Normalization and microbial differential abundance strategies depend upon data characteristics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-03-03

AUTHORS

Sophie Weiss, Zhenjiang Zech Xu, Shyamal Peddada, Amnon Amir, Kyle Bittinger, Antonio Gonzalez, Catherine Lozupone, Jesse R. Zaneveld, Yoshiki Vázquez-Baeza, Amanda Birmingham, Embriette R. Hyde, Rob Knight

ABSTRACT

BackgroundData from 16S ribosomal RNA (rRNA) amplicon sequencing present challenges to ecological and statistical interpretation. In particular, library sizes often vary over several ranges of magnitude, and the data contains many zeros. Although we are typically interested in comparing relative abundance of taxa in the ecosystem of two or more groups, we can only measure the taxon relative abundance in specimens obtained from the ecosystems. Because the comparison of taxon relative abundance in the specimen is not equivalent to the comparison of taxon relative abundance in the ecosystems, this presents a special challenge. Second, because the relative abundance of taxa in the specimen (as well as in the ecosystem) sum to 1, these are compositional data. Because the compositional data are constrained by the simplex (sum to 1) and are not unconstrained in the Euclidean space, many standard methods of analysis are not applicable. Here, we evaluate how these challenges impact the performance of existing normalization methods and differential abundance analyses.ResultsEffects on normalization: Most normalization methods enable successful clustering of samples according to biological origin when the groups differ substantially in their overall microbial composition. Rarefying more clearly clusters samples according to biological origin than other normalization techniques do for ordination metrics based on presence or absence. Alternate normalization measures are potentially vulnerable to artifacts due to library size.Effects on differential abundance testing: We build on a previous work to evaluate seven proposed statistical methods using rarefied as well as raw data. Our simulation studies suggest that the false discovery rates of many differential abundance-testing methods are not increased by rarefying itself, although of course rarefying results in a loss of sensitivity due to elimination of a portion of available data. For groups with large (~10×) differences in the average library size, rarefying lowers the false discovery rate. DESeq2, without addition of a constant, increased sensitivity on smaller datasets (<20 samples per group) but tends towards a higher false discovery rate with more samples, very uneven (~10×) library sizes, and/or compositional effects. For drawing inferences regarding taxon abundance in the ecosystem, analysis of composition of microbiomes (ANCOM) is not only very sensitive (for >20 samples per group) but also critically the only method tested that has a good control of false discovery rate.ConclusionsThese findings guide which normalization and differential abundance techniques to use based on the data characteristics of a given study. More... »

PAGES

27

References to SciGraph publications

  • 2014-05-13. Estimating coverage in metagenomic data sets and why it matters in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2012-03-08. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2011-05-30. Moving pictures of the human microbiome in GENOME BIOLOGY
  • 2010-09-09. UniFrac: an effective distance metric for microbial community comparison in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2013-09-10. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data in GENOME BIOLOGY
  • 2013-12-11. Diet rapidly and reproducibly alters the human gut microbiome in NATURE
  • 2013-03-09. A comparison of methods for differential expression analysis of RNA-seq data in BMC BIOINFORMATICS
  • 2011-05-24. Measuring Subcompositional Incoherence in MATHEMATICAL GEOSCIENCES
  • 2006-03-03. Clustering Rules: A Comparison of Partitioning and Hierarchical Clustering Algorithms in JOURNAL OF MATHEMATICAL MODELLING AND ALGORITHMS IN OPERATIONS RESEARCH
  • 2014-11-12. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses in BMC BIOLOGY
  • 2014-12-05. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 in GENOME BIOLOGY
  • 1994-06. A new relationship for rarefaction in BIODIVERSITY AND CONSERVATION
  • 2004-12. A taxa–area relationship for bacteria in NATURE
  • 2010-04-11. QIIME allows analysis of high-throughput community sequencing data in NATURE METHODS
  • 2003-04. Isometric Logratio Transformations for Compositional Data Analysis in MATHEMATICAL GEOSCIENCES
  • 2013-08-22. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor in NATURE PROTOCOLS
  • 2010-03. A human gut microbial gene catalogue established by metagenomic sequencing in NATURE
  • 2008-11-30. A core gut microbiome in obese and lean twins in NATURE
  • 2014-03-28. Reply to: "A fair comparison" in NATURE METHODS
  • 2004-09-15. Bioconductor: open software development for computational biology and bioinformatics in GENOME BIOLOGY
  • 2010-02-18. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments in BMC BIOINFORMATICS
  • 2014-03-28. A fair comparison in NATURE METHODS
  • 2010-10-27. Differential expression analysis for sequence count data in GENOME BIOLOGY
  • 2014-02-03. voom: precision weights unlock linear model analysis tools for RNA-seq read counts in GENOME BIOLOGY
  • 2014-06-27. Diarrhea in young children from low-income countries leads to large-scale alterations in intestinal microbiota composition in GENOME BIOLOGY
  • 2014-05-05. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis in MICROBIOME
  • 2013-09-29. Differential abundance analysis for microbial marker-gene surveys in NATURE METHODS
  • 2005-12. Bayesian inference for categorical data analysis in STATISTICAL METHODS & APPLICATIONS
  • 2013-11-26. EMPeror: a tool for visualizing high-throughput microbial community data in GIGASCIENCE
  • Journal

    TITLE

    Microbiome

    ISSUE

    1

    VOLUME

    5

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40168-017-0237-y

    DOI

    http://dx.doi.org/10.1186/s40168-017-0237-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084252802

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28253908


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Ecology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacterial Load", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ecosystem", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Library", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbial Consortia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Ribosomal, 16S", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Chemical and Biological Engineering, University of Colorado at Boulder, 80309, Boulder, CO, USA", 
              "id": "http://www.grid.ac/institutes/grid.266190.a", 
              "name": [
                "Department of Chemical and Biological Engineering, University of Colorado at Boulder, 80309, Boulder, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Weiss", 
            "givenName": "Sophie", 
            "id": "sg:person.01166324530.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166324530.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departments of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0763, 92093, La Jolla, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Departments of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0763, 92093, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Zhenjiang Zech", 
            "id": "sg:person.01161573701.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161573701.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Biostatistics and Computational Biology Branch, NIEHS, NIH, Research Triangle Park Durham, NC, USA", 
              "id": "http://www.grid.ac/institutes/grid.280664.e", 
              "name": [
                "Biostatistics and Computational Biology Branch, NIEHS, NIH, Research Triangle Park Durham, NC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Peddada", 
            "givenName": "Shyamal", 
            "id": "sg:person.015365450637.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365450637.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departments of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0763, 92093, La Jolla, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Departments of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0763, 92093, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Amir", 
            "givenName": "Amnon", 
            "id": "sg:person.01163102774.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163102774.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Microbiology, University of Pennsylvania, 18014, Philadelphia, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "Department of Microbiology, University of Pennsylvania, 18014, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bittinger", 
            "givenName": "Kyle", 
            "id": "sg:person.01244225361.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244225361.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departments of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0763, 92093, La Jolla, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Departments of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0763, 92093, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gonzalez", 
            "givenName": "Antonio", 
            "id": "sg:person.01301120245.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301120245.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medicine, University of Colorado, 80204, Denver, CO, USA", 
              "id": "http://www.grid.ac/institutes/grid.241116.1", 
              "name": [
                "Department of Medicine, University of Colorado, 80204, Denver, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lozupone", 
            "givenName": "Catherine", 
            "id": "sg:person.0672337357.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672337357.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Microbiology, Oregon State University, 226 Nash Hall, 97331, Corvallis, OR, USA", 
              "id": "http://www.grid.ac/institutes/grid.4391.f", 
              "name": [
                "Department of Microbiology, Oregon State University, 226 Nash Hall, 97331, Corvallis, OR, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zaneveld", 
            "givenName": "Jesse R.", 
            "id": "sg:person.0753705541.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753705541.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science & Engineering, University of California San Diego, 92093, La Jolla, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Computer Science & Engineering, University of California San Diego, 92093, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "V\u00e1zquez-Baeza", 
            "givenName": "Yoshiki", 
            "id": "sg:person.01113460501.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113460501.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Computational Biology and Bioinformatics, Dept. of Medicine, University of California San Diego, 92093, La Jolla, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Center for Computational Biology and Bioinformatics, Dept. of Medicine, University of California San Diego, 92093, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Birmingham", 
            "givenName": "Amanda", 
            "id": "sg:person.01231155371.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231155371.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departments of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0763, 92093, La Jolla, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Departments of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0763, 92093, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hyde", 
            "givenName": "Embriette R.", 
            "id": "sg:person.0756335676.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756335676.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Microbiome Innovation, University of California San Diego, 92093, La Jolla, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Departments of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0763, 92093, La Jolla, CA, USA", 
                "Department of Computer Science & Engineering, University of California San Diego, 92093, La Jolla, CA, USA", 
                "Center for Microbiome Innovation, University of California San Diego, 92093, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Knight", 
            "givenName": "Rob", 
            "id": "sg:person.016311745377.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/s12915-014-0087-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027737035", 
              "https://doi.org/10.1186/s12915-014-0087-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2897", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030185276", 
              "https://doi.org/10.1038/nmeth.2897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2011-12-5-r50", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050643751", 
              "https://doi.org/10.1186/gb-2011-12-5-r50"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2013.099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033430059", 
              "https://doi.org/10.1038/nprot.2013.099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2014-15-2-r29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045312009", 
              "https://doi.org/10.1186/gb-2014-15-2-r29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-10-r106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031289083", 
              "https://doi.org/10.1186/gb-2010-11-10-r106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00056509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007450841", 
              "https://doi.org/10.1007/bf00056509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-011-9338-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048467842", 
              "https://doi.org/10.1007/s11004-011-9338-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002139060", 
              "https://doi.org/10.1038/nmeth.2658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018457673", 
              "https://doi.org/10.1186/gb-2004-5-10-r80"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2010.133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042916034", 
              "https://doi.org/10.1038/ismej.2010.133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2898", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007964999", 
              "https://doi.org/10.1038/nmeth.2898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2013-14-9-r95", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036803445", 
              "https://doi.org/10.1186/gb-2013-14-9-r95"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10260-005-0121-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007650443", 
              "https://doi.org/10.1007/s10260-005-0121-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10852-005-9022-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011366574", 
              "https://doi.org/10.1007/s10852-005-9022-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024447086", 
              "https://doi.org/10.1038/nature03073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2014.76", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006057368", 
              "https://doi.org/10.1038/ismej.2014.76"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050498034", 
              "https://doi.org/10.1038/nature08821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2014-15-6-r76", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024439294", 
              "https://doi.org/10.1186/gb-2014-15-6-r76"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013830289", 
              "https://doi.org/10.1038/nature12820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053091615", 
              "https://doi.org/10.1186/1471-2105-11-94"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030170002", 
              "https://doi.org/10.1038/nature07540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-14-91", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016675314", 
              "https://doi.org/10.1186/1471-2105-14-91"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-014-0550-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015222646", 
              "https://doi.org/10.1186/s13059-014-0550-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2047-217x-2-16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022546943", 
              "https://doi.org/10.1186/2047-217x-2-16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1023818214614", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024177181", 
              "https://doi.org/10.1023/a:1023818214614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2012.8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038992953", 
              "https://doi.org/10.1038/ismej.2012.8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2049-2618-2-15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046874717", 
              "https://doi.org/10.1186/2049-2618-2-15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.f.303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009032055", 
              "https://doi.org/10.1038/nmeth.f.303"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-03-03", 
        "datePublishedReg": "2017-03-03", 
        "description": "BackgroundData from 16S ribosomal RNA (rRNA) amplicon sequencing present challenges to ecological and statistical interpretation. In particular, library sizes often vary over several ranges of magnitude, and the data contains many zeros. Although we are typically interested in comparing relative abundance of taxa in the ecosystem of two or more groups, we can only measure the taxon relative abundance in specimens obtained from the ecosystems. Because the comparison of taxon relative abundance in the specimen is not equivalent to the comparison of taxon relative abundance in the ecosystems, this presents a special challenge. Second, because the relative abundance of taxa in the specimen (as well as in the ecosystem) sum to 1, these are compositional data. Because the compositional data are constrained by the simplex (sum to 1) and are not unconstrained in the Euclidean space, many standard methods of analysis are not applicable. Here, we evaluate how these challenges impact the performance of existing normalization methods and differential abundance analyses.ResultsEffects on normalization: Most normalization methods enable successful clustering of samples according to biological origin when the groups differ substantially in their overall microbial composition. Rarefying more clearly clusters samples according to biological origin than other normalization techniques do for ordination metrics based on presence or absence. Alternate normalization measures are potentially vulnerable to artifacts due to library size.Effects on differential abundance testing: We build on a previous work to evaluate seven proposed statistical methods using rarefied as well as raw data. Our simulation studies suggest that the false discovery rates of many differential abundance-testing methods are not increased by rarefying itself, although of course rarefying results in a loss of sensitivity due to elimination of a portion of available data. For groups with large (~10\u00d7) differences in the average library size, rarefying lowers the false discovery rate. DESeq2, without addition of a constant, increased sensitivity on smaller datasets (<20 samples per group) but tends towards a higher false discovery rate with more samples, very uneven (~10\u00d7) library sizes, and/or compositional effects. For drawing inferences regarding taxon abundance in the ecosystem, analysis of composition of microbiomes (ANCOM) is not only very sensitive (for >20 samples per group) but also critically the only method tested that has a good control of false discovery rate.ConclusionsThese findings guide which normalization and differential abundance techniques to use based on the data characteristics of a given study.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s40168-017-0237-y", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4242003", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2691272", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2717719", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2529347", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2725281", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1048878", 
            "issn": [
              "2049-2618"
            ], 
            "name": "Microbiome", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "keywords": [
          "relative abundance", 
          "taxa relative abundance", 
          "false discovery rate", 
          "library size", 
          "discovery rate", 
          "ribosomal RNA amplicons", 
          "differential abundance analysis", 
          "differential abundance testing", 
          "high false discovery rate", 
          "overall microbial composition", 
          "most normalization methods", 
          "microbial composition", 
          "biological origin", 
          "ecosystems", 
          "abundance", 
          "abundance technique", 
          "RNA amplicons", 
          "taxa", 
          "abundance analysis", 
          "DESeq2", 
          "microbiome", 
          "amplicons", 
          "ResultsEffects", 
          "normalization measures", 
          "origin", 
          "more samples", 
          "analysis of composition", 
          "composition", 
          "loss of sensitivity", 
          "large differences", 
          "successful clustering", 
          "analysis", 
          "size", 
          "compositional data", 
          "absence", 
          "normalization method", 
          "more groups", 
          "present challenges", 
          "simplex", 
          "available data", 
          "previous work", 
          "portion", 
          "data", 
          "loss", 
          "presence", 
          "inference", 
          "effect", 
          "study", 
          "clustering", 
          "rate", 
          "statistical methods", 
          "sensitivity", 
          "addition", 
          "only method", 
          "specimens", 
          "ConclusionsThese findings", 
          "comparison", 
          "samples", 
          "range of magnitudes", 
          "group", 
          "control", 
          "strategies", 
          "findings", 
          "dataset", 
          "differences", 
          "challenges", 
          "standard methods", 
          "data characteristics", 
          "range", 
          "special challenges", 
          "characteristics", 
          "raw data", 
          "results", 
          "small datasets", 
          "elimination", 
          "statistical interpretation", 
          "better control", 
          "metrics", 
          "normalization", 
          "method", 
          "compositional effects", 
          "magnitude", 
          "work", 
          "technique", 
          "measures", 
          "interpretation", 
          "specimen", 
          "simulation study", 
          "normalization technique", 
          "space", 
          "artifacts", 
          "testing", 
          "sum", 
          "Euclidean space", 
          "performance", 
          "cluster sample", 
          "zeros", 
          "BackgroundData"
        ], 
        "name": "Normalization and microbial differential abundance strategies depend upon data characteristics", 
        "pagination": "27", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084252802"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40168-017-0237-y"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28253908"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40168-017-0237-y", 
          "https://app.dimensions.ai/details/publication/pub.1084252802"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_745.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s40168-017-0237-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40168-017-0237-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40168-017-0237-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40168-017-0237-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40168-017-0237-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    434 TRIPLES      21 PREDICATES      165 URIs      125 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40168-017-0237-y schema:about N1424a3b389404071ab2caab526fc9f1c
    2 N5ecb0491281b4946ae7454fb25593200
    3 N69df4b9753ff4bba8108e1366317d9d3
    4 N86126bca8919456f80fb280d4c7ce628
    5 N88c6f080a45e4617be202cca2821f28f
    6 Na2af29a34b684b31a16f15f85c6893c0
    7 Nb227cf6684234c80b467995d2a63d25b
    8 Nb32e074146a34829be37847a82b23127
    9 Nd6c61e12b84a473089397e1bea6435b6
    10 Nfe18de0fe4c541df80f2336de9569b42
    11 anzsrc-for:06
    12 anzsrc-for:0602
    13 anzsrc-for:0605
    14 anzsrc-for:11
    15 anzsrc-for:1108
    16 schema:author Nfefde9ca1a90453790428252e8aa9f28
    17 schema:citation sg:pub.10.1007/bf00056509
    18 sg:pub.10.1007/s10260-005-0121-y
    19 sg:pub.10.1007/s10852-005-9022-1
    20 sg:pub.10.1007/s11004-011-9338-5
    21 sg:pub.10.1023/a:1023818214614
    22 sg:pub.10.1038/ismej.2010.133
    23 sg:pub.10.1038/ismej.2012.8
    24 sg:pub.10.1038/ismej.2014.76
    25 sg:pub.10.1038/nature03073
    26 sg:pub.10.1038/nature07540
    27 sg:pub.10.1038/nature08821
    28 sg:pub.10.1038/nature12820
    29 sg:pub.10.1038/nmeth.2658
    30 sg:pub.10.1038/nmeth.2897
    31 sg:pub.10.1038/nmeth.2898
    32 sg:pub.10.1038/nmeth.f.303
    33 sg:pub.10.1038/nprot.2013.099
    34 sg:pub.10.1186/1471-2105-11-94
    35 sg:pub.10.1186/1471-2105-14-91
    36 sg:pub.10.1186/2047-217x-2-16
    37 sg:pub.10.1186/2049-2618-2-15
    38 sg:pub.10.1186/gb-2004-5-10-r80
    39 sg:pub.10.1186/gb-2010-11-10-r106
    40 sg:pub.10.1186/gb-2011-12-5-r50
    41 sg:pub.10.1186/gb-2013-14-9-r95
    42 sg:pub.10.1186/gb-2014-15-2-r29
    43 sg:pub.10.1186/gb-2014-15-6-r76
    44 sg:pub.10.1186/s12915-014-0087-z
    45 sg:pub.10.1186/s13059-014-0550-8
    46 schema:datePublished 2017-03-03
    47 schema:datePublishedReg 2017-03-03
    48 schema:description BackgroundData from 16S ribosomal RNA (rRNA) amplicon sequencing present challenges to ecological and statistical interpretation. In particular, library sizes often vary over several ranges of magnitude, and the data contains many zeros. Although we are typically interested in comparing relative abundance of taxa in the ecosystem of two or more groups, we can only measure the taxon relative abundance in specimens obtained from the ecosystems. Because the comparison of taxon relative abundance in the specimen is not equivalent to the comparison of taxon relative abundance in the ecosystems, this presents a special challenge. Second, because the relative abundance of taxa in the specimen (as well as in the ecosystem) sum to 1, these are compositional data. Because the compositional data are constrained by the simplex (sum to 1) and are not unconstrained in the Euclidean space, many standard methods of analysis are not applicable. Here, we evaluate how these challenges impact the performance of existing normalization methods and differential abundance analyses.ResultsEffects on normalization: Most normalization methods enable successful clustering of samples according to biological origin when the groups differ substantially in their overall microbial composition. Rarefying more clearly clusters samples according to biological origin than other normalization techniques do for ordination metrics based on presence or absence. Alternate normalization measures are potentially vulnerable to artifacts due to library size.Effects on differential abundance testing: We build on a previous work to evaluate seven proposed statistical methods using rarefied as well as raw data. Our simulation studies suggest that the false discovery rates of many differential abundance-testing methods are not increased by rarefying itself, although of course rarefying results in a loss of sensitivity due to elimination of a portion of available data. For groups with large (~10×) differences in the average library size, rarefying lowers the false discovery rate. DESeq2, without addition of a constant, increased sensitivity on smaller datasets (<20 samples per group) but tends towards a higher false discovery rate with more samples, very uneven (~10×) library sizes, and/or compositional effects. For drawing inferences regarding taxon abundance in the ecosystem, analysis of composition of microbiomes (ANCOM) is not only very sensitive (for >20 samples per group) but also critically the only method tested that has a good control of false discovery rate.ConclusionsThese findings guide which normalization and differential abundance techniques to use based on the data characteristics of a given study.
    49 schema:genre article
    50 schema:isAccessibleForFree true
    51 schema:isPartOf N822a814e7eb448fc9fb6cbf240b5daa8
    52 Nc9a866c5f6be48639c37ed09d9e8c788
    53 sg:journal.1048878
    54 schema:keywords BackgroundData
    55 ConclusionsThese findings
    56 DESeq2
    57 Euclidean space
    58 RNA amplicons
    59 ResultsEffects
    60 absence
    61 abundance
    62 abundance analysis
    63 abundance technique
    64 addition
    65 amplicons
    66 analysis
    67 analysis of composition
    68 artifacts
    69 available data
    70 better control
    71 biological origin
    72 challenges
    73 characteristics
    74 cluster sample
    75 clustering
    76 comparison
    77 composition
    78 compositional data
    79 compositional effects
    80 control
    81 data
    82 data characteristics
    83 dataset
    84 differences
    85 differential abundance analysis
    86 differential abundance testing
    87 discovery rate
    88 ecosystems
    89 effect
    90 elimination
    91 false discovery rate
    92 findings
    93 group
    94 high false discovery rate
    95 inference
    96 interpretation
    97 large differences
    98 library size
    99 loss
    100 loss of sensitivity
    101 magnitude
    102 measures
    103 method
    104 metrics
    105 microbial composition
    106 microbiome
    107 more groups
    108 more samples
    109 most normalization methods
    110 normalization
    111 normalization measures
    112 normalization method
    113 normalization technique
    114 only method
    115 origin
    116 overall microbial composition
    117 performance
    118 portion
    119 presence
    120 present challenges
    121 previous work
    122 range
    123 range of magnitudes
    124 rate
    125 raw data
    126 relative abundance
    127 results
    128 ribosomal RNA amplicons
    129 samples
    130 sensitivity
    131 simplex
    132 simulation study
    133 size
    134 small datasets
    135 space
    136 special challenges
    137 specimen
    138 specimens
    139 standard methods
    140 statistical interpretation
    141 statistical methods
    142 strategies
    143 study
    144 successful clustering
    145 sum
    146 taxa
    147 taxa relative abundance
    148 technique
    149 testing
    150 work
    151 zeros
    152 schema:name Normalization and microbial differential abundance strategies depend upon data characteristics
    153 schema:pagination 27
    154 schema:productId N08623f16a10544b896c64e509000216f
    155 N6d9f4e843dac4ca0a76d59a9123b9da7
    156 N7df5c13fb5c84428a5ba79486e2ab715
    157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084252802
    158 https://doi.org/10.1186/s40168-017-0237-y
    159 schema:sdDatePublished 2022-08-04T17:05
    160 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    161 schema:sdPublisher N67268eaba8504eb692933aa5fe348f31
    162 schema:url https://doi.org/10.1186/s40168-017-0237-y
    163 sgo:license sg:explorer/license/
    164 sgo:sdDataset articles
    165 rdf:type schema:ScholarlyArticle
    166 N015705e7fecf4dfca5167b55a5b04142 rdf:first sg:person.0756335676.60
    167 rdf:rest Na48eeeab7f834f538a0e9ba254e04d56
    168 N08623f16a10544b896c64e509000216f schema:name dimensions_id
    169 schema:value pub.1084252802
    170 rdf:type schema:PropertyValue
    171 N1424a3b389404071ab2caab526fc9f1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Gene Library
    173 rdf:type schema:DefinedTerm
    174 N1556121411244018a10efa2ebdb1fe1d rdf:first sg:person.0753705541.65
    175 rdf:rest N1eb827a99be64c7fa744caa61e479765
    176 N1eb827a99be64c7fa744caa61e479765 rdf:first sg:person.01113460501.49
    177 rdf:rest N51d5942c6ba244ef984ba0e36bbf6d9f
    178 N2047c5e977bf424db16fcddb3a9736f4 rdf:first sg:person.01301120245.46
    179 rdf:rest Nd8b26769bdd44504971cd06b2f048ba1
    180 N302fe08636e944c3851a0a1bfce8efbf rdf:first sg:person.01244225361.13
    181 rdf:rest N2047c5e977bf424db16fcddb3a9736f4
    182 N51d5942c6ba244ef984ba0e36bbf6d9f rdf:first sg:person.01231155371.50
    183 rdf:rest N015705e7fecf4dfca5167b55a5b04142
    184 N5ecb0491281b4946ae7454fb25593200 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Ecosystem
    186 rdf:type schema:DefinedTerm
    187 N65eedfc108f64808be02a210c643f1c5 rdf:first sg:person.015365450637.65
    188 rdf:rest N9478d53433ca44d8927785bfb03d41bc
    189 N67268eaba8504eb692933aa5fe348f31 schema:name Springer Nature - SN SciGraph project
    190 rdf:type schema:Organization
    191 N69df4b9753ff4bba8108e1366317d9d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    192 schema:name Bacterial Load
    193 rdf:type schema:DefinedTerm
    194 N6d9f4e843dac4ca0a76d59a9123b9da7 schema:name doi
    195 schema:value 10.1186/s40168-017-0237-y
    196 rdf:type schema:PropertyValue
    197 N7df5c13fb5c84428a5ba79486e2ab715 schema:name pubmed_id
    198 schema:value 28253908
    199 rdf:type schema:PropertyValue
    200 N822a814e7eb448fc9fb6cbf240b5daa8 schema:volumeNumber 5
    201 rdf:type schema:PublicationVolume
    202 N86126bca8919456f80fb280d4c7ce628 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    203 schema:name Base Sequence
    204 rdf:type schema:DefinedTerm
    205 N88c6f080a45e4617be202cca2821f28f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    206 schema:name Microbial Consortia
    207 rdf:type schema:DefinedTerm
    208 N93fa6844a1f0419e8b384a82cb9dedce rdf:first sg:person.01161573701.69
    209 rdf:rest N65eedfc108f64808be02a210c643f1c5
    210 N9478d53433ca44d8927785bfb03d41bc rdf:first sg:person.01163102774.24
    211 rdf:rest N302fe08636e944c3851a0a1bfce8efbf
    212 Na2af29a34b684b31a16f15f85c6893c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    213 schema:name RNA, Ribosomal, 16S
    214 rdf:type schema:DefinedTerm
    215 Na48eeeab7f834f538a0e9ba254e04d56 rdf:first sg:person.016311745377.96
    216 rdf:rest rdf:nil
    217 Nb227cf6684234c80b467995d2a63d25b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    218 schema:name Humans
    219 rdf:type schema:DefinedTerm
    220 Nb32e074146a34829be37847a82b23127 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    221 schema:name Sequence Analysis, DNA
    222 rdf:type schema:DefinedTerm
    223 Nc9a866c5f6be48639c37ed09d9e8c788 schema:issueNumber 1
    224 rdf:type schema:PublicationIssue
    225 Nd6c61e12b84a473089397e1bea6435b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    226 schema:name Bacteria
    227 rdf:type schema:DefinedTerm
    228 Nd8b26769bdd44504971cd06b2f048ba1 rdf:first sg:person.0672337357.81
    229 rdf:rest N1556121411244018a10efa2ebdb1fe1d
    230 Nfe18de0fe4c541df80f2336de9569b42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    231 schema:name DNA, Bacterial
    232 rdf:type schema:DefinedTerm
    233 Nfefde9ca1a90453790428252e8aa9f28 rdf:first sg:person.01166324530.84
    234 rdf:rest N93fa6844a1f0419e8b384a82cb9dedce
    235 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    236 schema:name Biological Sciences
    237 rdf:type schema:DefinedTerm
    238 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
    239 schema:name Ecology
    240 rdf:type schema:DefinedTerm
    241 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    242 schema:name Microbiology
    243 rdf:type schema:DefinedTerm
    244 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    245 schema:name Medical and Health Sciences
    246 rdf:type schema:DefinedTerm
    247 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
    248 schema:name Medical Microbiology
    249 rdf:type schema:DefinedTerm
    250 sg:grant.2529347 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-017-0237-y
    251 rdf:type schema:MonetaryGrant
    252 sg:grant.2691272 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-017-0237-y
    253 rdf:type schema:MonetaryGrant
    254 sg:grant.2717719 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-017-0237-y
    255 rdf:type schema:MonetaryGrant
    256 sg:grant.2725281 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-017-0237-y
    257 rdf:type schema:MonetaryGrant
    258 sg:grant.4242003 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-017-0237-y
    259 rdf:type schema:MonetaryGrant
    260 sg:journal.1048878 schema:issn 2049-2618
    261 schema:name Microbiome
    262 schema:publisher Springer Nature
    263 rdf:type schema:Periodical
    264 sg:person.01113460501.49 schema:affiliation grid-institutes:grid.266100.3
    265 schema:familyName Vázquez-Baeza
    266 schema:givenName Yoshiki
    267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113460501.49
    268 rdf:type schema:Person
    269 sg:person.01161573701.69 schema:affiliation grid-institutes:grid.266100.3
    270 schema:familyName Xu
    271 schema:givenName Zhenjiang Zech
    272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161573701.69
    273 rdf:type schema:Person
    274 sg:person.01163102774.24 schema:affiliation grid-institutes:grid.266100.3
    275 schema:familyName Amir
    276 schema:givenName Amnon
    277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163102774.24
    278 rdf:type schema:Person
    279 sg:person.01166324530.84 schema:affiliation grid-institutes:grid.266190.a
    280 schema:familyName Weiss
    281 schema:givenName Sophie
    282 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166324530.84
    283 rdf:type schema:Person
    284 sg:person.01231155371.50 schema:affiliation grid-institutes:grid.266100.3
    285 schema:familyName Birmingham
    286 schema:givenName Amanda
    287 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231155371.50
    288 rdf:type schema:Person
    289 sg:person.01244225361.13 schema:affiliation grid-institutes:grid.25879.31
    290 schema:familyName Bittinger
    291 schema:givenName Kyle
    292 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244225361.13
    293 rdf:type schema:Person
    294 sg:person.01301120245.46 schema:affiliation grid-institutes:grid.266100.3
    295 schema:familyName Gonzalez
    296 schema:givenName Antonio
    297 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301120245.46
    298 rdf:type schema:Person
    299 sg:person.015365450637.65 schema:affiliation grid-institutes:grid.280664.e
    300 schema:familyName Peddada
    301 schema:givenName Shyamal
    302 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365450637.65
    303 rdf:type schema:Person
    304 sg:person.016311745377.96 schema:affiliation grid-institutes:grid.266100.3
    305 schema:familyName Knight
    306 schema:givenName Rob
    307 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96
    308 rdf:type schema:Person
    309 sg:person.0672337357.81 schema:affiliation grid-institutes:grid.241116.1
    310 schema:familyName Lozupone
    311 schema:givenName Catherine
    312 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672337357.81
    313 rdf:type schema:Person
    314 sg:person.0753705541.65 schema:affiliation grid-institutes:grid.4391.f
    315 schema:familyName Zaneveld
    316 schema:givenName Jesse R.
    317 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753705541.65
    318 rdf:type schema:Person
    319 sg:person.0756335676.60 schema:affiliation grid-institutes:grid.266100.3
    320 schema:familyName Hyde
    321 schema:givenName Embriette R.
    322 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756335676.60
    323 rdf:type schema:Person
    324 sg:pub.10.1007/bf00056509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007450841
    325 https://doi.org/10.1007/bf00056509
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1007/s10260-005-0121-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007650443
    328 https://doi.org/10.1007/s10260-005-0121-y
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1007/s10852-005-9022-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011366574
    331 https://doi.org/10.1007/s10852-005-9022-1
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1007/s11004-011-9338-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048467842
    334 https://doi.org/10.1007/s11004-011-9338-5
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1023/a:1023818214614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024177181
    337 https://doi.org/10.1023/a:1023818214614
    338 rdf:type schema:CreativeWork
    339 sg:pub.10.1038/ismej.2010.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042916034
    340 https://doi.org/10.1038/ismej.2010.133
    341 rdf:type schema:CreativeWork
    342 sg:pub.10.1038/ismej.2012.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038992953
    343 https://doi.org/10.1038/ismej.2012.8
    344 rdf:type schema:CreativeWork
    345 sg:pub.10.1038/ismej.2014.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006057368
    346 https://doi.org/10.1038/ismej.2014.76
    347 rdf:type schema:CreativeWork
    348 sg:pub.10.1038/nature03073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024447086
    349 https://doi.org/10.1038/nature03073
    350 rdf:type schema:CreativeWork
    351 sg:pub.10.1038/nature07540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030170002
    352 https://doi.org/10.1038/nature07540
    353 rdf:type schema:CreativeWork
    354 sg:pub.10.1038/nature08821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050498034
    355 https://doi.org/10.1038/nature08821
    356 rdf:type schema:CreativeWork
    357 sg:pub.10.1038/nature12820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013830289
    358 https://doi.org/10.1038/nature12820
    359 rdf:type schema:CreativeWork
    360 sg:pub.10.1038/nmeth.2658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002139060
    361 https://doi.org/10.1038/nmeth.2658
    362 rdf:type schema:CreativeWork
    363 sg:pub.10.1038/nmeth.2897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030185276
    364 https://doi.org/10.1038/nmeth.2897
    365 rdf:type schema:CreativeWork
    366 sg:pub.10.1038/nmeth.2898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007964999
    367 https://doi.org/10.1038/nmeth.2898
    368 rdf:type schema:CreativeWork
    369 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
    370 https://doi.org/10.1038/nmeth.f.303
    371 rdf:type schema:CreativeWork
    372 sg:pub.10.1038/nprot.2013.099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033430059
    373 https://doi.org/10.1038/nprot.2013.099
    374 rdf:type schema:CreativeWork
    375 sg:pub.10.1186/1471-2105-11-94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053091615
    376 https://doi.org/10.1186/1471-2105-11-94
    377 rdf:type schema:CreativeWork
    378 sg:pub.10.1186/1471-2105-14-91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016675314
    379 https://doi.org/10.1186/1471-2105-14-91
    380 rdf:type schema:CreativeWork
    381 sg:pub.10.1186/2047-217x-2-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022546943
    382 https://doi.org/10.1186/2047-217x-2-16
    383 rdf:type schema:CreativeWork
    384 sg:pub.10.1186/2049-2618-2-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046874717
    385 https://doi.org/10.1186/2049-2618-2-15
    386 rdf:type schema:CreativeWork
    387 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
    388 https://doi.org/10.1186/gb-2004-5-10-r80
    389 rdf:type schema:CreativeWork
    390 sg:pub.10.1186/gb-2010-11-10-r106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031289083
    391 https://doi.org/10.1186/gb-2010-11-10-r106
    392 rdf:type schema:CreativeWork
    393 sg:pub.10.1186/gb-2011-12-5-r50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050643751
    394 https://doi.org/10.1186/gb-2011-12-5-r50
    395 rdf:type schema:CreativeWork
    396 sg:pub.10.1186/gb-2013-14-9-r95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036803445
    397 https://doi.org/10.1186/gb-2013-14-9-r95
    398 rdf:type schema:CreativeWork
    399 sg:pub.10.1186/gb-2014-15-2-r29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045312009
    400 https://doi.org/10.1186/gb-2014-15-2-r29
    401 rdf:type schema:CreativeWork
    402 sg:pub.10.1186/gb-2014-15-6-r76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024439294
    403 https://doi.org/10.1186/gb-2014-15-6-r76
    404 rdf:type schema:CreativeWork
    405 sg:pub.10.1186/s12915-014-0087-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1027737035
    406 https://doi.org/10.1186/s12915-014-0087-z
    407 rdf:type schema:CreativeWork
    408 sg:pub.10.1186/s13059-014-0550-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015222646
    409 https://doi.org/10.1186/s13059-014-0550-8
    410 rdf:type schema:CreativeWork
    411 grid-institutes:grid.241116.1 schema:alternateName Department of Medicine, University of Colorado, 80204, Denver, CO, USA
    412 schema:name Department of Medicine, University of Colorado, 80204, Denver, CO, USA
    413 rdf:type schema:Organization
    414 grid-institutes:grid.25879.31 schema:alternateName Department of Microbiology, University of Pennsylvania, 18014, Philadelphia, PA, USA
    415 schema:name Department of Microbiology, University of Pennsylvania, 18014, Philadelphia, PA, USA
    416 rdf:type schema:Organization
    417 grid-institutes:grid.266100.3 schema:alternateName Center for Computational Biology and Bioinformatics, Dept. of Medicine, University of California San Diego, 92093, La Jolla, CA, USA
    418 Center for Microbiome Innovation, University of California San Diego, 92093, La Jolla, CA, USA
    419 Department of Computer Science & Engineering, University of California San Diego, 92093, La Jolla, CA, USA
    420 Departments of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0763, 92093, La Jolla, CA, USA
    421 schema:name Center for Computational Biology and Bioinformatics, Dept. of Medicine, University of California San Diego, 92093, La Jolla, CA, USA
    422 Center for Microbiome Innovation, University of California San Diego, 92093, La Jolla, CA, USA
    423 Department of Computer Science & Engineering, University of California San Diego, 92093, La Jolla, CA, USA
    424 Departments of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0763, 92093, La Jolla, CA, USA
    425 rdf:type schema:Organization
    426 grid-institutes:grid.266190.a schema:alternateName Department of Chemical and Biological Engineering, University of Colorado at Boulder, 80309, Boulder, CO, USA
    427 schema:name Department of Chemical and Biological Engineering, University of Colorado at Boulder, 80309, Boulder, CO, USA
    428 rdf:type schema:Organization
    429 grid-institutes:grid.280664.e schema:alternateName Biostatistics and Computational Biology Branch, NIEHS, NIH, Research Triangle Park Durham, NC, USA
    430 schema:name Biostatistics and Computational Biology Branch, NIEHS, NIH, Research Triangle Park Durham, NC, USA
    431 rdf:type schema:Organization
    432 grid-institutes:grid.4391.f schema:alternateName Department of Microbiology, Oregon State University, 226 Nash Hall, 97331, Corvallis, OR, USA
    433 schema:name Department of Microbiology, Oregon State University, 226 Nash Hall, 97331, Corvallis, OR, USA
    434 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...