Multi-omics differentially classify disease state and treatment outcome in pediatric Crohn’s disease View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-01-15

AUTHORS

Gavin M. Douglas, Richard Hansen, Casey M. A. Jones, Katherine A. Dunn, André M. Comeau, Joseph P. Bielawski, Rachel Tayler, Emad M. El-Omar, Richard K. Russell, Georgina L. Hold, Morgan G. I. Langille, Johan Van Limbergen

ABSTRACT

BackgroundCrohn’s disease (CD) has an unclear etiology, but there is growing evidence of a direct link with a dysbiotic microbiome. Many gut microbes have previously been associated with CD, but these have mainly been confounded with patients’ ongoing treatments. Additionally, most analyses of CD patients’ microbiomes have focused on microbes in stool samples, which yield different insights than profiling biopsy samples.ResultsWe sequenced the 16S rRNA gene (16S) and carried out shotgun metagenomics (MGS) from the intestinal biopsies of 20 treatment-naïve CD and 20 control pediatric patients. We identified the abundances of microbial taxa and inferred functional categories within each dataset. We also identified known human genetic variants from the MGS data. We then used a machine learning approach to determine the classification accuracy when these datasets, collapsed to different hierarchical groupings, were used independently to classify patients by disease state and by CD patients’ response to treatment. We found that 16S-identified microbes could classify patients with higher accuracy in both cases. Based on follow-ups with these patients, we identified which microbes and functions were best for predicting disease state and response to treatment, including several previously identified markers. By combining the top features from all significant models into a single model, we could compare the relative importance of these predictive features. We found that 16S-identified microbes are the best predictors of CD state whereas MGS-identified markers perform best for classifying treatment response.ConclusionsWe demonstrate for the first time that useful predictors of CD treatment response can be produced from shotgun MGS sequencing of biopsy samples despite the complications related to large proportions of host DNA. The top predictive features that we identified in this study could be useful for building an improved classifier for CD and treatment response based on sufferers’ microbiome in the future.The BISCUIT project is funded by a Clinical Academic Fellowship from the Chief Scientist Office (Scotland)—CAF/08/01. More... »

PAGES

13

References to SciGraph publications

  • 2012-10-09. Microbiota of De-Novo Pediatric IBD: Increased Faecalibacterium Prausnitzii and Reduced Bacterial Diversity in Crohn's But Not in Ulcerative Colitis in THE AMERICAN JOURNAL OF GASTROENTEROLOGY
  • 2013-08-25. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences in NATURE BIOTECHNOLOGY
  • 2010-10-12. Association Between the Use of Antibiotics in the First Year of Life and Pediatric Inflammatory Bowel Disease in THE AMERICAN JOURNAL OF GASTROENTEROLOGY
  • 2015-03-03. Epidemiology and risk factors for IBD in NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY
  • 2016-11-23. Altered intestinal microbiota–host mitochondria crosstalk in new onset Crohn’s disease in NATURE COMMUNICATIONS
  • 2008-06. The genetics and immunopathogenesis of inflammatory bowel disease in NATURE REVIEWS IMMUNOLOGY
  • 2017-07-31. Large-scale differences in microbial biodiversity discovery between 16S amplicon and shotgun sequencing in SCIENTIFIC REPORTS
  • 2012-06-10. Metagenomic microbial community profiling using unique clade-specific marker genes in NATURE METHODS
  • 2012-10-31. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease in NATURE
  • 2015-01-15. Effect of Exclusive Enteral Nutrition on the Microbiota of Children With Newly Diagnosed Crohn’s Disease in CLINICAL AND TRANSLATIONAL GASTROENTEROLOGY
  • 2012-09-26. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment in GENOME BIOLOGY
  • 2015-12-02. Immunopathogenesis of IBD: current state of the art in NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY
  • 2015-09-30. A global reference for human genetic variation in NATURE
  • 2012-03-04. Fast gapped-read alignment with Bowtie 2 in NATURE METHODS
  • 1999-03. Transepithelial transport processes at the intestinal mucosa in inflammatory bowel disease in INTERNATIONAL JOURNAL OF COLORECTAL DISEASE
  • 2017-01-09. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn's disease in NATURE GENETICS
  • 2011-04-10. A framework for variation discovery and genotyping using next-generation DNA sequencing data in NATURE GENETICS
  • 2015-03-25. MUSiCC: a marker genes based framework for metagenomic normalization and accurate profiling of gene abundances in the microbiome in GENOME BIOLOGY
  • 2015-07-20. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations in NATURE GENETICS
  • 2016-10-03. Association of host genome with intestinal microbial composition in a large healthy cohort in NATURE GENETICS
  • 2011-12-04. A linear complexity phasing method for thousands of genomes in NATURE METHODS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40168-018-0398-3

    DOI

    http://dx.doi.org/10.1186/s40168-018-0398-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1100403401

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29335008


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adolescent", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Child", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Child, Preschool", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crohn Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Ribosomal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Dysbiosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Feces", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Predisposition to Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Variation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Machine Learning", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Ribosomal, 16S", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada", 
              "id": "http://www.grid.ac/institutes/grid.55602.34", 
              "name": [
                "Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Douglas", 
            "givenName": "Gavin M.", 
            "id": "sg:person.013000452223.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013000452223.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Paediatric Gastroenterology, Royal Hospital for Children, Glasgow, UK", 
              "id": "http://www.grid.ac/institutes/grid.415571.3", 
              "name": [
                "Department of Paediatric Gastroenterology, Royal Hospital for Children, Glasgow, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hansen", 
            "givenName": "Richard", 
            "id": "sg:person.016336561600.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016336561600.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pharmacology, Dalhousie University, Halifax, NS, Canada", 
              "id": "http://www.grid.ac/institutes/grid.55602.34", 
              "name": [
                "Department of Pharmacology, Dalhousie University, Halifax, NS, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jones", 
            "givenName": "Casey M. A.", 
            "id": "sg:person.07744457674.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07744457674.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biology, Dalhousie University, Halifax, NS, Canada", 
              "id": "http://www.grid.ac/institutes/grid.55602.34", 
              "name": [
                "Department of Biology, Dalhousie University, Halifax, NS, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dunn", 
            "givenName": "Katherine A.", 
            "id": "sg:person.0654321046.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654321046.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CGEB-Integrated Microbiome Resource (IMR), Dalhousie University, Halifax, NS, Canada", 
              "id": "http://www.grid.ac/institutes/grid.55602.34", 
              "name": [
                "CGEB-Integrated Microbiome Resource (IMR), Dalhousie University, Halifax, NS, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Comeau", 
            "givenName": "Andr\u00e9 M.", 
            "id": "sg:person.0701731257.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701731257.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biology, Dalhousie University, Halifax, NS, Canada", 
              "id": "http://www.grid.ac/institutes/grid.55602.34", 
              "name": [
                "Department of Biology, Dalhousie University, Halifax, NS, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bielawski", 
            "givenName": "Joseph P.", 
            "id": "sg:person.01036662646.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036662646.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Paediatric Gastroenterology, Royal Hospital for Children, Glasgow, UK", 
              "id": "http://www.grid.ac/institutes/grid.415571.3", 
              "name": [
                "Department of Paediatric Gastroenterology, Royal Hospital for Children, Glasgow, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tayler", 
            "givenName": "Rachel", 
            "id": "sg:person.01113503252.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113503252.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medicine, St George and Sutherland Clinical School, UNSW, Sydney, NSW, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1005.4", 
              "name": [
                "Department of Medicine, St George and Sutherland Clinical School, UNSW, Sydney, NSW, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "El-Omar", 
            "givenName": "Emad M.", 
            "id": "sg:person.0700142176.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700142176.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Paediatric Gastroenterology, Royal Hospital for Children, Glasgow, UK", 
              "id": "http://www.grid.ac/institutes/grid.415571.3", 
              "name": [
                "Department of Paediatric Gastroenterology, Royal Hospital for Children, Glasgow, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Russell", 
            "givenName": "Richard K.", 
            "id": "sg:person.014036667402.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014036667402.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medicine, St George and Sutherland Clinical School, UNSW, Sydney, NSW, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1005.4", 
              "name": [
                "Department of Medicine, St George and Sutherland Clinical School, UNSW, Sydney, NSW, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hold", 
            "givenName": "Georgina L.", 
            "id": "sg:person.01015442527.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015442527.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CGEB-Integrated Microbiome Resource (IMR), Dalhousie University, Halifax, NS, Canada", 
              "id": "http://www.grid.ac/institutes/grid.55602.34", 
              "name": [
                "Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada", 
                "Department of Pharmacology, Dalhousie University, Halifax, NS, Canada", 
                "CGEB-Integrated Microbiome Resource (IMR), Dalhousie University, Halifax, NS, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Langille", 
            "givenName": "Morgan G. I.", 
            "id": "sg:person.014234772667.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014234772667.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pediatrics, Dalhousie University, Halifax, NS, Canada", 
              "id": "http://www.grid.ac/institutes/grid.55602.34", 
              "name": [
                "Department of Pediatrics, Dalhousie University, Halifax, NS, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Van Limbergen", 
            "givenName": "Johan", 
            "id": "sg:person.0702016125.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702016125.37"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ctg.2014.21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047005146", 
              "https://doi.org/10.1038/ctg.2014.21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature15393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021812064", 
              "https://doi.org/10.1038/nature15393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nri2340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017038233", 
              "https://doi.org/10.1038/nri2340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrgastro.2015.186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037380629", 
              "https://doi.org/10.1038/nrgastro.2015.186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017834073", 
              "https://doi.org/10.1038/ncomms13419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001601743", 
              "https://doi.org/10.1038/ng.3755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2012-13-9-r79", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029450096", 
              "https://doi.org/10.1186/gb-2012-13-9-r79"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1785", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002640757", 
              "https://doi.org/10.1038/nmeth.1785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010611135", 
              "https://doi.org/10.1038/nmeth.2066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3693", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002138629", 
              "https://doi.org/10.1038/ng.3693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019843926", 
              "https://doi.org/10.1038/ng.3359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-06665-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090836343", 
              "https://doi.org/10.1038/s41598-017-06665-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrgastro.2015.34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053401882", 
              "https://doi.org/10.1038/nrgastro.2015.34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-015-0610-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029050385", 
              "https://doi.org/10.1186/s13059-015-0610-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ajg.2010.398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043284007", 
              "https://doi.org/10.1038/ajg.2010.398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2676", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034019934", 
              "https://doi.org/10.1038/nbt.2676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11582", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046541188", 
              "https://doi.org/10.1038/nature11582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010244476", 
              "https://doi.org/10.1038/ng.806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006541515", 
              "https://doi.org/10.1038/nmeth.1923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003840050181", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018960758", 
              "https://doi.org/10.1007/s003840050181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ajg.2012.335", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017259214", 
              "https://doi.org/10.1038/ajg.2012.335"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-01-15", 
        "datePublishedReg": "2018-01-15", 
        "description": "BackgroundCrohn\u2019s disease (CD) has an unclear etiology, but there is growing evidence of a direct link with a dysbiotic microbiome. Many gut microbes have previously been associated with CD, but these have mainly been confounded with patients\u2019 ongoing treatments. Additionally, most analyses of CD patients\u2019 microbiomes have focused on microbes in stool samples, which yield different insights than profiling biopsy samples.ResultsWe sequenced the 16S rRNA gene (16S) and carried out shotgun metagenomics (MGS) from the intestinal biopsies of 20 treatment-na\u00efve CD and 20 control pediatric patients. We identified the abundances of microbial taxa and inferred functional categories within each dataset. We also identified known human genetic variants from the MGS data. We then used a machine learning approach to determine the classification accuracy when these datasets, collapsed to different hierarchical groupings, were used independently to classify patients by disease state and by CD patients\u2019 response to treatment. We found that 16S-identified microbes could classify patients with higher accuracy in both cases. Based on follow-ups with these patients, we identified which microbes and functions were best for predicting disease state and response to treatment, including several previously identified markers. By combining the top features from all significant models into a single model, we could compare the relative importance of these predictive features. We found that 16S-identified microbes are the best predictors of CD state whereas MGS-identified markers perform best for classifying treatment response.ConclusionsWe demonstrate for the first time that useful predictors of CD treatment response can be produced from shotgun MGS sequencing of biopsy samples despite the complications related to large proportions of host DNA. The top predictive features that we identified in this study could be useful for building an improved classifier for CD and treatment response based on sufferers\u2019 microbiome in the future.The BISCUIT project is funded by a Clinical Academic Fellowship from the Chief Scientist Office (Scotland)\u2014CAF/08/01.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s40168-018-0398-3", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5151000", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1048878", 
            "issn": [
              "2049-2618"
            ], 
            "name": "Microbiome", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "treatment response", 
          "disease states", 
          "biopsy samples", 
          "pediatric Crohn's disease", 
          "control pediatric patients", 
          "Chief Scientist Office", 
          "BackgroundCrohn\u2019s disease", 
          "CD patients", 
          "intestinal biopsies", 
          "pediatric patients", 
          "Crohn's disease", 
          "unclear etiology", 
          "ongoing treatment", 
          "patient microbiomes", 
          "stool samples", 
          "treatment outcomes", 
          "patients", 
          "dysbiotic microbiome", 
          "top predictive features", 
          "disease", 
          "gut microbes", 
          "predictive features", 
          "useful predictor", 
          "academic fellowships", 
          "treatment", 
          "genetic variants", 
          "human genetic variants", 
          "microbiome", 
          "best predictor", 
          "predictors", 
          "markers", 
          "large proportion", 
          "response", 
          "complications", 
          "biopsy", 
          "etiology", 
          "host DNA", 
          "ResultsWe", 
          "sufferers", 
          "outcomes", 
          "ConclusionsWe", 
          "samples", 
          "shotgun metagenomics", 
          "proportion", 
          "evidence", 
          "microbes", 
          "fellowship", 
          "sequencing", 
          "cases", 
          "variants", 
          "genes", 
          "study", 
          "features", 
          "direct link", 
          "top features", 
          "first time", 
          "microbial taxa", 
          "significant model", 
          "DNA", 
          "functional categories", 
          "function", 
          "categories", 
          "data", 
          "most analyses", 
          "metagenomics", 
          "omics", 
          "rRNA gene", 
          "time", 
          "importance", 
          "analysis", 
          "office", 
          "state", 
          "model", 
          "relative importance", 
          "Cd", 
          "link", 
          "insights", 
          "CD states", 
          "future", 
          "accuracy", 
          "MGS data", 
          "grouping", 
          "approach", 
          "abundance", 
          "high accuracy", 
          "classification accuracy", 
          "different insights", 
          "dataset", 
          "project", 
          "single model", 
          "improved classifier", 
          "classifier", 
          "hierarchical grouping", 
          "machine", 
          "taxa"
        ], 
        "name": "Multi-omics differentially classify disease state and treatment outcome in pediatric Crohn\u2019s disease", 
        "pagination": "13", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1100403401"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40168-018-0398-3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29335008"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40168-018-0398-3", 
          "https://app.dimensions.ai/details/publication/pub.1100403401"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_781.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s40168-018-0398-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0398-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0398-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0398-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40168-018-0398-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    400 TRIPLES      21 PREDICATES      158 URIs      129 LITERALS      24 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40168-018-0398-3 schema:about N0513dbd59b214ff887810f2113d48697
    2 N23ae48371ab442f08b48eed09d81a4c6
    3 N25241ea6f2b244fb86bc215f908c696d
    4 N2eeae4d23ee345968a6b4e1cb7347af0
    5 N535ad6b9c59f45a28f47924459c550b5
    6 N5c8294f1640643ff831ecbbfcb90087c
    7 N79fb68d4585444779ec9dcac8f776c7d
    8 N83eed04df1fa44508fcb6f20861da13b
    9 N87bdd68a44e14dd19dd68abf5d74bbcc
    10 N8c0a2256d5584f78bc28bd87cce1d534
    11 Nb0da62076fff4551a5ce6ca5b380d09a
    12 Nc2e95feba4324dd890bdadd5151ba8d1
    13 Nc585fd5e3993485380217d51b5827b01
    14 Nc6bfde49f3f4489dac275d16af6f2871
    15 Nd2ae3229772247c79eef0f7a3d1e9961
    16 Ne68eddeeb3e643a1a712a48b0d63f128
    17 Nf09bd3fdf5be40ac8a82cc27aea8de38
    18 anzsrc-for:06
    19 anzsrc-for:0604
    20 schema:author N2549b12796e94150a52a9f0438a23cdc
    21 schema:citation sg:pub.10.1007/s003840050181
    22 sg:pub.10.1038/ajg.2010.398
    23 sg:pub.10.1038/ajg.2012.335
    24 sg:pub.10.1038/ctg.2014.21
    25 sg:pub.10.1038/nature11582
    26 sg:pub.10.1038/nature15393
    27 sg:pub.10.1038/nbt.2676
    28 sg:pub.10.1038/ncomms13419
    29 sg:pub.10.1038/ng.3359
    30 sg:pub.10.1038/ng.3693
    31 sg:pub.10.1038/ng.3755
    32 sg:pub.10.1038/ng.806
    33 sg:pub.10.1038/nmeth.1785
    34 sg:pub.10.1038/nmeth.1923
    35 sg:pub.10.1038/nmeth.2066
    36 sg:pub.10.1038/nrgastro.2015.186
    37 sg:pub.10.1038/nrgastro.2015.34
    38 sg:pub.10.1038/nri2340
    39 sg:pub.10.1038/s41598-017-06665-3
    40 sg:pub.10.1186/gb-2012-13-9-r79
    41 sg:pub.10.1186/s13059-015-0610-8
    42 schema:datePublished 2018-01-15
    43 schema:datePublishedReg 2018-01-15
    44 schema:description BackgroundCrohn’s disease (CD) has an unclear etiology, but there is growing evidence of a direct link with a dysbiotic microbiome. Many gut microbes have previously been associated with CD, but these have mainly been confounded with patients’ ongoing treatments. Additionally, most analyses of CD patients’ microbiomes have focused on microbes in stool samples, which yield different insights than profiling biopsy samples.ResultsWe sequenced the 16S rRNA gene (16S) and carried out shotgun metagenomics (MGS) from the intestinal biopsies of 20 treatment-naïve CD and 20 control pediatric patients. We identified the abundances of microbial taxa and inferred functional categories within each dataset. We also identified known human genetic variants from the MGS data. We then used a machine learning approach to determine the classification accuracy when these datasets, collapsed to different hierarchical groupings, were used independently to classify patients by disease state and by CD patients’ response to treatment. We found that 16S-identified microbes could classify patients with higher accuracy in both cases. Based on follow-ups with these patients, we identified which microbes and functions were best for predicting disease state and response to treatment, including several previously identified markers. By combining the top features from all significant models into a single model, we could compare the relative importance of these predictive features. We found that 16S-identified microbes are the best predictors of CD state whereas MGS-identified markers perform best for classifying treatment response.ConclusionsWe demonstrate for the first time that useful predictors of CD treatment response can be produced from shotgun MGS sequencing of biopsy samples despite the complications related to large proportions of host DNA. The top predictive features that we identified in this study could be useful for building an improved classifier for CD and treatment response based on sufferers’ microbiome in the future.The BISCUIT project is funded by a Clinical Academic Fellowship from the Chief Scientist Office (Scotland)—CAF/08/01.
    45 schema:genre article
    46 schema:isAccessibleForFree true
    47 schema:isPartOf N441076c9dbfd46e0802312cea87f3205
    48 N946aad88d989434aae8727d0750eb94d
    49 sg:journal.1048878
    50 schema:keywords BackgroundCrohn’s disease
    51 CD patients
    52 CD states
    53 Cd
    54 Chief Scientist Office
    55 ConclusionsWe
    56 Crohn's disease
    57 DNA
    58 MGS data
    59 ResultsWe
    60 abundance
    61 academic fellowships
    62 accuracy
    63 analysis
    64 approach
    65 best predictor
    66 biopsy
    67 biopsy samples
    68 cases
    69 categories
    70 classification accuracy
    71 classifier
    72 complications
    73 control pediatric patients
    74 data
    75 dataset
    76 different insights
    77 direct link
    78 disease
    79 disease states
    80 dysbiotic microbiome
    81 etiology
    82 evidence
    83 features
    84 fellowship
    85 first time
    86 function
    87 functional categories
    88 future
    89 genes
    90 genetic variants
    91 grouping
    92 gut microbes
    93 hierarchical grouping
    94 high accuracy
    95 host DNA
    96 human genetic variants
    97 importance
    98 improved classifier
    99 insights
    100 intestinal biopsies
    101 large proportion
    102 link
    103 machine
    104 markers
    105 metagenomics
    106 microbes
    107 microbial taxa
    108 microbiome
    109 model
    110 most analyses
    111 office
    112 omics
    113 ongoing treatment
    114 outcomes
    115 patient microbiomes
    116 patients
    117 pediatric Crohn's disease
    118 pediatric patients
    119 predictive features
    120 predictors
    121 project
    122 proportion
    123 rRNA gene
    124 relative importance
    125 response
    126 samples
    127 sequencing
    128 shotgun metagenomics
    129 significant model
    130 single model
    131 state
    132 stool samples
    133 study
    134 sufferers
    135 taxa
    136 time
    137 top features
    138 top predictive features
    139 treatment
    140 treatment outcomes
    141 treatment response
    142 unclear etiology
    143 useful predictor
    144 variants
    145 schema:name Multi-omics differentially classify disease state and treatment outcome in pediatric Crohn’s disease
    146 schema:pagination 13
    147 schema:productId N7c968c59530940b8aba51f0ef1f9fa44
    148 N8656111d2bdc46109f8d5ffa848007fe
    149 Nfdfa79132b2746c19e50a9a3115e33c4
    150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100403401
    151 https://doi.org/10.1186/s40168-018-0398-3
    152 schema:sdDatePublished 2022-12-01T06:38
    153 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    154 schema:sdPublisher N47976545209742fe859f9a2b498abf4d
    155 schema:url https://doi.org/10.1186/s40168-018-0398-3
    156 sgo:license sg:explorer/license/
    157 sgo:sdDataset articles
    158 rdf:type schema:ScholarlyArticle
    159 N04dba02a15b04cc2bcf5f81e5a1ed24a rdf:first sg:person.07744457674.66
    160 rdf:rest Ne5210a645f5043f08e6ac383a99d5983
    161 N0513dbd59b214ff887810f2113d48697 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Dysbiosis
    163 rdf:type schema:DefinedTerm
    164 N06bfbcf74c7041edbcf77a93a4239129 rdf:first sg:person.01036662646.39
    165 rdf:rest Nf96d428584534782bdb1c4415064677d
    166 N147be98b97134c1e830feb4ed7085cee rdf:first sg:person.0702016125.37
    167 rdf:rest rdf:nil
    168 N1652836c85fa41dd8f4e19d2b9617633 rdf:first sg:person.014234772667.98
    169 rdf:rest N147be98b97134c1e830feb4ed7085cee
    170 N23ae48371ab442f08b48eed09d81a4c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Machine Learning
    172 rdf:type schema:DefinedTerm
    173 N25241ea6f2b244fb86bc215f908c696d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Metagenomics
    175 rdf:type schema:DefinedTerm
    176 N2549b12796e94150a52a9f0438a23cdc rdf:first sg:person.013000452223.19
    177 rdf:rest N8e8d16e6fd134e5d9e24b314fdd300a3
    178 N2eeae4d23ee345968a6b4e1cb7347af0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Genetic Variation
    180 rdf:type schema:DefinedTerm
    181 N40e17684241c4299ac6e335d73e01fd3 rdf:first sg:person.01015442527.89
    182 rdf:rest N1652836c85fa41dd8f4e19d2b9617633
    183 N441076c9dbfd46e0802312cea87f3205 schema:volumeNumber 6
    184 rdf:type schema:PublicationVolume
    185 N47976545209742fe859f9a2b498abf4d schema:name Springer Nature - SN SciGraph project
    186 rdf:type schema:Organization
    187 N535ad6b9c59f45a28f47924459c550b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Crohn Disease
    189 rdf:type schema:DefinedTerm
    190 N55cedd13d3bb47ae92cd9ee040bd5f27 rdf:first sg:person.0701731257.28
    191 rdf:rest N06bfbcf74c7041edbcf77a93a4239129
    192 N5c8294f1640643ff831ecbbfcb90087c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Male
    194 rdf:type schema:DefinedTerm
    195 N79fb68d4585444779ec9dcac8f776c7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    196 schema:name Sequence Analysis, DNA
    197 rdf:type schema:DefinedTerm
    198 N7c968c59530940b8aba51f0ef1f9fa44 schema:name pubmed_id
    199 schema:value 29335008
    200 rdf:type schema:PropertyValue
    201 N83eed04df1fa44508fcb6f20861da13b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    202 schema:name Feces
    203 rdf:type schema:DefinedTerm
    204 N842d7a1a2337492fadc3e8fd9abaf6a9 rdf:first sg:person.014036667402.97
    205 rdf:rest N40e17684241c4299ac6e335d73e01fd3
    206 N8656111d2bdc46109f8d5ffa848007fe schema:name dimensions_id
    207 schema:value pub.1100403401
    208 rdf:type schema:PropertyValue
    209 N87bdd68a44e14dd19dd68abf5d74bbcc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    210 schema:name Child, Preschool
    211 rdf:type schema:DefinedTerm
    212 N8c0a2256d5584f78bc28bd87cce1d534 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    213 schema:name RNA, Ribosomal, 16S
    214 rdf:type schema:DefinedTerm
    215 N8e8d16e6fd134e5d9e24b314fdd300a3 rdf:first sg:person.016336561600.90
    216 rdf:rest N04dba02a15b04cc2bcf5f81e5a1ed24a
    217 N946aad88d989434aae8727d0750eb94d schema:issueNumber 1
    218 rdf:type schema:PublicationIssue
    219 Na2fdf28e8f384665a459d6034af0792a rdf:first sg:person.0700142176.81
    220 rdf:rest N842d7a1a2337492fadc3e8fd9abaf6a9
    221 Nb0da62076fff4551a5ce6ca5b380d09a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    222 schema:name Humans
    223 rdf:type schema:DefinedTerm
    224 Nc2e95feba4324dd890bdadd5151ba8d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    225 schema:name Adolescent
    226 rdf:type schema:DefinedTerm
    227 Nc585fd5e3993485380217d51b5827b01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    228 schema:name Child
    229 rdf:type schema:DefinedTerm
    230 Nc6bfde49f3f4489dac275d16af6f2871 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    231 schema:name DNA, Bacterial
    232 rdf:type schema:DefinedTerm
    233 Nd2ae3229772247c79eef0f7a3d1e9961 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    234 schema:name Female
    235 rdf:type schema:DefinedTerm
    236 Ne5210a645f5043f08e6ac383a99d5983 rdf:first sg:person.0654321046.00
    237 rdf:rest N55cedd13d3bb47ae92cd9ee040bd5f27
    238 Ne68eddeeb3e643a1a712a48b0d63f128 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    239 schema:name Genetic Predisposition to Disease
    240 rdf:type schema:DefinedTerm
    241 Nf09bd3fdf5be40ac8a82cc27aea8de38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    242 schema:name DNA, Ribosomal
    243 rdf:type schema:DefinedTerm
    244 Nf96d428584534782bdb1c4415064677d rdf:first sg:person.01113503252.73
    245 rdf:rest Na2fdf28e8f384665a459d6034af0792a
    246 Nfdfa79132b2746c19e50a9a3115e33c4 schema:name doi
    247 schema:value 10.1186/s40168-018-0398-3
    248 rdf:type schema:PropertyValue
    249 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    250 schema:name Biological Sciences
    251 rdf:type schema:DefinedTerm
    252 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    253 schema:name Genetics
    254 rdf:type schema:DefinedTerm
    255 sg:grant.5151000 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-018-0398-3
    256 rdf:type schema:MonetaryGrant
    257 sg:journal.1048878 schema:issn 2049-2618
    258 schema:name Microbiome
    259 schema:publisher Springer Nature
    260 rdf:type schema:Periodical
    261 sg:person.01015442527.89 schema:affiliation grid-institutes:grid.1005.4
    262 schema:familyName Hold
    263 schema:givenName Georgina L.
    264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015442527.89
    265 rdf:type schema:Person
    266 sg:person.01036662646.39 schema:affiliation grid-institutes:grid.55602.34
    267 schema:familyName Bielawski
    268 schema:givenName Joseph P.
    269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036662646.39
    270 rdf:type schema:Person
    271 sg:person.01113503252.73 schema:affiliation grid-institutes:grid.415571.3
    272 schema:familyName Tayler
    273 schema:givenName Rachel
    274 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113503252.73
    275 rdf:type schema:Person
    276 sg:person.013000452223.19 schema:affiliation grid-institutes:grid.55602.34
    277 schema:familyName Douglas
    278 schema:givenName Gavin M.
    279 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013000452223.19
    280 rdf:type schema:Person
    281 sg:person.014036667402.97 schema:affiliation grid-institutes:grid.415571.3
    282 schema:familyName Russell
    283 schema:givenName Richard K.
    284 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014036667402.97
    285 rdf:type schema:Person
    286 sg:person.014234772667.98 schema:affiliation grid-institutes:grid.55602.34
    287 schema:familyName Langille
    288 schema:givenName Morgan G. I.
    289 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014234772667.98
    290 rdf:type schema:Person
    291 sg:person.016336561600.90 schema:affiliation grid-institutes:grid.415571.3
    292 schema:familyName Hansen
    293 schema:givenName Richard
    294 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016336561600.90
    295 rdf:type schema:Person
    296 sg:person.0654321046.00 schema:affiliation grid-institutes:grid.55602.34
    297 schema:familyName Dunn
    298 schema:givenName Katherine A.
    299 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654321046.00
    300 rdf:type schema:Person
    301 sg:person.0700142176.81 schema:affiliation grid-institutes:grid.1005.4
    302 schema:familyName El-Omar
    303 schema:givenName Emad M.
    304 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700142176.81
    305 rdf:type schema:Person
    306 sg:person.0701731257.28 schema:affiliation grid-institutes:grid.55602.34
    307 schema:familyName Comeau
    308 schema:givenName André M.
    309 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701731257.28
    310 rdf:type schema:Person
    311 sg:person.0702016125.37 schema:affiliation grid-institutes:grid.55602.34
    312 schema:familyName Van Limbergen
    313 schema:givenName Johan
    314 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702016125.37
    315 rdf:type schema:Person
    316 sg:person.07744457674.66 schema:affiliation grid-institutes:grid.55602.34
    317 schema:familyName Jones
    318 schema:givenName Casey M. A.
    319 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07744457674.66
    320 rdf:type schema:Person
    321 sg:pub.10.1007/s003840050181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018960758
    322 https://doi.org/10.1007/s003840050181
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1038/ajg.2010.398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043284007
    325 https://doi.org/10.1038/ajg.2010.398
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1038/ajg.2012.335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017259214
    328 https://doi.org/10.1038/ajg.2012.335
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1038/ctg.2014.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047005146
    331 https://doi.org/10.1038/ctg.2014.21
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1038/nature11582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046541188
    334 https://doi.org/10.1038/nature11582
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1038/nature15393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021812064
    337 https://doi.org/10.1038/nature15393
    338 rdf:type schema:CreativeWork
    339 sg:pub.10.1038/nbt.2676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034019934
    340 https://doi.org/10.1038/nbt.2676
    341 rdf:type schema:CreativeWork
    342 sg:pub.10.1038/ncomms13419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017834073
    343 https://doi.org/10.1038/ncomms13419
    344 rdf:type schema:CreativeWork
    345 sg:pub.10.1038/ng.3359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019843926
    346 https://doi.org/10.1038/ng.3359
    347 rdf:type schema:CreativeWork
    348 sg:pub.10.1038/ng.3693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002138629
    349 https://doi.org/10.1038/ng.3693
    350 rdf:type schema:CreativeWork
    351 sg:pub.10.1038/ng.3755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001601743
    352 https://doi.org/10.1038/ng.3755
    353 rdf:type schema:CreativeWork
    354 sg:pub.10.1038/ng.806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010244476
    355 https://doi.org/10.1038/ng.806
    356 rdf:type schema:CreativeWork
    357 sg:pub.10.1038/nmeth.1785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002640757
    358 https://doi.org/10.1038/nmeth.1785
    359 rdf:type schema:CreativeWork
    360 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
    361 https://doi.org/10.1038/nmeth.1923
    362 rdf:type schema:CreativeWork
    363 sg:pub.10.1038/nmeth.2066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010611135
    364 https://doi.org/10.1038/nmeth.2066
    365 rdf:type schema:CreativeWork
    366 sg:pub.10.1038/nrgastro.2015.186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037380629
    367 https://doi.org/10.1038/nrgastro.2015.186
    368 rdf:type schema:CreativeWork
    369 sg:pub.10.1038/nrgastro.2015.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053401882
    370 https://doi.org/10.1038/nrgastro.2015.34
    371 rdf:type schema:CreativeWork
    372 sg:pub.10.1038/nri2340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017038233
    373 https://doi.org/10.1038/nri2340
    374 rdf:type schema:CreativeWork
    375 sg:pub.10.1038/s41598-017-06665-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090836343
    376 https://doi.org/10.1038/s41598-017-06665-3
    377 rdf:type schema:CreativeWork
    378 sg:pub.10.1186/gb-2012-13-9-r79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029450096
    379 https://doi.org/10.1186/gb-2012-13-9-r79
    380 rdf:type schema:CreativeWork
    381 sg:pub.10.1186/s13059-015-0610-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029050385
    382 https://doi.org/10.1186/s13059-015-0610-8
    383 rdf:type schema:CreativeWork
    384 grid-institutes:grid.1005.4 schema:alternateName Department of Medicine, St George and Sutherland Clinical School, UNSW, Sydney, NSW, Australia
    385 schema:name Department of Medicine, St George and Sutherland Clinical School, UNSW, Sydney, NSW, Australia
    386 rdf:type schema:Organization
    387 grid-institutes:grid.415571.3 schema:alternateName Department of Paediatric Gastroenterology, Royal Hospital for Children, Glasgow, UK
    388 schema:name Department of Paediatric Gastroenterology, Royal Hospital for Children, Glasgow, UK
    389 rdf:type schema:Organization
    390 grid-institutes:grid.55602.34 schema:alternateName CGEB-Integrated Microbiome Resource (IMR), Dalhousie University, Halifax, NS, Canada
    391 Department of Biology, Dalhousie University, Halifax, NS, Canada
    392 Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
    393 Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
    394 Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
    395 schema:name CGEB-Integrated Microbiome Resource (IMR), Dalhousie University, Halifax, NS, Canada
    396 Department of Biology, Dalhousie University, Halifax, NS, Canada
    397 Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
    398 Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
    399 Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
    400 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...