Metabolic capability and in situ activity of microorganisms in an oil reservoir View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-01-05

AUTHORS

Yi-Fan Liu, Daniela Domingos Galzerani, Serge Maurice Mbadinga, Livia S. Zaramela, Ji-Dong Gu, Bo-Zhong Mu, Karsten Zengler

ABSTRACT

BackgroundMicroorganisms have long been associated with oxic and anoxic degradation of hydrocarbons in oil reservoirs and oil production facilities. While we can readily determine the abundance of microorganisms in the reservoir and study their activity in the laboratory, it has been challenging to resolve what microbes are actively participating in crude oil degradation in situ and to gain insight into what metabolic pathways they deploy.ResultsHere, we describe the metabolic potential and in situ activity of microbial communities obtained from the Jiangsu Oil Reservoir (China) by an integrated metagenomics and metatranscriptomics approach. Almost complete genome sequences obtained by differential binning highlight the distinct capability of different community members to degrade hydrocarbons under oxic or anoxic condition. Transcriptomic data delineate active members of the community and give insights that Acinetobacter species completely oxidize alkanes into carbon dioxide with the involvement of oxygen, and Archaeoglobus species mainly ferment alkanes to generate acetate which could be consumed by Methanosaeta species. Furthermore, nutritional requirements based on amino acid and vitamin auxotrophies suggest a complex network of interactions and dependencies among active community members that go beyond classical syntrophic exchanges; this network defines community composition and microbial ecology in oil reservoirs undergoing secondary recovery.ConclusionOur data expand current knowledge of the metabolic potential and role in hydrocarbon metabolism of individual members of thermophilic microbial communities from an oil reservoir. The study also reveals potential metabolic exchanges based on vitamin and amino acid auxotrophies indicating the presence of complex network of interactions between microbial taxa within the community. More... »

PAGES

5

References to SciGraph publications

  • 2014-01-11. Comparison of bacterial community in aqueous and oil phases of water-flooded petroleum reservoirs using pyrosequencing and clone library approaches in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2004-09. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs in NATURE
  • 1999-09. Methane formation from long-chain alkanes by anaerobic microorganisms in NATURE
  • 2014-04-24. Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2015-05-13. Insights into the Anaerobic Biodegradation Pathway of n-Alkanes in Oil Reservoirs by Detection of Signature Metabolites in SCIENTIFIC REPORTS
  • 2007-12-13. Thermodynamic constraints on methanogenic crude oil biodegradation in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2013-06-20. Hydrocarbon-degrading bacteria enriched by the Deepwater Horizon oil spill identified by cultivation and DNA-SIP in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2011-05-19. EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data in GENOME BIOLOGY
  • 2003-11. Biological activity in the deep subsurface and the origin of heavy oil in NATURE
  • 2012-03-04. Fast gapped-read alignment with Bowtie 2 in NATURE METHODS
  • 2008-02-08. The RAST Server: Rapid Annotations using Subsystems Technology in BMC GENOMICS
  • 2013-01-01. Streaming fragment assignment for real-time analysis of sequencing experiments in NATURE METHODS
  • 2012-06-10. Metagenomic microbial community profiling using unique clade-specific marker genes in NATURE METHODS
  • 2015-03-03. Comparative analysis of metagenomes from three methanogenic hydrocarbon-degrading enrichment cultures with 41 environmental samples in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2016-02-03. Spatial isolation and environmental factors drive distinct bacterial and archaeal communities in different types of petroleum reservoirs in China in SCIENTIFIC REPORTS
  • 2015-04-13. Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria in MICROBIOME
  • 2013-08-14. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes in NATURE COMMUNICATIONS
  • 2010-03-08. Prodigal: prokaryotic gene recognition and translation initiation site identification in BMC BIOINFORMATICS
  • 2013-10-24. Single-cell genome and metatranscriptome sequencing reveal metabolic interactions of an alkane-degrading methanogenic community in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2016-05-09. Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill in NATURE MICROBIOLOGY
  • 2008-09-19. The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes in BMC BIOINFORMATICS
  • 1997-11-27. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus in NATURE
  • 2015-06-09. ProDeGe: a computational protocol for fully automated decontamination of genomes in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2009-06-01. Growth of Pseudomonas chloritidismutans AW-1T on n-alkanes with chlorate as electron acceptor in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40168-017-0392-1

    DOI

    http://dx.doi.org/10.1186/s40168-017-0392-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1100192996

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29304850


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Acinetobacter", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Archaea", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Archaeoglobus", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacterial Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "China", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metabolic Networks and Pathways", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Methanosarcinales", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oil and Gas Fields", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, RNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093-0760, San Diego, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Xuhui District, 200237, Shanghai, People\u2019s Republic of China", 
                "Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093-0760, San Diego, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Yi-Fan", 
            "id": "sg:person.01067760011.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067760011.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093-0760, San Diego, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093-0760, San Diego, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Galzerani", 
            "givenName": "Daniela Domingos", 
            "id": "sg:person.013174052004.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174052004.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 200237, Shanghai, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Xuhui District, 200237, Shanghai, People\u2019s Republic of China", 
                "Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 200237, Shanghai, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mbadinga", 
            "givenName": "Serge Maurice", 
            "id": "sg:person.01304707405.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304707405.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093-0760, San Diego, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093-0760, San Diego, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zaramela", 
            "givenName": "Livia S.", 
            "id": "sg:person.01144414650.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144414650.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.194645.b", 
              "name": [
                "School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gu", 
            "givenName": "Ji-Dong", 
            "id": "sg:person.0627416505.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627416505.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 200237, Shanghai, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Xuhui District, 200237, Shanghai, People\u2019s Republic of China", 
                "Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 200237, Shanghai, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mu", 
            "givenName": "Bo-Zhong", 
            "id": "sg:person.01172466317.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172466317.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093-0436, San Diego, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093-0760, San Diego, CA, USA", 
                "Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093-0436, San Diego, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zengler", 
            "givenName": "Karsten", 
            "id": "sg:person.01112011323.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112011323.94"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature02922", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044328033", 
              "https://doi.org/10.1038/nature02922"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2007.111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052062905", 
              "https://doi.org/10.1038/ismej.2007.111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2014.58", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030502097", 
              "https://doi.org/10.1038/ismej.2014.58"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep09801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012219593", 
              "https://doi.org/10.1038/srep09801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40168-015-0077-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036864474", 
              "https://doi.org/10.1186/s40168-015-0077-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-009-1985-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039679792", 
              "https://doi.org/10.1007/s00253-009-1985-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-013-5472-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050516603", 
              "https://doi.org/10.1007/s00253-013-5472-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038293191", 
              "https://doi.org/10.1038/nature02134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026423599", 
              "https://doi.org/10.1186/1471-2105-11-119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010611135", 
              "https://doi.org/10.1038/nmeth.2066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/45777", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024040196", 
              "https://doi.org/10.1038/45777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep20174", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022490241", 
              "https://doi.org/10.1038/srep20174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016190409", 
              "https://doi.org/10.1038/nmeth.2251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2015.100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040269086", 
              "https://doi.org/10.1038/ismej.2015.100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2015.22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028799813", 
              "https://doi.org/10.1038/ismej.2015.22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.57", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012586555", 
              "https://doi.org/10.1038/nmicrobiol.2016.57"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-9-386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006083026", 
              "https://doi.org/10.1186/1471-2105-9-386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006541515", 
              "https://doi.org/10.1038/nmeth.1923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/37052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033679075", 
              "https://doi.org/10.1038/37052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2011-12-5-r44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000326175", 
              "https://doi.org/10.1186/gb-2011-12-5-r44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2013.98", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025892495", 
              "https://doi.org/10.1038/ismej.2013.98"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2013.187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013314017", 
              "https://doi.org/10.1038/ismej.2013.187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms3304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040093094", 
              "https://doi.org/10.1038/ncomms3304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-9-75", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013431920", 
              "https://doi.org/10.1186/1471-2164-9-75"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-01-05", 
        "datePublishedReg": "2018-01-05", 
        "description": "BackgroundMicroorganisms have long been associated with oxic and anoxic degradation of hydrocarbons in oil reservoirs and oil production facilities. While we can readily determine the abundance of microorganisms in the reservoir and study their activity in the laboratory, it has been challenging to resolve what microbes are actively participating in crude oil degradation in situ and to gain insight into what metabolic pathways they deploy.ResultsHere, we describe the metabolic potential and in situ activity of microbial communities obtained from the Jiangsu Oil Reservoir (China) by an integrated metagenomics and metatranscriptomics approach. Almost complete genome sequences obtained by differential binning highlight the distinct capability of different community members to degrade hydrocarbons under oxic or anoxic condition. Transcriptomic data delineate active members of the community and give insights that Acinetobacter species completely oxidize alkanes into carbon dioxide with the involvement of oxygen, and Archaeoglobus species mainly ferment alkanes to generate acetate which could be consumed by Methanosaeta species. Furthermore, nutritional requirements based on amino acid and vitamin auxotrophies suggest a complex network of interactions and dependencies among active community members that go beyond classical syntrophic exchanges; this network defines community composition and microbial ecology in oil reservoirs undergoing secondary recovery.ConclusionOur data expand current knowledge of the metabolic potential and role in hydrocarbon metabolism of individual members of thermophilic microbial communities from an oil reservoir. The study also reveals potential metabolic exchanges based on vitamin and amino acid auxotrophies indicating the presence of complex network of interactions between microbial taxa within the community.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s40168-017-0392-1", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4319773", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8231946", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8226058", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1048878", 
            "issn": [
              "2049-2618"
            ], 
            "name": "Microbiome", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "metabolic potential", 
          "microbial communities", 
          "thermophilic microbial community", 
          "situ activity", 
          "abundance of microorganisms", 
          "complete genome sequence", 
          "amino acid auxotrophy", 
          "vitamin auxotrophy", 
          "metatranscriptomic approach", 
          "microbial ecology", 
          "different community members", 
          "microbial taxa", 
          "community composition", 
          "genome sequence", 
          "transcriptomic data", 
          "metabolic capabilities", 
          "Methanosaeta species", 
          "active community members", 
          "metabolic exchange", 
          "metabolic pathways", 
          "amino acids", 
          "hydrocarbon metabolism", 
          "auxotrophy", 
          "complex networks", 
          "current knowledge", 
          "nutritional requirements", 
          "species", 
          "crude oil degradation", 
          "microorganisms", 
          "individual members", 
          "members", 
          "anoxic conditions", 
          "metagenomics", 
          "taxa", 
          "ecology", 
          "microbes", 
          "oil degradation", 
          "involvement of oxygen", 
          "abundance", 
          "community", 
          "degradation", 
          "pathway", 
          "activity", 
          "insights", 
          "oil production facilities", 
          "sequence", 
          "oxic", 
          "metabolism", 
          "interaction", 
          "Acinetobacter", 
          "ResultsHere", 
          "reservoir", 
          "acid", 
          "role", 
          "anoxic degradation", 
          "community members", 
          "potential", 
          "exchange", 
          "carbon dioxide", 
          "composition", 
          "ConclusionOur data", 
          "distinct capabilities", 
          "active members", 
          "involvement", 
          "vitamin", 
          "presence", 
          "highlights", 
          "data", 
          "network", 
          "alkanes", 
          "situ", 
          "hydrocarbons", 
          "laboratory", 
          "knowledge", 
          "oxygen", 
          "conditions", 
          "study", 
          "production facilities", 
          "oil reservoirs", 
          "requirements", 
          "approach", 
          "capability", 
          "dioxide", 
          "recovery", 
          "dependency", 
          "facilities", 
          "secondary recovery"
        ], 
        "name": "Metabolic capability and in situ activity of microorganisms in an oil reservoir", 
        "pagination": "5", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1100192996"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40168-017-0392-1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29304850"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40168-017-0392-1", 
          "https://app.dimensions.ai/details/publication/pub.1100192996"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_762.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s40168-017-0392-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40168-017-0392-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40168-017-0392-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40168-017-0392-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40168-017-0392-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    357 TRIPLES      21 PREDICATES      150 URIs      118 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40168-017-0392-1 schema:about N0c02048e31a44cca959f8cbe1286e22b
    2 N25f1386454214df78d66e109ce0b9912
    3 N3aadb852dfb4493fac26895355968701
    4 N5e0b2b6e0aa44e78ad1413722511cf08
    5 N5ea860982bf64e2b86cdff12b97a1624
    6 N600c8f5b21a84896a3ee8ea449a5dc1a
    7 N734b2fd3a5284d6e8efe89509c46292c
    8 N78fa8d543ec04eadb5c1dcf09c857175
    9 N7e8dbae66a93441980fd547f2aa415c1
    10 N9d235e47bd624c95ad44aa0287647f67
    11 Na3595f3f437646d79f9df4a3ca419f38
    12 Nc3304e3fdb1543a2af188f6e9a7115ec
    13 Ncfa6d653cd6c46d1b6417671cf68ae6b
    14 Nf06d013270864be18ab37fea34f5ad64
    15 anzsrc-for:06
    16 anzsrc-for:0605
    17 schema:author N9fd7c41e308f4c76a0f14980d74686df
    18 schema:citation sg:pub.10.1007/s00253-009-1985-9
    19 sg:pub.10.1007/s00253-013-5472-y
    20 sg:pub.10.1038/37052
    21 sg:pub.10.1038/45777
    22 sg:pub.10.1038/ismej.2007.111
    23 sg:pub.10.1038/ismej.2013.187
    24 sg:pub.10.1038/ismej.2013.98
    25 sg:pub.10.1038/ismej.2014.58
    26 sg:pub.10.1038/ismej.2015.100
    27 sg:pub.10.1038/ismej.2015.22
    28 sg:pub.10.1038/nature02134
    29 sg:pub.10.1038/nature02922
    30 sg:pub.10.1038/ncomms3304
    31 sg:pub.10.1038/nmeth.1923
    32 sg:pub.10.1038/nmeth.2066
    33 sg:pub.10.1038/nmeth.2251
    34 sg:pub.10.1038/nmicrobiol.2016.57
    35 sg:pub.10.1038/srep09801
    36 sg:pub.10.1038/srep20174
    37 sg:pub.10.1186/1471-2105-11-119
    38 sg:pub.10.1186/1471-2105-9-386
    39 sg:pub.10.1186/1471-2164-9-75
    40 sg:pub.10.1186/gb-2011-12-5-r44
    41 sg:pub.10.1186/s40168-015-0077-6
    42 schema:datePublished 2018-01-05
    43 schema:datePublishedReg 2018-01-05
    44 schema:description BackgroundMicroorganisms have long been associated with oxic and anoxic degradation of hydrocarbons in oil reservoirs and oil production facilities. While we can readily determine the abundance of microorganisms in the reservoir and study their activity in the laboratory, it has been challenging to resolve what microbes are actively participating in crude oil degradation in situ and to gain insight into what metabolic pathways they deploy.ResultsHere, we describe the metabolic potential and in situ activity of microbial communities obtained from the Jiangsu Oil Reservoir (China) by an integrated metagenomics and metatranscriptomics approach. Almost complete genome sequences obtained by differential binning highlight the distinct capability of different community members to degrade hydrocarbons under oxic or anoxic condition. Transcriptomic data delineate active members of the community and give insights that Acinetobacter species completely oxidize alkanes into carbon dioxide with the involvement of oxygen, and Archaeoglobus species mainly ferment alkanes to generate acetate which could be consumed by Methanosaeta species. Furthermore, nutritional requirements based on amino acid and vitamin auxotrophies suggest a complex network of interactions and dependencies among active community members that go beyond classical syntrophic exchanges; this network defines community composition and microbial ecology in oil reservoirs undergoing secondary recovery.ConclusionOur data expand current knowledge of the metabolic potential and role in hydrocarbon metabolism of individual members of thermophilic microbial communities from an oil reservoir. The study also reveals potential metabolic exchanges based on vitamin and amino acid auxotrophies indicating the presence of complex network of interactions between microbial taxa within the community.
    45 schema:genre article
    46 schema:isAccessibleForFree true
    47 schema:isPartOf N9f1625954be54425b284f20532b849c6
    48 Nb83f271cce424b869904772bf4d48ef2
    49 sg:journal.1048878
    50 schema:keywords Acinetobacter
    51 ConclusionOur data
    52 Methanosaeta species
    53 ResultsHere
    54 abundance
    55 abundance of microorganisms
    56 acid
    57 active community members
    58 active members
    59 activity
    60 alkanes
    61 amino acid auxotrophy
    62 amino acids
    63 anoxic conditions
    64 anoxic degradation
    65 approach
    66 auxotrophy
    67 capability
    68 carbon dioxide
    69 community
    70 community composition
    71 community members
    72 complete genome sequence
    73 complex networks
    74 composition
    75 conditions
    76 crude oil degradation
    77 current knowledge
    78 data
    79 degradation
    80 dependency
    81 different community members
    82 dioxide
    83 distinct capabilities
    84 ecology
    85 exchange
    86 facilities
    87 genome sequence
    88 highlights
    89 hydrocarbon metabolism
    90 hydrocarbons
    91 individual members
    92 insights
    93 interaction
    94 involvement
    95 involvement of oxygen
    96 knowledge
    97 laboratory
    98 members
    99 metabolic capabilities
    100 metabolic exchange
    101 metabolic pathways
    102 metabolic potential
    103 metabolism
    104 metagenomics
    105 metatranscriptomic approach
    106 microbes
    107 microbial communities
    108 microbial ecology
    109 microbial taxa
    110 microorganisms
    111 network
    112 nutritional requirements
    113 oil degradation
    114 oil production facilities
    115 oil reservoirs
    116 oxic
    117 oxygen
    118 pathway
    119 potential
    120 presence
    121 production facilities
    122 recovery
    123 requirements
    124 reservoir
    125 role
    126 secondary recovery
    127 sequence
    128 situ
    129 situ activity
    130 species
    131 study
    132 taxa
    133 thermophilic microbial community
    134 transcriptomic data
    135 vitamin
    136 vitamin auxotrophy
    137 schema:name Metabolic capability and in situ activity of microorganisms in an oil reservoir
    138 schema:pagination 5
    139 schema:productId N0f37b97ce00b45d3bfd7832219d743a7
    140 N57adc42d9c2a4c2fa566f2214a21a632
    141 N655b8d090922483692e9ac99dac26db4
    142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100192996
    143 https://doi.org/10.1186/s40168-017-0392-1
    144 schema:sdDatePublished 2022-11-24T21:02
    145 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    146 schema:sdPublisher Na38afb03eda84571a0fcb697be9442a5
    147 schema:url https://doi.org/10.1186/s40168-017-0392-1
    148 sgo:license sg:explorer/license/
    149 sgo:sdDataset articles
    150 rdf:type schema:ScholarlyArticle
    151 N0c02048e31a44cca959f8cbe1286e22b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Gene Expression Profiling
    153 rdf:type schema:DefinedTerm
    154 N0f37b97ce00b45d3bfd7832219d743a7 schema:name doi
    155 schema:value 10.1186/s40168-017-0392-1
    156 rdf:type schema:PropertyValue
    157 N21c56093e40d4b6dbf23dccf4e7e45e6 rdf:first sg:person.01304707405.22
    158 rdf:rest N39094fdc3c6a4e68b3bd6751066e2ab4
    159 N25f1386454214df78d66e109ce0b9912 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Acinetobacter
    161 rdf:type schema:DefinedTerm
    162 N39094fdc3c6a4e68b3bd6751066e2ab4 rdf:first sg:person.01144414650.58
    163 rdf:rest N9536e48b4836437ab5ef21a138f3079c
    164 N3aadb852dfb4493fac26895355968701 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Archaea
    166 rdf:type schema:DefinedTerm
    167 N4245cf79927a45208c899f05950911b9 rdf:first sg:person.01112011323.94
    168 rdf:rest rdf:nil
    169 N57adc42d9c2a4c2fa566f2214a21a632 schema:name pubmed_id
    170 schema:value 29304850
    171 rdf:type schema:PropertyValue
    172 N5e0b2b6e0aa44e78ad1413722511cf08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Phylogeny
    174 rdf:type schema:DefinedTerm
    175 N5ea860982bf64e2b86cdff12b97a1624 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Oil and Gas Fields
    177 rdf:type schema:DefinedTerm
    178 N600c8f5b21a84896a3ee8ea449a5dc1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Archaeoglobus
    180 rdf:type schema:DefinedTerm
    181 N655b8d090922483692e9ac99dac26db4 schema:name dimensions_id
    182 schema:value pub.1100192996
    183 rdf:type schema:PropertyValue
    184 N734b2fd3a5284d6e8efe89509c46292c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name China
    186 rdf:type schema:DefinedTerm
    187 N78fa8d543ec04eadb5c1dcf09c857175 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Sequence Analysis, DNA
    189 rdf:type schema:DefinedTerm
    190 N7e8dbae66a93441980fd547f2aa415c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Methanosarcinales
    192 rdf:type schema:DefinedTerm
    193 N8801f2575392494ab0e8b5a7e7ffa06f rdf:first sg:person.013174052004.50
    194 rdf:rest N21c56093e40d4b6dbf23dccf4e7e45e6
    195 N9536e48b4836437ab5ef21a138f3079c rdf:first sg:person.0627416505.60
    196 rdf:rest Ne1a4d9bd59384b8a959b8a3e53fc2261
    197 N9d235e47bd624c95ad44aa0287647f67 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name Bacterial Proteins
    199 rdf:type schema:DefinedTerm
    200 N9f1625954be54425b284f20532b849c6 schema:issueNumber 1
    201 rdf:type schema:PublicationIssue
    202 N9fd7c41e308f4c76a0f14980d74686df rdf:first sg:person.01067760011.83
    203 rdf:rest N8801f2575392494ab0e8b5a7e7ffa06f
    204 Na3595f3f437646d79f9df4a3ca419f38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    205 schema:name Bacteria
    206 rdf:type schema:DefinedTerm
    207 Na38afb03eda84571a0fcb697be9442a5 schema:name Springer Nature - SN SciGraph project
    208 rdf:type schema:Organization
    209 Nb83f271cce424b869904772bf4d48ef2 schema:volumeNumber 6
    210 rdf:type schema:PublicationVolume
    211 Nc3304e3fdb1543a2af188f6e9a7115ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    212 schema:name Metagenomics
    213 rdf:type schema:DefinedTerm
    214 Ncfa6d653cd6c46d1b6417671cf68ae6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    215 schema:name Metabolic Networks and Pathways
    216 rdf:type schema:DefinedTerm
    217 Ne1a4d9bd59384b8a959b8a3e53fc2261 rdf:first sg:person.01172466317.88
    218 rdf:rest N4245cf79927a45208c899f05950911b9
    219 Nf06d013270864be18ab37fea34f5ad64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    220 schema:name Sequence Analysis, RNA
    221 rdf:type schema:DefinedTerm
    222 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    223 schema:name Biological Sciences
    224 rdf:type schema:DefinedTerm
    225 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    226 schema:name Microbiology
    227 rdf:type schema:DefinedTerm
    228 sg:grant.4319773 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-017-0392-1
    229 rdf:type schema:MonetaryGrant
    230 sg:grant.8226058 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-017-0392-1
    231 rdf:type schema:MonetaryGrant
    232 sg:grant.8231946 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-017-0392-1
    233 rdf:type schema:MonetaryGrant
    234 sg:journal.1048878 schema:issn 2049-2618
    235 schema:name Microbiome
    236 schema:publisher Springer Nature
    237 rdf:type schema:Periodical
    238 sg:person.01067760011.83 schema:affiliation grid-institutes:grid.266100.3
    239 schema:familyName Liu
    240 schema:givenName Yi-Fan
    241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067760011.83
    242 rdf:type schema:Person
    243 sg:person.01112011323.94 schema:affiliation grid-institutes:grid.266100.3
    244 schema:familyName Zengler
    245 schema:givenName Karsten
    246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01112011323.94
    247 rdf:type schema:Person
    248 sg:person.01144414650.58 schema:affiliation grid-institutes:grid.266100.3
    249 schema:familyName Zaramela
    250 schema:givenName Livia S.
    251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144414650.58
    252 rdf:type schema:Person
    253 sg:person.01172466317.88 schema:affiliation grid-institutes:None
    254 schema:familyName Mu
    255 schema:givenName Bo-Zhong
    256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172466317.88
    257 rdf:type schema:Person
    258 sg:person.01304707405.22 schema:affiliation grid-institutes:None
    259 schema:familyName Mbadinga
    260 schema:givenName Serge Maurice
    261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304707405.22
    262 rdf:type schema:Person
    263 sg:person.013174052004.50 schema:affiliation grid-institutes:grid.266100.3
    264 schema:familyName Galzerani
    265 schema:givenName Daniela Domingos
    266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174052004.50
    267 rdf:type schema:Person
    268 sg:person.0627416505.60 schema:affiliation grid-institutes:grid.194645.b
    269 schema:familyName Gu
    270 schema:givenName Ji-Dong
    271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627416505.60
    272 rdf:type schema:Person
    273 sg:pub.10.1007/s00253-009-1985-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039679792
    274 https://doi.org/10.1007/s00253-009-1985-9
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1007/s00253-013-5472-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1050516603
    277 https://doi.org/10.1007/s00253-013-5472-y
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1038/37052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033679075
    280 https://doi.org/10.1038/37052
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1038/45777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024040196
    283 https://doi.org/10.1038/45777
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/ismej.2007.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052062905
    286 https://doi.org/10.1038/ismej.2007.111
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/ismej.2013.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013314017
    289 https://doi.org/10.1038/ismej.2013.187
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/ismej.2013.98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025892495
    292 https://doi.org/10.1038/ismej.2013.98
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/ismej.2014.58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030502097
    295 https://doi.org/10.1038/ismej.2014.58
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/ismej.2015.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040269086
    298 https://doi.org/10.1038/ismej.2015.100
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/ismej.2015.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028799813
    301 https://doi.org/10.1038/ismej.2015.22
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1038/nature02134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038293191
    304 https://doi.org/10.1038/nature02134
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1038/nature02922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044328033
    307 https://doi.org/10.1038/nature02922
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1038/ncomms3304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040093094
    310 https://doi.org/10.1038/ncomms3304
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
    313 https://doi.org/10.1038/nmeth.1923
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1038/nmeth.2066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010611135
    316 https://doi.org/10.1038/nmeth.2066
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1038/nmeth.2251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016190409
    319 https://doi.org/10.1038/nmeth.2251
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1038/nmicrobiol.2016.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012586555
    322 https://doi.org/10.1038/nmicrobiol.2016.57
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1038/srep09801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012219593
    325 https://doi.org/10.1038/srep09801
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1038/srep20174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022490241
    328 https://doi.org/10.1038/srep20174
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1186/1471-2105-11-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026423599
    331 https://doi.org/10.1186/1471-2105-11-119
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1186/1471-2105-9-386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006083026
    334 https://doi.org/10.1186/1471-2105-9-386
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1186/1471-2164-9-75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013431920
    337 https://doi.org/10.1186/1471-2164-9-75
    338 rdf:type schema:CreativeWork
    339 sg:pub.10.1186/gb-2011-12-5-r44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000326175
    340 https://doi.org/10.1186/gb-2011-12-5-r44
    341 rdf:type schema:CreativeWork
    342 sg:pub.10.1186/s40168-015-0077-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036864474
    343 https://doi.org/10.1186/s40168-015-0077-6
    344 rdf:type schema:CreativeWork
    345 grid-institutes:None schema:alternateName Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 200237, Shanghai, People’s Republic of China
    346 schema:name Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 200237, Shanghai, People’s Republic of China
    347 State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Xuhui District, 200237, Shanghai, People’s Republic of China
    348 rdf:type schema:Organization
    349 grid-institutes:grid.194645.b schema:alternateName School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
    350 schema:name School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
    351 rdf:type schema:Organization
    352 grid-institutes:grid.266100.3 schema:alternateName Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093-0436, San Diego, CA, USA
    353 Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093-0760, San Diego, CA, USA
    354 schema:name Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093-0436, San Diego, CA, USA
    355 Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093-0760, San Diego, CA, USA
    356 State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Xuhui District, 200237, Shanghai, People’s Republic of China
    357 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...