Absolute quantitation of microbiota abundance in environmental samples View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06-19

AUTHORS

Andrzej Tkacz, Marion Hortala, Philip S. Poole

ABSTRACT

BackgroundMicrobial communities (microbiota) influence human and animal disease and immunity, geochemical nutrient cycling and plant productivity. Specific groups, including bacteria, archaea, eukaryotes or fungi, are amplified by PCR to assess the relative abundance of sub-groups (e.g. genera). However, neither the absolute abundance of sub-groups is revealed, nor can different amplicon families (i.e. OTUs derived from a specific pair of PCR primers such as bacterial 16S, eukaryotic 18S or fungi ITS) be compared. This prevents determination of the absolute abundance of a particular group and domain-level shifts in microbiota abundance can remain undetected.ResultsWe have developed absolute quantitation of amplicon families using synthetic chimeric DNA spikes. Synthetic spikes were added directly to environmental samples, co-isolated and PCR-amplified, allowing calculation of the absolute abundance of amplicon families (e.g. prokaryotic 16S, eukaryotic 18S and fungal ITS per unit mass of sample).ConclusionsSpikes can be adapted to any amplicon-specific group including rhizobia from soils, Firmicutes and Bifidobacteria from human gut or Enterobacteriaceae from food samples. Crucially, using highly complex soil samples, we show that the absolute abundance of specific groups can remain steady or increase, even when their relative abundance decreases. Thus, without absolute quantitation, the underlying pathology, physiology and ecology of microbial groups may be masked by their relative abundance. More... »

PAGES

110

References to SciGraph publications

  • 2015-04-24. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2013-07-18. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2014-10-28. Selection on soil microbiomes reveals reproducible impacts on plant function in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2014-08-24. Normalization of RNA-seq data using factor analysis of control genes or samples in NATURE BIOTECHNOLOGY
  • 2012-03-08. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2016-07-12. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant in NATURE COMMUNICATIONS
  • 2015-06-20. Optimizing a PCR protocol for cpn60-based microbiome profiling of samples variously contaminated with host genomic DNA in BMC RESEARCH NOTES
  • 2016-07-06. Microbiome-wide association studies link dynamic microbial consortia to disease in NATURE
  • 2016-05-03. Marker genes that are less conserved in their sequences are useful for predicting genome-wide similarity levels between closely related prokaryotic strains in MICROBIOME
  • 2016-12-19. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity in NATURE MICROBIOLOGY
  • 2017-11-01. Quantitative microbiome profiling links gut community variation to microbial load in NATURE
  • 2016-07-25. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies in NATURE BIOTECHNOLOGY
  • 2016-06-21. Adjusting microbiome profiles for differences in microbial load by spike-in bacteria in MICROBIOME
  • 2009-05. The gut microbiota shapes intestinal immune responses during health and disease in NATURE REVIEWS IMMUNOLOGY
  • 2017-07-06. Soil bacterial quantification approaches coupling with relative abundances reflecting the changes of taxa in SCIENTIFIC REPORTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40168-018-0491-7

    DOI

    http://dx.doi.org/10.1186/s40168-018-0491-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104992927

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29921326


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Archaea", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biodiversity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Archaeal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Fungal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fungi", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, Essential", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbiota", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymerase Chain Reaction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Ribosomal, 16S", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Soil Microbiology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tkacz", 
            "givenName": "Andrzej", 
            "id": "sg:person.01155761361.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155761361.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hortala", 
            "givenName": "Marion", 
            "id": "sg:person.014332423066.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014332423066.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Poole", 
            "givenName": "Philip S.", 
            "id": "sg:person.07512676162.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07512676162.86"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/s40168-016-0175-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004051729", 
              "https://doi.org/10.1186/s40168-016-0175-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms12151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042288906", 
              "https://doi.org/10.1038/ncomms12151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002490773", 
              "https://doi.org/10.1038/nbt.3601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2014.196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015652270", 
              "https://doi.org/10.1038/ismej.2014.196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature24460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092687907", 
              "https://doi.org/10.1038/nature24460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40168-016-0162-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004503675", 
              "https://doi.org/10.1186/s40168-016-0162-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043217898", 
              "https://doi.org/10.1038/nmicrobiol.2016.242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-05260-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090360263", 
              "https://doi.org/10.1038/s41598-017-05260-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nri2515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004447638", 
              "https://doi.org/10.1038/nri2515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature18850", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013019120", 
              "https://doi.org/10.1038/nature18850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2012.8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038992953", 
              "https://doi.org/10.1038/ismej.2012.8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2931", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008162673", 
              "https://doi.org/10.1038/nbt.2931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13104-015-1170-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035129771", 
              "https://doi.org/10.1186/s13104-015-1170-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2013.119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011526726", 
              "https://doi.org/10.1038/ismej.2013.119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2015.41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007043140", 
              "https://doi.org/10.1038/ismej.2015.41"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-06-19", 
        "datePublishedReg": "2018-06-19", 
        "description": "BackgroundMicrobial communities (microbiota) influence human and animal disease and immunity, geochemical nutrient cycling and plant productivity. Specific groups, including bacteria, archaea, eukaryotes or fungi, are amplified by PCR to assess the relative abundance of sub-groups (e.g. genera). However, neither the absolute abundance of sub-groups is revealed, nor can different amplicon families (i.e. OTUs derived from a specific pair of PCR primers such as bacterial 16S, eukaryotic 18S or fungi ITS) be compared. This prevents determination of the absolute abundance of a particular group and domain-level shifts in microbiota abundance can remain undetected.ResultsWe have developed absolute quantitation of amplicon families using synthetic chimeric DNA spikes. Synthetic spikes were added directly to environmental samples, co-isolated and PCR-amplified, allowing calculation of the absolute abundance of amplicon families (e.g. prokaryotic 16S, eukaryotic 18S and fungal ITS per unit mass of sample).ConclusionsSpikes can be adapted to any amplicon-specific group including rhizobia from soils, Firmicutes and Bifidobacteria from human gut or Enterobacteriaceae from food samples. Crucially, using highly complex soil samples, we show that the absolute abundance of specific groups can remain steady or increase, even when their relative abundance decreases. Thus, without absolute quantitation, the underlying pathology, physiology and ecology of microbial groups may be masked by their relative abundance.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s40168-018-0491-7", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4849919", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1048878", 
            "issn": [
              "2049-2618"
            ], 
            "name": "Microbiome", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "absolute quantitation", 
          "absolute abundance", 
          "relative abundance", 
          "relative abundance decreases", 
          "microbiota abundance", 
          "microbial groups", 
          "plant productivity", 
          "nutrient cycling", 
          "abundance decreases", 
          "human gut", 
          "environmental samples", 
          "abundance", 
          "synthetic spike", 
          "animal diseases", 
          "complex soil samples", 
          "family", 
          "eukaryotes", 
          "PCR", 
          "archaea", 
          "rhizobia", 
          "soil samples", 
          "specific groups", 
          "Firmicutes", 
          "ecology", 
          "fungi", 
          "bacteria", 
          "physiology", 
          "gut", 
          "soil", 
          "cycling", 
          "humans", 
          "quantitation", 
          "productivity", 
          "bifidobacteria", 
          "immunity", 
          "community", 
          "Enterobacteriaceae", 
          "particular group", 
          "spikes", 
          "disease", 
          "shift", 
          "group", 
          "samples", 
          "ResultsWe", 
          "food samples", 
          "pathology", 
          "decrease", 
          "determination", 
          "calculations"
        ], 
        "name": "Absolute quantitation of microbiota abundance in environmental samples", 
        "pagination": "110", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104992927"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40168-018-0491-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29921326"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40168-018-0491-7", 
          "https://app.dimensions.ai/details/publication/pub.1104992927"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_790.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s40168-018-0491-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0491-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0491-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0491-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0491-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    233 TRIPLES      21 PREDICATES      101 URIs      78 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40168-018-0491-7 schema:about N03a2855d68484f5aa7026836b1948c27
    2 N0f7565e421434380954b7a621b7617c9
    3 N18e9f4dc2e4c4cadbd3c8ddbf39b43f1
    4 N5da8ac337ddb41fd8955337a00b87da6
    5 N67825024d41d4e839bf30d057942aca1
    6 N789523d11f284967aa15e6c9627844ea
    7 N9a8f701fbdc0450b96f6fe2094063a49
    8 N9fa110308cfe4be4b435822b5c8d182d
    9 Na574ff07320f49e2b2a3bf5a2f7e3d05
    10 Na709a5cba7684d3da29f057e622026cf
    11 Nb6843ef2b4f84e0a84685b99dfae795b
    12 Ne2d767eb056c47258a9260bf4755f418
    13 anzsrc-for:06
    14 anzsrc-for:0605
    15 schema:author Ne5665bc129224f8fb0f0d47259a333b7
    16 schema:citation sg:pub.10.1038/ismej.2012.8
    17 sg:pub.10.1038/ismej.2013.119
    18 sg:pub.10.1038/ismej.2014.196
    19 sg:pub.10.1038/ismej.2015.41
    20 sg:pub.10.1038/nature18850
    21 sg:pub.10.1038/nature24460
    22 sg:pub.10.1038/nbt.2931
    23 sg:pub.10.1038/nbt.3601
    24 sg:pub.10.1038/ncomms12151
    25 sg:pub.10.1038/nmicrobiol.2016.242
    26 sg:pub.10.1038/nri2515
    27 sg:pub.10.1038/s41598-017-05260-w
    28 sg:pub.10.1186/s13104-015-1170-4
    29 sg:pub.10.1186/s40168-016-0162-5
    30 sg:pub.10.1186/s40168-016-0175-0
    31 schema:datePublished 2018-06-19
    32 schema:datePublishedReg 2018-06-19
    33 schema:description BackgroundMicrobial communities (microbiota) influence human and animal disease and immunity, geochemical nutrient cycling and plant productivity. Specific groups, including bacteria, archaea, eukaryotes or fungi, are amplified by PCR to assess the relative abundance of sub-groups (e.g. genera). However, neither the absolute abundance of sub-groups is revealed, nor can different amplicon families (i.e. OTUs derived from a specific pair of PCR primers such as bacterial 16S, eukaryotic 18S or fungi ITS) be compared. This prevents determination of the absolute abundance of a particular group and domain-level shifts in microbiota abundance can remain undetected.ResultsWe have developed absolute quantitation of amplicon families using synthetic chimeric DNA spikes. Synthetic spikes were added directly to environmental samples, co-isolated and PCR-amplified, allowing calculation of the absolute abundance of amplicon families (e.g. prokaryotic 16S, eukaryotic 18S and fungal ITS per unit mass of sample).ConclusionsSpikes can be adapted to any amplicon-specific group including rhizobia from soils, Firmicutes and Bifidobacteria from human gut or Enterobacteriaceae from food samples. Crucially, using highly complex soil samples, we show that the absolute abundance of specific groups can remain steady or increase, even when their relative abundance decreases. Thus, without absolute quantitation, the underlying pathology, physiology and ecology of microbial groups may be masked by their relative abundance.
    34 schema:genre article
    35 schema:isAccessibleForFree true
    36 schema:isPartOf N3b62ac67884c4b9bb7bfcd2d48edeaf0
    37 N83ee008031e34bb0ab27e7a969406cd1
    38 sg:journal.1048878
    39 schema:keywords Enterobacteriaceae
    40 Firmicutes
    41 PCR
    42 ResultsWe
    43 absolute abundance
    44 absolute quantitation
    45 abundance
    46 abundance decreases
    47 animal diseases
    48 archaea
    49 bacteria
    50 bifidobacteria
    51 calculations
    52 community
    53 complex soil samples
    54 cycling
    55 decrease
    56 determination
    57 disease
    58 ecology
    59 environmental samples
    60 eukaryotes
    61 family
    62 food samples
    63 fungi
    64 group
    65 gut
    66 human gut
    67 humans
    68 immunity
    69 microbial groups
    70 microbiota abundance
    71 nutrient cycling
    72 particular group
    73 pathology
    74 physiology
    75 plant productivity
    76 productivity
    77 quantitation
    78 relative abundance
    79 relative abundance decreases
    80 rhizobia
    81 samples
    82 shift
    83 soil
    84 soil samples
    85 specific groups
    86 spikes
    87 synthetic spike
    88 schema:name Absolute quantitation of microbiota abundance in environmental samples
    89 schema:pagination 110
    90 schema:productId N64753d8c26bf4740ab9d9d25068fb3a1
    91 Nb942ac6fc0764544bf14ffd6037534c1
    92 Ncaa0fb0599ee4673b7426b28a1b4f1ae
    93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104992927
    94 https://doi.org/10.1186/s40168-018-0491-7
    95 schema:sdDatePublished 2022-10-01T06:44
    96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    97 schema:sdPublisher Nfaaeeb571e6f4890bcf1503f9ae57e8c
    98 schema:url https://doi.org/10.1186/s40168-018-0491-7
    99 sgo:license sg:explorer/license/
    100 sgo:sdDataset articles
    101 rdf:type schema:ScholarlyArticle
    102 N03a2855d68484f5aa7026836b1948c27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Biodiversity
    104 rdf:type schema:DefinedTerm
    105 N0f7565e421434380954b7a621b7617c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Genes, Essential
    107 rdf:type schema:DefinedTerm
    108 N18e9f4dc2e4c4cadbd3c8ddbf39b43f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Soil Microbiology
    110 rdf:type schema:DefinedTerm
    111 N3b62ac67884c4b9bb7bfcd2d48edeaf0 schema:volumeNumber 6
    112 rdf:type schema:PublicationVolume
    113 N5da8ac337ddb41fd8955337a00b87da6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Archaea
    115 rdf:type schema:DefinedTerm
    116 N64753d8c26bf4740ab9d9d25068fb3a1 schema:name pubmed_id
    117 schema:value 29921326
    118 rdf:type schema:PropertyValue
    119 N67825024d41d4e839bf30d057942aca1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name DNA, Fungal
    121 rdf:type schema:DefinedTerm
    122 N789523d11f284967aa15e6c9627844ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Polymerase Chain Reaction
    124 rdf:type schema:DefinedTerm
    125 N83ee008031e34bb0ab27e7a969406cd1 schema:issueNumber 1
    126 rdf:type schema:PublicationIssue
    127 N9a8f701fbdc0450b96f6fe2094063a49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Fungi
    129 rdf:type schema:DefinedTerm
    130 N9fa110308cfe4be4b435822b5c8d182d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Bacteria
    132 rdf:type schema:DefinedTerm
    133 Na574ff07320f49e2b2a3bf5a2f7e3d05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name DNA, Bacterial
    135 rdf:type schema:DefinedTerm
    136 Na709a5cba7684d3da29f057e622026cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name RNA, Ribosomal, 16S
    138 rdf:type schema:DefinedTerm
    139 Nb6843ef2b4f84e0a84685b99dfae795b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Microbiota
    141 rdf:type schema:DefinedTerm
    142 Nb942ac6fc0764544bf14ffd6037534c1 schema:name dimensions_id
    143 schema:value pub.1104992927
    144 rdf:type schema:PropertyValue
    145 Nc5a300e427fe4ef2aa8719eb8f68e34d rdf:first sg:person.07512676162.86
    146 rdf:rest rdf:nil
    147 Ncaa0fb0599ee4673b7426b28a1b4f1ae schema:name doi
    148 schema:value 10.1186/s40168-018-0491-7
    149 rdf:type schema:PropertyValue
    150 Nd28a83f5e56947b7a04764b2a136765f rdf:first sg:person.014332423066.76
    151 rdf:rest Nc5a300e427fe4ef2aa8719eb8f68e34d
    152 Ne2d767eb056c47258a9260bf4755f418 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name DNA, Archaeal
    154 rdf:type schema:DefinedTerm
    155 Ne5665bc129224f8fb0f0d47259a333b7 rdf:first sg:person.01155761361.18
    156 rdf:rest Nd28a83f5e56947b7a04764b2a136765f
    157 Nfaaeeb571e6f4890bcf1503f9ae57e8c schema:name Springer Nature - SN SciGraph project
    158 rdf:type schema:Organization
    159 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    160 schema:name Biological Sciences
    161 rdf:type schema:DefinedTerm
    162 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Microbiology
    164 rdf:type schema:DefinedTerm
    165 sg:grant.4849919 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-018-0491-7
    166 rdf:type schema:MonetaryGrant
    167 sg:journal.1048878 schema:issn 2049-2618
    168 schema:name Microbiome
    169 schema:publisher Springer Nature
    170 rdf:type schema:Periodical
    171 sg:person.01155761361.18 schema:affiliation grid-institutes:grid.4991.5
    172 schema:familyName Tkacz
    173 schema:givenName Andrzej
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155761361.18
    175 rdf:type schema:Person
    176 sg:person.014332423066.76 schema:affiliation grid-institutes:grid.4991.5
    177 schema:familyName Hortala
    178 schema:givenName Marion
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014332423066.76
    180 rdf:type schema:Person
    181 sg:person.07512676162.86 schema:affiliation grid-institutes:grid.4991.5
    182 schema:familyName Poole
    183 schema:givenName Philip S.
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07512676162.86
    185 rdf:type schema:Person
    186 sg:pub.10.1038/ismej.2012.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038992953
    187 https://doi.org/10.1038/ismej.2012.8
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/ismej.2013.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011526726
    190 https://doi.org/10.1038/ismej.2013.119
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/ismej.2014.196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015652270
    193 https://doi.org/10.1038/ismej.2014.196
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/ismej.2015.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007043140
    196 https://doi.org/10.1038/ismej.2015.41
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/nature18850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013019120
    199 https://doi.org/10.1038/nature18850
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nature24460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092687907
    202 https://doi.org/10.1038/nature24460
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/nbt.2931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008162673
    205 https://doi.org/10.1038/nbt.2931
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nbt.3601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002490773
    208 https://doi.org/10.1038/nbt.3601
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/ncomms12151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042288906
    211 https://doi.org/10.1038/ncomms12151
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/nmicrobiol.2016.242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043217898
    214 https://doi.org/10.1038/nmicrobiol.2016.242
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/nri2515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004447638
    217 https://doi.org/10.1038/nri2515
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/s41598-017-05260-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1090360263
    220 https://doi.org/10.1038/s41598-017-05260-w
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1186/s13104-015-1170-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035129771
    223 https://doi.org/10.1186/s13104-015-1170-4
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1186/s40168-016-0162-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004503675
    226 https://doi.org/10.1186/s40168-016-0162-5
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1186/s40168-016-0175-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004051729
    229 https://doi.org/10.1186/s40168-016-0175-0
    230 rdf:type schema:CreativeWork
    231 grid-institutes:grid.4991.5 schema:alternateName Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
    232 schema:name Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
    233 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...