc-for:06
    16 anzsrc-for:0604
    17 anzsrc-for:0605
    18 schema:author N7c899d898adb48058d99c54cb3364db2
    19 schema:citation sg:pub.10.1007/s00248-015-0711-7
    20 sg:pub.10.1038/82824
    21 sg:pub.10.1038/ismej.2008.80
    22 sg:pub.10.1038/nature14003
    23 sg:pub.10.1038/nature14486
    24 sg:pub.10.1038/nbt.2579
    25 sg:pub.10.1038/nbt.3704
    26 sg:pub.10.1038/nmeth.1923
    27 sg:pub.10.1038/nmicrobiol.2016.48
    28 sg:pub.10.1038/s41564-018-0129-3
    29 sg:pub.10.1038/srep03957
    30 sg:pub.10.1186/1471-2105-11-119
    31 sg:pub.10.1186/gb-2009-10-6-r63
    32 sg:pub.10.1186/s40168-017-0241-2
    33 sg:pub.10.1186/s40793-015-0100-3
    34 schema:datePublished 2018-07-03
    35 schema:datePublishedReg 2018-07-03
    36 schema:description BACKGROUND: The transformation of plant photosynthate into soil organic carbon and its recycling to CO<sub>2</sub> by soil microorganisms is one of the central components of the terrestrial carbon cycle. There are currently large knowledge gaps related to which soil-associated microorganisms take up plant carbon in the rhizosphere and the fate of that carbon. RESULTS: We conducted an experiment in which common wild oats (Avena fatua) were grown in a <sup>13</sup>CO<sub>2</sub> atmosphere and the rhizosphere and non-rhizosphere soil was sampled for genomic analyses. Density gradient centrifugation of DNA extracted from soil samples enabled distinction of microbes that did and did not incorporate the <sup>13</sup>C into their DNA. A 1.45-Mbp genome of a Saccharibacteria (TM7) was identified and, despite the microbial complexity of rhizosphere soil, curated to completion. The genome lacks many biosynthetic pathways, including genes required to synthesize DNA de novo. Rather, it requires externally derived nucleotides for DNA and RNA synthesis. Given this, we conclude that rhizosphere-associated Saccharibacteria recycle DNA from bacteria that live off plant exudates and/or phage that acquired <sup>13</sup>C because they preyed upon these bacteria and/or directly from the labeled plant DNA. Isotopic labeling indicates that the population was replicating during the 6-week period of plant growth. Interestingly, the genome is ~ 30% larger than other complete Saccharibacteria genomes from non-soil environments, largely due to more genes for complex carbon utilization and amino acid metabolism. Given the ability to degrade cellulose, hemicellulose, pectin, starch, and 1,3-β-glucan, we predict that this Saccharibacteria generates energy by fermentation of soil necromass and plant root exudates to acetate and lactate. The genome also encodes a linear electron transport chain featuring a terminal oxidase, suggesting that this Saccharibacteria may respire aerobically. The genome encodes a hydrolase that could breakdown salicylic acid, a plant defense signaling molecule, and genes to interconvert a variety of isoprenoids, including the plant hormone zeatin. CONCLUSIONS: Rhizosphere Saccharibacteria likely depend on other bacteria for basic cellular building blocks. We propose that isotopically labeled CO<sub>2</sub> is incorporated into plant-derived carbon and then into the DNA of rhizosphere organisms capable of nucleotide synthesis, and the nucleotides are recycled into Saccharibacterial genomes.
    37 schema:genre article
    38 schema:inLanguage en
    39 schema:isAccessibleForFree true
    40 schema:isPartOf N1d05dfc5bdb04f2bb76ac7a51f2bb032
    41 N74323eb8e1cf49d1b0afdd8b42dcdcd8
    42 sg:journal.1048878
    43 schema:keywords CO
    44 DNA
    45 DNA de novo
    46 RNA synthesis
    47 Saccharibacteria
    48 Saccharibacteria recycle DNA
    49 Saccharibacterial genomes
    50 ability
    51 acid
    52 acid metabolism
    53 amino acid metabolism
    54 analysis
    55 atmosphere
    56 bacteria
    57 basic cellular building blocks
    58 biosynthetic pathway
    59 block
    60 building blocks
    61 carbon
    62 carbon cycle
    63 carbon utilization
    64 cellular building blocks
    65 cellulose
    66 central component
    67 centrifugation
    68 chain
    69 common wild oat
    70 complete Saccharibacteria
    71 completion
    72 complex carbon utilization
    73 complexity
    74 components
    75 cycle
    76 de novo
    77 defense
    78 density gradient centrifugation
    79 distinction
    80 distinction of microbes
    81 electron transport chain
    82 energy
    83 environment
    84 experiments
    85 exudates
    86 fate
    87 fermentation
    88 gap
    89 genes
    90 genome
    91 genomic analysis
    92 gradient centrifugation
    93 growth
    94 hemicellulose
    95 hormone zeatin
    96 hydrolase
    97 isoprenoids
    98 isotopes
    99 isotopic labeling
    100 knowledge gaps
    101 labeling
    102 large knowledge gaps
    103 linear electron transport chain
    104 metabolism
    105 metagenomics
    106 microbes
    107 microbial complexity
    108 microorganisms
    109 molecules
    110 more genes
    111 necromass
    112 non-rhizosphere soil
    113 non-soil environments
    114 novo
    115 nucleotide synthesis
    116 nucleotides
    117 oats
    118 organic carbon
    119 organisms
    120 oxidase
    121 pathway
    122 pectin
    123 period
    124 phages
    125 photosynthate
    126 plant DNA
    127 plant carbon
    128 plant defense
    129 plant exudates
    130 plant growth
    131 plant hormone zeatin
    132 plant photosynthates
    133 plant roots
    134 plant-derived carbon
    135 population
    136 recycle DNA
    137 recycling
    138 rhizosphere
    139 rhizosphere organisms
    140 rhizosphere soil
    141 roots
    142 salicylic acid
    143 samples
    144 soil
    145 soil microorganisms
    146 soil necromass
    147 soil organic carbon
    148 soil samples
    149 soil-associated microorganisms
    150 stable isotopes
    151 starch
    152 synthesis
    153 terminal oxidase
    154 terrestrial carbon cycle
    155 transformation
    156 transport chain
    157 utilization
    158 variety
    159 variety of isoprenoids
    160 wild oat
    161 zeatin
    162 schema:name Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon
    163 schema:pagination 122
    164 schema:productId N1d233b11df3c40029e520fbd7d4650ee
    165 N2854f28cbb6b4a21b910d52380b958b3
    166 Nbe82b5c2612c42f28c5b16c5e4be6553
    167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105297645
    168 https://doi.org/10.1186/s40168-018-0499-z
    169 schema:sdDatePublished 2021-12-01T19:43
    170 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    171 schema:sdPublisher N0fd703fae938466ab29ba12cc68e7f69
    172 schema:url https://doi.org/10.1186/s40168-018-0499-z
    173 sgo:license sg:explorer/license/
    174 sgo:sdDataset articles
    175 rdf:type schema:ScholarlyArticle
    176 N0fd703fae938466ab29ba12cc68e7f69 schema:name Springer Nature - SN SciGraph project
    177 rdf:type schema:Organization
    178 N118e797121de410fa5cd8e7dbc46aee7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name DNA, Bacterial
    180 rdf:type schema:DefinedTerm
    181 N14121a0937434039a83977636c9f319a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Carbon
    183 rdf:type schema:DefinedTerm
    184 N1bd95d352ad34f07a9862373d6086938 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Plant Roots
    186 rdf:type schema:DefinedTerm
    187 N1d05dfc5bdb04f2bb76ac7a51f2bb032 schema:volumeNumber 6
    188 rdf:type schema:PublicationVolume
    189 N1d233b11df3c40029e520fbd7d4650ee schema:name dimensions_id
    190 schema:value pub.1105297645
    191 rdf:type schema:PropertyValue
    192 N1f786f4bcae648ec984d650516d36d9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Symbiosis
    194 rdf:type schema:DefinedTerm
    195 N2854f28cbb6b4a21b910d52380b958b3 schema:name pubmed_id
    196 schema:value 29970182
    197 rdf:type schema:PropertyValue
    198 N4247d8e9688e4971b84d27d6b0e2028a rdf:first sg:person.01222724067.71
    199 rdf:rest Nc81e5034ebb8402e9ca408ca97d89cb3
    200 N675c6f678a03409fa54e448ad4116b25 rdf:first sg:person.01335601466.52
    201 rdf:rest Ncad3e246b3704a8b93ac2d80e1855602
    202 N74323eb8e1cf49d1b0afdd8b42dcdcd8 schema:issueNumber 1
    203 rdf:type schema:PublicationIssue
    204 N7548164d630743d48944a2432ac0fe43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    205 schema:name Metagenomics
    206 rdf:type schema:DefinedTerm
    207 N7a94ca0cdc6242abb88982a2b9c48b2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    208 schema:name Rhizosphere
    209 rdf:type schema:DefinedTerm
    210 N7c899d898adb48058d99c54cb3364db2 rdf:first sg:person.015342312453.58
    211 rdf:rest N8377b8b99ea44e3788e0b488db59ab5d
    212 N7e3bbce8763d424b807f0f58c276f29f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    213 schema:name Isotope Labeling
    214 rdf:type schema:DefinedTerm
    215 N8377b8b99ea44e3788e0b488db59ab5d rdf:first sg:person.0737065472.58
    216 rdf:rest N675c6f678a03409fa54e448ad4116b25
    217 N90944c07830d429abebc11401203a812 rdf:first sg:person.01350542775.47
    218 rdf:rest rdf:nil
    219 Nbe82b5c2612c42f28c5b16c5e4be6553 schema:name doi
    220 schema:value 10.1186/s40168-018-0499-z
    221 rdf:type schema:PropertyValue
    222 Nc50e7294c84f477180f8aa40f62287df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    223 schema:name Energy Metabolism
    224 rdf:type schema:DefinedTerm
    225 Nc81e5034ebb8402e9ca408ca97d89cb3 rdf:first sg:person.01344076147.63
    226 rdf:rest N90944c07830d429abebc11401203a812
    227 Ncac0841465d54ea98b5222d5b25faf9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    228 schema:name Bacteria
    229 rdf:type schema:DefinedTerm
    230 Ncad3e246b3704a8b93ac2d80e1855602 rdf:first sg:person.0757405471.24
    231 rdf:rest N4247d8e9688e4971b84d27d6b0e2028a
    232 Ncc04ae9904904ca982ca510df48b3627 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    233 schema:name Soil Microbiology
    234 rdf:type schema:DefinedTerm
    235 Nd156718ce6f94603a82bbc2c79e28be2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    236 schema:name Avena
    237 rdf:type schema:DefinedTerm
    238 Nd2855fad3c03496c9f00956e7c8dbe7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    239 schema:name Genome, Bacterial
    240 rdf:type schema:DefinedTerm
    241 Ne5c36f67f1a94a31b59ddfedece18c71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    242 schema:name RNA, Bacterial
    243 rdf:type schema:DefinedTerm
    244 Nfe146340995a4221a806fbc06b389e1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    245 schema:name Carbon Dioxide
    246 rdf:type schema:DefinedTerm
    247 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    248 schema:name Biological Sciences
    249 rdf:type schema:DefinedTerm
    250 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    251 schema:name Genetics
    252 rdf:type schema:DefinedTerm
    253 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    254 schema:name Microbiology
    255 rdf:type schema:DefinedTerm
    256 sg:grant.3487870 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-018-0499-z
    257 rdf:type schema:MonetaryGrant
    258 sg:grant.4322244 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-018-0499-z
    259 rdf:type schema:MonetaryGrant
    260 sg:grant.5509412 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-018-0499-z
    261 rdf:type schema:MonetaryGrant
    262 sg:journal.1048878 schema:issn 2049-2618
    263 schema:name Microbiome
    264 schema:publisher Springer Nature
    265 rdf:type schema:Periodical
    266 sg:person.01222724067.71 schema:affiliation grid-institutes:grid.184769.5
    267 schema:familyName Herman
    268 schema:givenName Donald J.
    269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222724067.71
    270 rdf:type schema:Person
    271 sg:person.01335601466.52 schema:affiliation grid-institutes:grid.250008.f
    272 schema:familyName Blazewicz
    273 schema:givenName Steven J.
    274 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335601466.52
    275 rdf:type schema:Person
    276 sg:person.01344076147.63 schema:affiliation grid-institutes:grid.184769.5
    277 schema:familyName Firestone
    278 schema:givenName Mary K.
    279 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344076147.63
    280 rdf:type schema:Person
    281 sg:person.01350542775.47 schema:affiliation grid-institutes:grid.47840.3f
    282 schema:familyName Banfield
    283 schema:givenName Jillian F.
    284 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350542775.47
    285 rdf:type schema:Person
    286 sg:person.015342312453.58 schema:affiliation grid-institutes:grid.47840.3f
    287 schema:familyName Starr
    288 schema:givenName Evan P.
    289 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015342312453.58
    290 rdf:type schema:Person
    291 sg:person.0737065472.58 schema:affiliation grid-institutes:grid.417738.e
    292 schema:familyName Shi
    293 schema:givenName Shengjing
    294 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737065472.58
    295 rdf:type schema:Person
    296 sg:person.0757405471.24 schema:affiliation grid-institutes:grid.5718.b
    297 schema:familyName Probst
    298 schema:givenName Alexander J.
    299 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757405471.24
    300 rdf:type schema:Person
    301 sg:pub.10.1007/s00248-015-0711-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020381965
    302 https://doi.org/10.1007/s00248-015-0711-7
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1038/82824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030736489
    305 https://doi.org/10.1038/82824
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1038/ismej.2008.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044545406
    308 https://doi.org/10.1038/ismej.2008.80
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1038/nature14003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020333024
    311 https://doi.org/10.1038/nature14003
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1038/nature14486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029031769
    314 https://doi.org/10.1038/nature14486
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1038/nbt.2579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010652073
    317 https://doi.org/10.1038/nbt.2579
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1038/nbt.3704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020940033
    320 https://doi.org/10.1038/nbt.3704
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
    323 https://doi.org/10.1038/nmeth.1923
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1038/nmicrobiol.2016.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010598799
    326 https://doi.org/10.1038/nmicrobiol.2016.48
    327 rdf:type schema:CreativeWork
    328 sg:pub.10.1038/s41564-018-0129-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101560483
    329 https://doi.org/10.1038/s41564-018-0129-3
    330 rdf:type schema:CreativeWork
    331 sg:pub.10.1038/srep03957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024562617
    332 https://doi.org/10.1038/srep03957
    333 rdf:type schema:CreativeWork
    334 sg:pub.10.1186/1471-2105-11-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026423599
    335 https://doi.org/10.1186/1471-2105-11-119
    336 rdf:type schema:CreativeWork
    337 sg:pub.10.1186/gb-2009-10-6-r63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048932355
    338 https://doi.org/10.1186/gb-2009-10-6-r63
    339 rdf:type schema:CreativeWork
    340 sg:pub.10.1186/s40168-017-0241-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083861560
    341 https://doi.org/10.1186/s40168-017-0241-2
    342 rdf:type schema:CreativeWork
    343 sg:pub.10.1186/s40793-015-0100-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005739045
    344 https://doi.org/10.1186/s40793-015-0100-3
    345 rdf:type schema:CreativeWork
    346 grid-institutes:grid.184769.5 schema:alternateName Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94704 USA
    347 schema:name Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA
    348 Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94704 USA
    349 rdf:type schema:Organization
    350 grid-institutes:grid.250008.f schema:alternateName Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, 94550 USA
    351 schema:name Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, 94550 USA
    352 rdf:type schema:Organization
    353 grid-institutes:grid.417738.e schema:alternateName Lincoln Science Centre, AgResearch Ltd, Christchurch, 8140 New Zealand
    354 schema:name Lincoln Science Centre, AgResearch Ltd, Christchurch, 8140 New Zealand
    355 rdf:type schema:Organization
    356 grid-institutes:grid.47840.3f schema:alternateName Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720 USA
    357 Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
    358 schema:name Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720 USA
    359 Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA
    360 Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
    361 Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94704 USA
    362 rdf:type schema:Organization
    363 grid-institutes:grid.5718.b schema:alternateName Biofilm Center, University of Duisburg-Essen, 45141 Essen, Germany
    364 schema:name Biofilm Center, University of Duisburg-Essen, 45141 Essen, Germany
    365 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...