MiRKAT-S: a community-level test of association between the microbiota and survival times View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-02-08

AUTHORS

Anna Plantinga, Xiang Zhan, Ni Zhao, Jun Chen, Robert R. Jenq, Michael C. Wu

ABSTRACT

BackgroundCommunity-level analysis of the human microbiota has culminated in the discovery of relationships between overall shifts in the microbiota and a wide range of diseases and conditions. However, existing work has primarily focused on analysis of relatively simple dichotomous or quantitative outcomes, for example, disease status or biomarker levels. Recently, there is also considerable interest in the relationship between the microbiota and censored survival outcomes, such as in clinical trials. How to conduct community-level analysis with censored survival outcomes is unclear, since standard dissimilarity-based tests cannot accommodate censored survival times and no alternative methods exist.MethodsWe develop a new approach, MiRKAT-S, for community-level analysis of microbiome data with censored survival times. MiRKAT-S uses ecologically informative distance metrics, such as the UniFrac distances, to generate matrices of pairwise distances between individuals’ taxonomic profiles. The distance matrices are transformed into kernel (similarity) matrices, which are used to compare similarity in the microbiota to similarity in survival times between individuals.ResultsSimulation studies using synthetic microbial communities demonstrate correct control of type I error and adequate power. We also apply MiRKAT-S to examine the relationship between the gut microbiota and survival after allogeneic blood or bone marrow transplant.ConclusionsWe present MiRKAT-S, a method that facilitates community-level analysis of the association between the microbiota and survival outcomes and therefore provides a new approach to analysis of microbiome data arising from clinical trials. More... »

PAGES

17

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40168-017-0239-9

DOI

http://dx.doi.org/10.1186/s40168-017-0239-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083735079

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28179014


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Transfusion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bone Marrow Transplantation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gastrointestinal Microbiome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gastrointestinal Tract", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Graft vs Host Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Ribosomal, 16S", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transfusion Reaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Treatment Outcome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics, University of Washington, 1705 NE Pacific Street, Seattle, Washington, USA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Biostatistics, University of Washington, 1705 NE Pacific Street, Seattle, Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plantinga", 
        "givenName": "Anna", 
        "id": "sg:person.014576672077.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014576672077.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, Washington, USA", 
          "id": "http://www.grid.ac/institutes/grid.270240.3", 
          "name": [
            "Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhan", 
        "givenName": "Xiang", 
        "id": "sg:person.013745274007.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013745274007.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St, Baltimore, Maryland, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Ni", 
        "id": "sg:person.0743120657.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743120657.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Jun", 
        "id": "sg:person.01023412627.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departments of Genomic Medicine and Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1954, Houston, TX, USA", 
          "id": "http://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Departments of Genomic Medicine and Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1954, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jenq", 
        "givenName": "Robert R.", 
        "id": "sg:person.0714450277.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714450277.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, Washington, USA", 
          "id": "http://www.grid.ac/institutes/grid.270240.3", 
          "name": [
            "Department of Biostatistics, University of Washington, 1705 NE Pacific Street, Seattle, Washington, USA", 
            "Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Michael C.", 
        "id": "sg:person.012737237057.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012737237057.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrg3182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018201256", 
          "https://doi.org/10.1038/nrg3182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030170002", 
          "https://doi.org/10.1038/nature07540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-7846-1_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035879661", 
          "https://doi.org/10.1007/978-1-4614-7846-1_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00357-014-9161-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049678681", 
          "https://doi.org/10.1007/s00357-014-9161-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002791386", 
          "https://doi.org/10.1038/nature12198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10985-007-9076-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015695999", 
          "https://doi.org/10.1007/s10985-007-9076-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2010.92", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039284129", 
          "https://doi.org/10.1038/ismej.2010.92"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-02-08", 
    "datePublishedReg": "2017-02-08", 
    "description": "BackgroundCommunity-level analysis of the human microbiota has culminated in the discovery of relationships between overall shifts in the microbiota and a wide range of diseases and conditions. However, existing work has primarily focused on analysis of relatively simple dichotomous or quantitative outcomes, for example, disease status or biomarker levels. Recently, there is also considerable interest in the relationship between the microbiota and censored survival outcomes, such as in clinical trials. How to conduct community-level analysis with censored survival outcomes is unclear, since standard dissimilarity-based tests cannot accommodate censored survival times and no alternative methods exist.MethodsWe develop a new approach, MiRKAT-S, for community-level analysis of microbiome data with censored survival times. MiRKAT-S uses ecologically informative distance metrics, such as the UniFrac distances, to generate matrices of pairwise distances between individuals\u2019 taxonomic profiles. The distance matrices are transformed into kernel (similarity) matrices, which are used to compare similarity in the microbiota to similarity in survival times between individuals.ResultsSimulation studies using synthetic microbial communities demonstrate correct control of type I error and adequate power. We also apply MiRKAT-S to examine the relationship between the gut microbiota and survival after allogeneic blood or bone marrow transplant.ConclusionsWe present MiRKAT-S, a method that facilitates community-level analysis of the association between the microbiota and survival outcomes and therefore provides a new approach to analysis of microbiome data arising from clinical trials.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s40168-017-0239-9", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3536079", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2529499", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4241844", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3933508", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1048878", 
        "issn": [
          "2049-2618"
        ], 
        "name": "Microbiome", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "survival outcomes", 
      "survival time", 
      "clinical trials", 
      "bone marrow transplant", 
      "allogeneic blood", 
      "biomarker levels", 
      "marrow transplant", 
      "gut microbiota", 
      "disease status", 
      "human microbiota", 
      "microbiota", 
      "outcomes", 
      "type I", 
      "trials", 
      "UniFrac distances", 
      "adequate power", 
      "quantitative outcomes", 
      "association", 
      "microbiome data", 
      "transplant", 
      "disease", 
      "MethodsWe", 
      "individuals", 
      "blood", 
      "survival", 
      "status", 
      "test", 
      "taxonomic profiles", 
      "relationship", 
      "community-level analysis", 
      "analysis", 
      "time", 
      "levels", 
      "data", 
      "control", 
      "study", 
      "alternative method", 
      "overall shift", 
      "considerable interest", 
      "profile", 
      "synthetic microbial communities", 
      "community\u2010level test", 
      "discovery", 
      "new approach", 
      "correct control", 
      "method", 
      "microbial communities", 
      "wide range", 
      "approach", 
      "similarity", 
      "conditions", 
      "MiRKAT", 
      "community", 
      "discovery of relationships", 
      "interest", 
      "pairwise distances", 
      "distance matrix", 
      "range", 
      "shift", 
      "distance", 
      "matrix", 
      "work", 
      "metrics", 
      "example", 
      "power", 
      "distance metric", 
      "kernel matrix"
    ], 
    "name": "MiRKAT-S: a community-level test of association between the microbiota and survival times", 
    "pagination": "17", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083735079"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40168-017-0239-9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28179014"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40168-017-0239-9", 
      "https://app.dimensions.ai/details/publication/pub.1083735079"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_727.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s40168-017-0239-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40168-017-0239-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40168-017-0239-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40168-017-0239-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40168-017-0239-9'


 

This table displays all metadata directly associated to this object as RDF triples.

263 TRIPLES      21 PREDICATES      112 URIs      97 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40168-017-0239-9 schema:about N0b0907c886114e74aa66372fca5b6ecc
2 N22d99846e6024189a45ddf659a0ba48b
3 N259af645646d4dfd8800f7e5d0da7620
4 N2b8db75b914f4be5b60d49e3d5851b01
5 N471c022be5fd4094a516fbf55e35d76c
6 N5012e27da75444ae9e948cbc4017e287
7 N6c15e1e3fb3b4f549d33d921dd9de64a
8 N72b528a8b77b470db20a9367108d6e9c
9 N74294cab516a406d8723426dc8266bf4
10 Nbeada1efe5c14250bdea8925a5792dad
11 Nd7b42a3709f144aea30dc229d886c8f6
12 Ne79aa3eca501415d99c431d9fb9d29cb
13 Nf0799ceee28d453c9efaf4bf24ad4754
14 anzsrc-for:06
15 anzsrc-for:0605
16 schema:author N57f7e61e7d0c48fdb6754d269ce77da6
17 schema:citation sg:pub.10.1007/978-1-4614-7846-1_16
18 sg:pub.10.1007/s00357-014-9161-z
19 sg:pub.10.1007/s10985-007-9076-7
20 sg:pub.10.1038/ismej.2010.92
21 sg:pub.10.1038/nature07540
22 sg:pub.10.1038/nature12198
23 sg:pub.10.1038/nrg3182
24 schema:datePublished 2017-02-08
25 schema:datePublishedReg 2017-02-08
26 schema:description BackgroundCommunity-level analysis of the human microbiota has culminated in the discovery of relationships between overall shifts in the microbiota and a wide range of diseases and conditions. However, existing work has primarily focused on analysis of relatively simple dichotomous or quantitative outcomes, for example, disease status or biomarker levels. Recently, there is also considerable interest in the relationship between the microbiota and censored survival outcomes, such as in clinical trials. How to conduct community-level analysis with censored survival outcomes is unclear, since standard dissimilarity-based tests cannot accommodate censored survival times and no alternative methods exist.MethodsWe develop a new approach, MiRKAT-S, for community-level analysis of microbiome data with censored survival times. MiRKAT-S uses ecologically informative distance metrics, such as the UniFrac distances, to generate matrices of pairwise distances between individuals’ taxonomic profiles. The distance matrices are transformed into kernel (similarity) matrices, which are used to compare similarity in the microbiota to similarity in survival times between individuals.ResultsSimulation studies using synthetic microbial communities demonstrate correct control of type I error and adequate power. We also apply MiRKAT-S to examine the relationship between the gut microbiota and survival after allogeneic blood or bone marrow transplant.ConclusionsWe present MiRKAT-S, a method that facilitates community-level analysis of the association between the microbiota and survival outcomes and therefore provides a new approach to analysis of microbiome data arising from clinical trials.
27 schema:genre article
28 schema:isAccessibleForFree true
29 schema:isPartOf N56c42388b7cc4ff0b1319f7602d64501
30 N79e85b86c67d4be0a68ecdfcd81448d3
31 sg:journal.1048878
32 schema:keywords MethodsWe
33 MiRKAT
34 UniFrac distances
35 adequate power
36 allogeneic blood
37 alternative method
38 analysis
39 approach
40 association
41 biomarker levels
42 blood
43 bone marrow transplant
44 clinical trials
45 community
46 community-level analysis
47 community‐level test
48 conditions
49 considerable interest
50 control
51 correct control
52 data
53 discovery
54 discovery of relationships
55 disease
56 disease status
57 distance
58 distance matrix
59 distance metric
60 example
61 gut microbiota
62 human microbiota
63 individuals
64 interest
65 kernel matrix
66 levels
67 marrow transplant
68 matrix
69 method
70 metrics
71 microbial communities
72 microbiome data
73 microbiota
74 new approach
75 outcomes
76 overall shift
77 pairwise distances
78 power
79 profile
80 quantitative outcomes
81 range
82 relationship
83 shift
84 similarity
85 status
86 study
87 survival
88 survival outcomes
89 survival time
90 synthetic microbial communities
91 taxonomic profiles
92 test
93 time
94 transplant
95 trials
96 type I
97 wide range
98 work
99 schema:name MiRKAT-S: a community-level test of association between the microbiota and survival times
100 schema:pagination 17
101 schema:productId N7d2f19e5fa864c91a2194dbce80f40f8
102 N9b799c1843dd40a8bd980a8f4e4b29ea
103 Ndaf556e131b94eaaaf7bf83f032c1c36
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083735079
105 https://doi.org/10.1186/s40168-017-0239-9
106 schema:sdDatePublished 2022-09-02T16:01
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher N81d92ed424bf45d795ff64757ba90b7d
109 schema:url https://doi.org/10.1186/s40168-017-0239-9
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N0b0907c886114e74aa66372fca5b6ecc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Models, Theoretical
115 rdf:type schema:DefinedTerm
116 N22d99846e6024189a45ddf659a0ba48b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Data Interpretation, Statistical
118 rdf:type schema:DefinedTerm
119 N259af645646d4dfd8800f7e5d0da7620 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Blood Transfusion
121 rdf:type schema:DefinedTerm
122 N2b8db75b914f4be5b60d49e3d5851b01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name RNA, Ribosomal, 16S
124 rdf:type schema:DefinedTerm
125 N471c022be5fd4094a516fbf55e35d76c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Gastrointestinal Microbiome
127 rdf:type schema:DefinedTerm
128 N5012e27da75444ae9e948cbc4017e287 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Computer Simulation
130 rdf:type schema:DefinedTerm
131 N56c42388b7cc4ff0b1319f7602d64501 schema:volumeNumber 5
132 rdf:type schema:PublicationVolume
133 N57f7e61e7d0c48fdb6754d269ce77da6 rdf:first sg:person.014576672077.62
134 rdf:rest Nf2a409a345d44179bddb45c8d9e7316d
135 N5c0c0155eeba433b9f47fe9ea46a0808 rdf:first sg:person.0714450277.09
136 rdf:rest Ncd74052d930d41e6a1518dd97f999d63
137 N5dd7623fd74a450ea1ab2d0bf3633659 rdf:first sg:person.0743120657.69
138 rdf:rest Nd95dd86052794d33842bfb69f3d3ad3b
139 N6c15e1e3fb3b4f549d33d921dd9de64a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Bone Marrow Transplantation
141 rdf:type schema:DefinedTerm
142 N72b528a8b77b470db20a9367108d6e9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Graft vs Host Disease
144 rdf:type schema:DefinedTerm
145 N74294cab516a406d8723426dc8266bf4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Transfusion Reaction
147 rdf:type schema:DefinedTerm
148 N79e85b86c67d4be0a68ecdfcd81448d3 schema:issueNumber 1
149 rdf:type schema:PublicationIssue
150 N7d2f19e5fa864c91a2194dbce80f40f8 schema:name pubmed_id
151 schema:value 28179014
152 rdf:type schema:PropertyValue
153 N81d92ed424bf45d795ff64757ba90b7d schema:name Springer Nature - SN SciGraph project
154 rdf:type schema:Organization
155 N9b799c1843dd40a8bd980a8f4e4b29ea schema:name dimensions_id
156 schema:value pub.1083735079
157 rdf:type schema:PropertyValue
158 Nbeada1efe5c14250bdea8925a5792dad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Survival Analysis
160 rdf:type schema:DefinedTerm
161 Ncd74052d930d41e6a1518dd97f999d63 rdf:first sg:person.012737237057.63
162 rdf:rest rdf:nil
163 Nd7b42a3709f144aea30dc229d886c8f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Treatment Outcome
165 rdf:type schema:DefinedTerm
166 Nd95dd86052794d33842bfb69f3d3ad3b rdf:first sg:person.01023412627.52
167 rdf:rest N5c0c0155eeba433b9f47fe9ea46a0808
168 Ndaf556e131b94eaaaf7bf83f032c1c36 schema:name doi
169 schema:value 10.1186/s40168-017-0239-9
170 rdf:type schema:PropertyValue
171 Ne79aa3eca501415d99c431d9fb9d29cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Gastrointestinal Tract
173 rdf:type schema:DefinedTerm
174 Nf0799ceee28d453c9efaf4bf24ad4754 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Humans
176 rdf:type schema:DefinedTerm
177 Nf2a409a345d44179bddb45c8d9e7316d rdf:first sg:person.013745274007.97
178 rdf:rest N5dd7623fd74a450ea1ab2d0bf3633659
179 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
180 schema:name Biological Sciences
181 rdf:type schema:DefinedTerm
182 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
183 schema:name Microbiology
184 rdf:type schema:DefinedTerm
185 sg:grant.2529499 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-017-0239-9
186 rdf:type schema:MonetaryGrant
187 sg:grant.3536079 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-017-0239-9
188 rdf:type schema:MonetaryGrant
189 sg:grant.3933508 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-017-0239-9
190 rdf:type schema:MonetaryGrant
191 sg:grant.4241844 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-017-0239-9
192 rdf:type schema:MonetaryGrant
193 sg:journal.1048878 schema:issn 2049-2618
194 schema:name Microbiome
195 schema:publisher Springer Nature
196 rdf:type schema:Periodical
197 sg:person.01023412627.52 schema:affiliation grid-institutes:grid.66875.3a
198 schema:familyName Chen
199 schema:givenName Jun
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52
201 rdf:type schema:Person
202 sg:person.012737237057.63 schema:affiliation grid-institutes:grid.270240.3
203 schema:familyName Wu
204 schema:givenName Michael C.
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012737237057.63
206 rdf:type schema:Person
207 sg:person.013745274007.97 schema:affiliation grid-institutes:grid.270240.3
208 schema:familyName Zhan
209 schema:givenName Xiang
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013745274007.97
211 rdf:type schema:Person
212 sg:person.014576672077.62 schema:affiliation grid-institutes:grid.34477.33
213 schema:familyName Plantinga
214 schema:givenName Anna
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014576672077.62
216 rdf:type schema:Person
217 sg:person.0714450277.09 schema:affiliation grid-institutes:grid.240145.6
218 schema:familyName Jenq
219 schema:givenName Robert R.
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714450277.09
221 rdf:type schema:Person
222 sg:person.0743120657.69 schema:affiliation grid-institutes:grid.21107.35
223 schema:familyName Zhao
224 schema:givenName Ni
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743120657.69
226 rdf:type schema:Person
227 sg:pub.10.1007/978-1-4614-7846-1_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035879661
228 https://doi.org/10.1007/978-1-4614-7846-1_16
229 rdf:type schema:CreativeWork
230 sg:pub.10.1007/s00357-014-9161-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1049678681
231 https://doi.org/10.1007/s00357-014-9161-z
232 rdf:type schema:CreativeWork
233 sg:pub.10.1007/s10985-007-9076-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015695999
234 https://doi.org/10.1007/s10985-007-9076-7
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/ismej.2010.92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039284129
237 https://doi.org/10.1038/ismej.2010.92
238 rdf:type schema:CreativeWork
239 sg:pub.10.1038/nature07540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030170002
240 https://doi.org/10.1038/nature07540
241 rdf:type schema:CreativeWork
242 sg:pub.10.1038/nature12198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002791386
243 https://doi.org/10.1038/nature12198
244 rdf:type schema:CreativeWork
245 sg:pub.10.1038/nrg3182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018201256
246 https://doi.org/10.1038/nrg3182
247 rdf:type schema:CreativeWork
248 grid-institutes:grid.21107.35 schema:alternateName Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St, Baltimore, Maryland, USA
249 schema:name Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St, Baltimore, Maryland, USA
250 rdf:type schema:Organization
251 grid-institutes:grid.240145.6 schema:alternateName Departments of Genomic Medicine and Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1954, Houston, TX, USA
252 schema:name Departments of Genomic Medicine and Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1954, Houston, TX, USA
253 rdf:type schema:Organization
254 grid-institutes:grid.270240.3 schema:alternateName Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, Washington, USA
255 schema:name Department of Biostatistics, University of Washington, 1705 NE Pacific Street, Seattle, Washington, USA
256 Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, Washington, USA
257 rdf:type schema:Organization
258 grid-institutes:grid.34477.33 schema:alternateName Department of Biostatistics, University of Washington, 1705 NE Pacific Street, Seattle, Washington, USA
259 schema:name Department of Biostatistics, University of Washington, 1705 NE Pacific Street, Seattle, Washington, USA
260 rdf:type schema:Organization
261 grid-institutes:grid.66875.3a schema:alternateName Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, USA
262 schema:name Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, USA
263 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...