Effect of heat shock on hot water plumbing microbiota and Legionella pneumophila control View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Pan Ji, William J. Rhoads, Marc A. Edwards, Amy Pruden

ABSTRACT

BACKGROUND: Heat shock is a potential control strategy for Legionella pneumophila in hot water plumbing systems. However, it is not consistently effective, with little understanding of its influence on the broader plumbing microbiome. Here, we employed a lab-scale recirculating hot water plumbing rig to compare the pre- and post-"heat shock" (i.e., 40 → 60 → 40 °C) microbiota at distal taps. In addition, we used a second plumbing rig to represent a well-managed system at 60 °C and conducted a "control" sampling at 60 °C, subsequently reducing the temperature to 40 °C to observe the effects on Legionella and the microbiota under a simulated "thermal disruption" scenario. RESULTS: According to 16S rRNA gene amplicon sequencing, in the heat shock scenario, there was no significant difference or statistically significant, but small, difference in the microbial community composition at the distal taps pre- versus post-heat shock (both biofilm and water; weighted and unweighted UniFrac distance matrices). While heat shock did lead to decreased total bacteria numbers at distal taps, it did not measurably alter the richness or evenness of the microbiota. Quantitative PCR measurements demonstrated that L. pneumophila relative abundance at distal taps also was not significantly different at 2-month post-heat shock relative to the pre-heat shock condition, while relative abundance of Vermamoeba vermiformis, a known Legionella host, did increase. In the thermal disruption scenario, relative abundance of planktonic L. pneumophila (quantitative PCR data) increased to levels comparable to those observed in the heat shock scenario within 2 months of switching long-term operation at 60 to 40 °C. Overall, water use frequency and water heater temperature set point exhibited a stronger effect than one-time heat shock on the microbial composition and Legionella levels at distal taps. CONCLUSIONS: While heat shock may be effective for instantaneous Legionella control and reduction in total bacteria numbers, water heater temperature set point and water use frequency are more promising factors for long-term Legionella and microbial community control, illustrating the importance of maintaining consistent elevated temperatures in the system relative to short-term heat shock. More... »

PAGES

30

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40168-018-0406-7

DOI

http://dx.doi.org/10.1186/s40168-018-0406-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100914685

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29426363


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amoebozoa", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Protozoan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Ribosomal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hot Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Legionella pneumophila", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Ribosomal, 16S", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sanitary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water Microbiology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Virginia Tech", 
          "id": "https://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Via Department of Civil and Environmental Engineering, Virginia Tech, 24061, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Pan", 
        "id": "sg:person.01031113171.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031113171.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Virginia Tech", 
          "id": "https://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Via Department of Civil and Environmental Engineering, Virginia Tech, 24061, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rhoads", 
        "givenName": "William J.", 
        "id": "sg:person.0607037254.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607037254.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Virginia Tech", 
          "id": "https://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Via Department of Civil and Environmental Engineering, Virginia Tech, 24061, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Edwards", 
        "givenName": "Marc A.", 
        "id": "sg:person.0723265654.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723265654.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Virginia Tech", 
          "id": "https://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Via Department of Civil and Environmental Engineering, Virginia Tech, 24061, Blacksburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pruden", 
        "givenName": "Amy", 
        "id": "sg:person.01023417177.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023417177.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pone.0009490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000778834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.00831-12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001648960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6941.2006.00181.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003073652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.70.11.6826-6833.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004373219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.f.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009032055", 
          "https://doi.org/10.1038/nmeth.f.303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.f.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009032055", 
          "https://doi.org/10.1038/nmeth.f.303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/ice.2016.205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010062984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2005.00440.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010688577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diagmicrobio.2008.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010712701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/pathogens4020373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011467896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.00085-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013249213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/jhin.2002.1185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014849453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.01492-12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015102716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1354(98)00519-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017794970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1.4.269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019176183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/pathogens5010029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021877298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-7083-3_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023639996", 
          "https://doi.org/10.1007/978-1-4684-7083-3_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2004.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025039005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025904619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40168-015-0134-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027716016", 
          "https://doi.org/10.1186/s40168-015-0134-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/pathogens5020035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030129670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2009.02025.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031882471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2009.02025.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031882471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2011.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032419478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.66.11.4605-4614.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032660342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2012.09.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032996610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2015.199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033831895", 
          "https://doi.org/10.1038/ismej.2015.199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034512291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2672.2009.04541.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038621684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2672.2009.04541.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038621684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08927014.2011.626899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039419515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.syapm.2015.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040403168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.71.12.8228-8235.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042157769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044499388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.00062-07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045980007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mbio.01135-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046685557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2010.07.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046844991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047017534", 
          "https://doi.org/10.1186/1471-2105-13-31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0141087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049000118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2012.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049519048", 
          "https://doi.org/10.1038/ismej.2012.113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2011.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051863807", 
          "https://doi.org/10.1038/ismej.2011.139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es402455r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055506551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/502251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058783423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/502251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058783423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2175/106143014x13975035524989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078953851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079933393", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2017.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084128176", 
          "https://doi.org/10.1038/ismej.2017.14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.est.6b05616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085469589"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "BACKGROUND: Heat shock is a potential control strategy for Legionella pneumophila in hot water plumbing systems. However, it is not consistently effective, with little understanding of its influence on the broader plumbing microbiome. Here, we employed a lab-scale recirculating hot water plumbing rig to compare the pre- and post-\"heat shock\" (i.e., 40\u2009\u2192\u200960\u2009\u2192\u200940\u00a0\u00b0C) microbiota at distal taps. In addition, we used a second plumbing rig to represent a well-managed system at 60\u00a0\u00b0C and conducted a \"control\" sampling at 60\u00a0\u00b0C, subsequently reducing the temperature to 40\u00a0\u00b0C to observe the effects on Legionella and the microbiota under a simulated \"thermal disruption\" scenario.\nRESULTS: According to 16S rRNA gene amplicon sequencing, in the heat shock scenario, there was no significant difference or statistically significant, but small, difference in the microbial community composition at the distal taps pre- versus post-heat shock (both biofilm and water; weighted and unweighted UniFrac distance matrices). While heat shock did lead to decreased total bacteria numbers at distal taps, it did not measurably alter the richness or evenness of the microbiota. Quantitative PCR measurements demonstrated that L. pneumophila relative abundance at distal taps also was not significantly different at 2-month post-heat shock relative to the pre-heat shock condition, while relative abundance of Vermamoeba vermiformis, a known Legionella host, did increase. In the thermal disruption scenario, relative abundance of planktonic L. pneumophila (quantitative PCR data) increased to levels comparable to those observed in the heat shock scenario within 2\u00a0months of switching long-term operation at 60 to 40\u00a0\u00b0C. Overall, water use frequency and water heater temperature set point exhibited a stronger effect than one-time heat shock on the microbial composition and Legionella levels at distal taps.\nCONCLUSIONS: While heat shock may be effective for instantaneous Legionella control and reduction in total bacteria numbers, water heater temperature set point and water use frequency are more promising factors for long-term Legionella and microbial community control, illustrating the importance of maintaining consistent elevated temperatures in the system relative to short-term heat shock.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40168-018-0406-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3488526", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1048878", 
        "issn": [
          "2049-2618"
        ], 
        "name": "Microbiome", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Effect of heat shock on hot water plumbing microbiota and Legionella pneumophila control", 
    "pagination": "30", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "277b3f696f2caff752022f66e6c6e552c3e02b4e10458a6191efb1b40de64820"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29426363"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101615147"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40168-018-0406-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100914685"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40168-018-0406-7", 
      "https://app.dimensions.ai/details/publication/pub.1100914685"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000603.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186/s40168-018-0406-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0406-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0406-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0406-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0406-7'


 

This table displays all metadata directly associated to this object as RDF triples.

270 TRIPLES      21 PREDICATES      83 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40168-018-0406-7 schema:about N187b670b05cd45a5a50416c855e41de9
2 N1d93072a49a44e49b54a4381d7118b22
3 N40cc24e9971b4da59a285511d4a38d38
4 N642c08ae3ed640faac891b65515d0593
5 N7066e584650a4b6894c5e1f71a09a7f3
6 N9f57a6e7f10a4a3682c57fef4b30e1f4
7 Na757e58b9c134c638d10eaac3fe96cdf
8 Nb38a20a9ccdc474583754ac5b1e5f1cf
9 Ne5707f9274504de5aabbfa6207f4ef80
10 Nf37247cd5afd4fd680100d6c0dc906af
11 anzsrc-for:06
12 anzsrc-for:0605
13 schema:author Nc171826a23a64cd0bb50e3a583a50def
14 schema:citation sg:pub.10.1007/978-1-4684-7083-3_7
15 sg:pub.10.1038/ismej.2011.139
16 sg:pub.10.1038/ismej.2012.113
17 sg:pub.10.1038/ismej.2015.199
18 sg:pub.10.1038/ismej.2017.14
19 sg:pub.10.1038/nmeth.f.303
20 sg:pub.10.1186/1471-2105-13-31
21 sg:pub.10.1186/s40168-015-0134-1
22 https://app.dimensions.ai/details/publication/pub.1079933393
23 https://doi.org/10.1016/j.diagmicrobio.2008.05.004
24 https://doi.org/10.1016/j.syapm.2015.02.006
25 https://doi.org/10.1016/j.watres.2004.04.011
26 https://doi.org/10.1016/j.watres.2010.07.032
27 https://doi.org/10.1016/j.watres.2011.11.006
28 https://doi.org/10.1016/j.watres.2012.09.053
29 https://doi.org/10.1016/s0043-1354(98)00519-3
30 https://doi.org/10.1017/ice.2016.205
31 https://doi.org/10.1021/acs.est.6b05616
32 https://doi.org/10.1021/es402455r
33 https://doi.org/10.1053/jhin.2002.1185
34 https://doi.org/10.1080/08927014.2011.626899
35 https://doi.org/10.1086/502251
36 https://doi.org/10.1093/bioinformatics/btp636
37 https://doi.org/10.1093/bioinformatics/btq461
38 https://doi.org/10.1101/gr.1.4.269
39 https://doi.org/10.1111/j.1365-2672.2009.04541.x
40 https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
41 https://doi.org/10.1111/j.1462-2920.2009.02025.x
42 https://doi.org/10.1111/j.1541-0420.2005.00440.x
43 https://doi.org/10.1111/j.1574-6941.2006.00181.x
44 https://doi.org/10.1128/aem.00062-07
45 https://doi.org/10.1128/aem.00085-06
46 https://doi.org/10.1128/aem.00831-12
47 https://doi.org/10.1128/aem.01492-12
48 https://doi.org/10.1128/aem.66.11.4605-4614.2000
49 https://doi.org/10.1128/aem.70.11.6826-6833.2004
50 https://doi.org/10.1128/aem.71.12.8228-8235.2005
51 https://doi.org/10.1128/mbio.01135-14
52 https://doi.org/10.1371/journal.pone.0009490
53 https://doi.org/10.1371/journal.pone.0141087
54 https://doi.org/10.2175/106143014x13975035524989
55 https://doi.org/10.3390/pathogens4020373
56 https://doi.org/10.3390/pathogens5010029
57 https://doi.org/10.3390/pathogens5020035
58 schema:datePublished 2018-12
59 schema:datePublishedReg 2018-12-01
60 schema:description BACKGROUND: Heat shock is a potential control strategy for Legionella pneumophila in hot water plumbing systems. However, it is not consistently effective, with little understanding of its influence on the broader plumbing microbiome. Here, we employed a lab-scale recirculating hot water plumbing rig to compare the pre- and post-"heat shock" (i.e., 40 → 60 → 40 °C) microbiota at distal taps. In addition, we used a second plumbing rig to represent a well-managed system at 60 °C and conducted a "control" sampling at 60 °C, subsequently reducing the temperature to 40 °C to observe the effects on Legionella and the microbiota under a simulated "thermal disruption" scenario. RESULTS: According to 16S rRNA gene amplicon sequencing, in the heat shock scenario, there was no significant difference or statistically significant, but small, difference in the microbial community composition at the distal taps pre- versus post-heat shock (both biofilm and water; weighted and unweighted UniFrac distance matrices). While heat shock did lead to decreased total bacteria numbers at distal taps, it did not measurably alter the richness or evenness of the microbiota. Quantitative PCR measurements demonstrated that L. pneumophila relative abundance at distal taps also was not significantly different at 2-month post-heat shock relative to the pre-heat shock condition, while relative abundance of Vermamoeba vermiformis, a known Legionella host, did increase. In the thermal disruption scenario, relative abundance of planktonic L. pneumophila (quantitative PCR data) increased to levels comparable to those observed in the heat shock scenario within 2 months of switching long-term operation at 60 to 40 °C. Overall, water use frequency and water heater temperature set point exhibited a stronger effect than one-time heat shock on the microbial composition and Legionella levels at distal taps. CONCLUSIONS: While heat shock may be effective for instantaneous Legionella control and reduction in total bacteria numbers, water heater temperature set point and water use frequency are more promising factors for long-term Legionella and microbial community control, illustrating the importance of maintaining consistent elevated temperatures in the system relative to short-term heat shock.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree true
64 schema:isPartOf N138680862d5647b090cf836f34a5aa46
65 Nc41c26dfa865403bbe9c864127200e0f
66 sg:journal.1048878
67 schema:name Effect of heat shock on hot water plumbing microbiota and Legionella pneumophila control
68 schema:pagination 30
69 schema:productId N4f4770277b27403298d4e0f9e0ae7032
70 N82b34927cc524b3e9669556c747c3852
71 N8522dcd50afc4956a1b855d15cd2f231
72 Nc2b9c7485865493b854dc43c5c40f07e
73 Nc77bcb75b76f4d22a548d335521212cb
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100914685
75 https://doi.org/10.1186/s40168-018-0406-7
76 schema:sdDatePublished 2019-04-10T16:55
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N0e497f8b9b494faab9ee1edf82f4e056
79 schema:url http://link.springer.com/10.1186/s40168-018-0406-7
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N0e497f8b9b494faab9ee1edf82f4e056 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N138680862d5647b090cf836f34a5aa46 schema:volumeNumber 6
86 rdf:type schema:PublicationVolume
87 N187b670b05cd45a5a50416c855e41de9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Amoebozoa
89 rdf:type schema:DefinedTerm
90 N1d93072a49a44e49b54a4381d7118b22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name DNA, Protozoan
92 rdf:type schema:DefinedTerm
93 N40cc24e9971b4da59a285511d4a38d38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Sequence Analysis, DNA
95 rdf:type schema:DefinedTerm
96 N4f4770277b27403298d4e0f9e0ae7032 schema:name nlm_unique_id
97 schema:value 101615147
98 rdf:type schema:PropertyValue
99 N642c08ae3ed640faac891b65515d0593 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Sanitary Engineering
101 rdf:type schema:DefinedTerm
102 N6f09742300f94ee9973db1302d43363b rdf:first sg:person.01023417177.56
103 rdf:rest rdf:nil
104 N7066e584650a4b6894c5e1f71a09a7f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name DNA, Bacterial
106 rdf:type schema:DefinedTerm
107 N82b34927cc524b3e9669556c747c3852 schema:name doi
108 schema:value 10.1186/s40168-018-0406-7
109 rdf:type schema:PropertyValue
110 N8522dcd50afc4956a1b855d15cd2f231 schema:name dimensions_id
111 schema:value pub.1100914685
112 rdf:type schema:PropertyValue
113 N8d1b8c026047472a91af4c03fbfeeaf3 rdf:first sg:person.0607037254.30
114 rdf:rest Na5489afe3d0d42e4a415d859b4cf4b2a
115 N9f57a6e7f10a4a3682c57fef4b30e1f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name RNA, Ribosomal, 16S
117 rdf:type schema:DefinedTerm
118 Na5489afe3d0d42e4a415d859b4cf4b2a rdf:first sg:person.0723265654.53
119 rdf:rest N6f09742300f94ee9973db1302d43363b
120 Na757e58b9c134c638d10eaac3fe96cdf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Legionella pneumophila
122 rdf:type schema:DefinedTerm
123 Nb38a20a9ccdc474583754ac5b1e5f1cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name DNA, Ribosomal
125 rdf:type schema:DefinedTerm
126 Nc171826a23a64cd0bb50e3a583a50def rdf:first sg:person.01031113171.10
127 rdf:rest N8d1b8c026047472a91af4c03fbfeeaf3
128 Nc2b9c7485865493b854dc43c5c40f07e schema:name pubmed_id
129 schema:value 29426363
130 rdf:type schema:PropertyValue
131 Nc41c26dfa865403bbe9c864127200e0f schema:issueNumber 1
132 rdf:type schema:PublicationIssue
133 Nc77bcb75b76f4d22a548d335521212cb schema:name readcube_id
134 schema:value 277b3f696f2caff752022f66e6c6e552c3e02b4e10458a6191efb1b40de64820
135 rdf:type schema:PropertyValue
136 Ne5707f9274504de5aabbfa6207f4ef80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Water Microbiology
138 rdf:type schema:DefinedTerm
139 Nf37247cd5afd4fd680100d6c0dc906af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Hot Temperature
141 rdf:type schema:DefinedTerm
142 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
143 schema:name Biological Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
146 schema:name Microbiology
147 rdf:type schema:DefinedTerm
148 sg:grant.3488526 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-018-0406-7
149 rdf:type schema:MonetaryGrant
150 sg:journal.1048878 schema:issn 2049-2618
151 schema:name Microbiome
152 rdf:type schema:Periodical
153 sg:person.01023417177.56 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
154 schema:familyName Pruden
155 schema:givenName Amy
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023417177.56
157 rdf:type schema:Person
158 sg:person.01031113171.10 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
159 schema:familyName Ji
160 schema:givenName Pan
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031113171.10
162 rdf:type schema:Person
163 sg:person.0607037254.30 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
164 schema:familyName Rhoads
165 schema:givenName William J.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607037254.30
167 rdf:type schema:Person
168 sg:person.0723265654.53 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
169 schema:familyName Edwards
170 schema:givenName Marc A.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723265654.53
172 rdf:type schema:Person
173 sg:pub.10.1007/978-1-4684-7083-3_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023639996
174 https://doi.org/10.1007/978-1-4684-7083-3_7
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/ismej.2011.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051863807
177 https://doi.org/10.1038/ismej.2011.139
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/ismej.2012.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049519048
180 https://doi.org/10.1038/ismej.2012.113
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/ismej.2015.199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033831895
183 https://doi.org/10.1038/ismej.2015.199
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/ismej.2017.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128176
186 https://doi.org/10.1038/ismej.2017.14
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
189 https://doi.org/10.1038/nmeth.f.303
190 rdf:type schema:CreativeWork
191 sg:pub.10.1186/1471-2105-13-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047017534
192 https://doi.org/10.1186/1471-2105-13-31
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/s40168-015-0134-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027716016
195 https://doi.org/10.1186/s40168-015-0134-1
196 rdf:type schema:CreativeWork
197 https://app.dimensions.ai/details/publication/pub.1079933393 schema:CreativeWork
198 https://doi.org/10.1016/j.diagmicrobio.2008.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010712701
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.syapm.2015.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040403168
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.watres.2004.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025039005
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.watres.2010.07.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046844991
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.watres.2011.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032419478
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.watres.2012.09.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032996610
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/s0043-1354(98)00519-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017794970
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1017/ice.2016.205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010062984
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1021/acs.est.6b05616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085469589
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1021/es402455r schema:sameAs https://app.dimensions.ai/details/publication/pub.1055506551
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1053/jhin.2002.1185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014849453
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1080/08927014.2011.626899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039419515
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1086/502251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058783423
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/bioinformatics/btp636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034512291
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/bioinformatics/btq461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025904619
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1101/gr.1.4.269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019176183
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1111/j.1365-2672.2009.04541.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038621684
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044499388
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1111/j.1462-2920.2009.02025.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031882471
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1111/j.1541-0420.2005.00440.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010688577
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1111/j.1574-6941.2006.00181.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003073652
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1128/aem.00062-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045980007
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1128/aem.00085-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013249213
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1128/aem.00831-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001648960
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1128/aem.01492-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015102716
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1128/aem.66.11.4605-4614.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032660342
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1128/aem.70.11.6826-6833.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004373219
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1128/aem.71.12.8228-8235.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042157769
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1128/mbio.01135-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046685557
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1371/journal.pone.0009490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000778834
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1371/journal.pone.0141087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049000118
259 rdf:type schema:CreativeWork
260 https://doi.org/10.2175/106143014x13975035524989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078953851
261 rdf:type schema:CreativeWork
262 https://doi.org/10.3390/pathogens4020373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011467896
263 rdf:type schema:CreativeWork
264 https://doi.org/10.3390/pathogens5010029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021877298
265 rdf:type schema:CreativeWork
266 https://doi.org/10.3390/pathogens5020035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030129670
267 rdf:type schema:CreativeWork
268 https://www.grid.ac/institutes/grid.438526.e schema:alternateName Virginia Tech
269 schema:name Via Department of Civil and Environmental Engineering, Virginia Tech, 24061, Blacksburg, VA, USA
270 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...