Normalization and microbial differential abundance strategies depend upon data characteristics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Sophie Weiss, Zhenjiang Zech Xu, Shyamal Peddada, Amnon Amir, Kyle Bittinger, Antonio Gonzalez, Catherine Lozupone, Jesse R. Zaneveld, Yoshiki Vázquez-Baeza, Amanda Birmingham, Embriette R. Hyde, Rob Knight

ABSTRACT

BACKGROUND: Data from 16S ribosomal RNA (rRNA) amplicon sequencing present challenges to ecological and statistical interpretation. In particular, library sizes often vary over several ranges of magnitude, and the data contains many zeros. Although we are typically interested in comparing relative abundance of taxa in the ecosystem of two or more groups, we can only measure the taxon relative abundance in specimens obtained from the ecosystems. Because the comparison of taxon relative abundance in the specimen is not equivalent to the comparison of taxon relative abundance in the ecosystems, this presents a special challenge. Second, because the relative abundance of taxa in the specimen (as well as in the ecosystem) sum to 1, these are compositional data. Because the compositional data are constrained by the simplex (sum to 1) and are not unconstrained in the Euclidean space, many standard methods of analysis are not applicable. Here, we evaluate how these challenges impact the performance of existing normalization methods and differential abundance analyses. RESULTS: Effects on normalization: Most normalization methods enable successful clustering of samples according to biological origin when the groups differ substantially in their overall microbial composition. Rarefying more clearly clusters samples according to biological origin than other normalization techniques do for ordination metrics based on presence or absence. Alternate normalization measures are potentially vulnerable to artifacts due to library size. Effects on differential abundance testing: We build on a previous work to evaluate seven proposed statistical methods using rarefied as well as raw data. Our simulation studies suggest that the false discovery rates of many differential abundance-testing methods are not increased by rarefying itself, although of course rarefying results in a loss of sensitivity due to elimination of a portion of available data. For groups with large (~10×) differences in the average library size, rarefying lowers the false discovery rate. DESeq2, without addition of a constant, increased sensitivity on smaller datasets (<20 samples per group) but tends towards a higher false discovery rate with more samples, very uneven (~10×) library sizes, and/or compositional effects. For drawing inferences regarding taxon abundance in the ecosystem, analysis of composition of microbiomes (ANCOM) is not only very sensitive (for >20 samples per group) but also critically the only method tested that has a good control of false discovery rate. CONCLUSIONS: These findings guide which normalization and differential abundance techniques to use based on the data characteristics of a given study. More... »

PAGES

27

References to SciGraph publications

  • 2014-11. Estimating coverage in metagenomic data sets and why it matters in THE ISME JOURNAL
  • 2012-08. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms in THE ISME JOURNAL
  • 2011-05. Moving pictures of the human microbiome in GENOME BIOLOGY
  • 2011-02. UniFrac: an effective distance metric for microbial community comparison in THE ISME JOURNAL
  • 2013-09. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data in GENOME BIOLOGY
  • 2014-01. Diet rapidly and reproducibly alters the human gut microbiome in NATURE
  • 2013-12. A comparison of methods for differential expression analysis of RNA-seq data in BMC BIOINFORMATICS
  • 2011-08. Measuring Subcompositional Incoherence in MATHEMATICAL GEOSCIENCES
  • 2006-12. Clustering Rules: A Comparison of Partitioning and Hierarchical Clustering Algorithms in JOURNAL OF MATHEMATICAL MODELLING AND ALGORITHMS
  • 2003-04. Isometric Logratio Transformations for Compositional Data Analysis in MATHEMATICAL GEOSCIENCES
  • 2014-12. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 in GENOME BIOLOGY
  • 1994-06. A new relationship for rarefaction in BIODIVERSITY AND CONSERVATION
  • 2004-12. A taxa–area relationship for bacteria in NATURE
  • 2010-05. QIIME allows analysis of high-throughput community sequencing data in NATURE METHODS
  • 2014-12. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses in BMC BIOLOGY
  • 2013-09. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor in NATURE PROTOCOLS
  • 2010-03. A human gut microbial gene catalogue established by metagenomic sequencing in NATURE
  • 2009-01-22. A core gut microbiome in obese and lean twins in NATURE
  • 2014-04. Reply to: "A fair comparison" in NATURE METHODS
  • 2004-09. Bioconductor: open software development for computational biology and bioinformatics in GENOME BIOLOGY
  • 2010-12. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments in BMC BIOINFORMATICS
  • 2014-04. A fair comparison in NATURE METHODS
  • 2010-10. Differential expression analysis for sequence count data in GENOME BIOLOGY
  • 2014-02. voom: precision weights unlock linear model analysis tools for RNA-seq read counts in GENOME BIOLOGY
  • 2014-06. Diarrhea in young children from low-income countries leads to large-scale alterations in intestinal microbiota composition in GENOME BIOLOGY
  • 2014-12. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis in MICROBIOME
  • 2013-12. Differential abundance analysis for microbial marker-gene surveys in NATURE METHODS
  • 2005-12. Bayesian inference for categorical data analysis in STATISTICAL METHODS & APPLICATIONS
  • 2013-12. EMPeror: a tool for visualizing high-throughput microbial community data in GIGASCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40168-017-0237-y

    DOI

    http://dx.doi.org/10.1186/s40168-017-0237-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084252802

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28253908


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacterial Load", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ecosystem", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Library", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbial Consortia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Ribosomal, 16S", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Colorado Boulder", 
              "id": "https://www.grid.ac/institutes/grid.266190.a", 
              "name": [
                "Department of Chemical and Biological Engineering, University of Colorado at Boulder, 80309, Boulder, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Weiss", 
            "givenName": "Sophie", 
            "id": "sg:person.01166324530.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166324530.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, San Diego", 
              "id": "https://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Departments of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0763, 92093, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Zhenjiang Zech", 
            "id": "sg:person.01161573701.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161573701.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Biostatistics and Computational Biology Branch, NIEHS, NIH, Research Triangle Park Durham, NC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Peddada", 
            "givenName": "Shyamal", 
            "id": "sg:person.015365450637.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365450637.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, San Diego", 
              "id": "https://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Departments of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0763, 92093, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Amir", 
            "givenName": "Amnon", 
            "id": "sg:person.01163102774.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163102774.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Pennsylvania", 
              "id": "https://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "Department of Microbiology, University of Pennsylvania, 18014, Philadelphia, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bittinger", 
            "givenName": "Kyle", 
            "id": "sg:person.01244225361.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244225361.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, San Diego", 
              "id": "https://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Departments of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0763, 92093, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gonzalez", 
            "givenName": "Antonio", 
            "id": "sg:person.01301120245.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301120245.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Colorado Denver", 
              "id": "https://www.grid.ac/institutes/grid.241116.1", 
              "name": [
                "Department of Medicine, University of Colorado, 80204, Denver, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lozupone", 
            "givenName": "Catherine", 
            "id": "sg:person.0672337357.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672337357.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oregon State University", 
              "id": "https://www.grid.ac/institutes/grid.4391.f", 
              "name": [
                "Department of Microbiology, Oregon State University, 226 Nash Hall, 97331, Corvallis, OR, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zaneveld", 
            "givenName": "Jesse R.", 
            "id": "sg:person.0753705541.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753705541.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, San Diego", 
              "id": "https://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Computer Science & Engineering, University of California San Diego, 92093, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "V\u00e1zquez-Baeza", 
            "givenName": "Yoshiki", 
            "id": "sg:person.01113460501.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113460501.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, San Diego", 
              "id": "https://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Center for Computational Biology and Bioinformatics, Dept. of Medicine, University of California San Diego, 92093, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Birmingham", 
            "givenName": "Amanda", 
            "id": "sg:person.01231155371.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231155371.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, San Diego", 
              "id": "https://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Departments of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0763, 92093, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hyde", 
            "givenName": "Embriette R.", 
            "id": "sg:person.0756335676.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756335676.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, San Diego", 
              "id": "https://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Departments of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0763, 92093, La Jolla, CA, USA", 
                "Department of Computer Science & Engineering, University of California San Diego, 92093, La Jolla, CA, USA", 
                "Center for Microbiome Innovation, University of California San Diego, 92093, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Knight", 
            "givenName": "Rob", 
            "id": "sg:person.016311745377.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmeth.2658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002139060", 
              "https://doi.org/10.1038/nmeth.2658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.05491-11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003940478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chom.2013.08.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004067470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2014.76", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006057368", 
              "https://doi.org/10.1038/ismej.2014.76"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1004075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006702233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00056509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007450841", 
              "https://doi.org/10.1007/bf00056509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00056509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007450841", 
              "https://doi.org/10.1007/bf00056509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10260-005-0121-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007650443", 
              "https://doi.org/10.1007/s10260-005-0121-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2898", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007964999", 
              "https://doi.org/10.1038/nmeth.2898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.f.303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009032055", 
              "https://doi.org/10.1038/nmeth.f.303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.f.303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009032055", 
              "https://doi.org/10.1038/nmeth.f.303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0085611", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009762352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0061217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010556699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10852-005-9022-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011366574", 
              "https://doi.org/10.1007/s10852-005-9022-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10852-005-9022-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011366574", 
              "https://doi.org/10.1007/s10852-005-9022-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013830289", 
              "https://doi.org/10.1038/nature12820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bib/bbs046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013843285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-014-0550-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015222646", 
              "https://doi.org/10.1186/s13059-014-0550-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-014-0550-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015222646", 
              "https://doi.org/10.1186/s13059-014-0550-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1461-0248.2001.00230.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015653758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-14-91", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016675314", 
              "https://doi.org/10.1186/1471-2105-14-91"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018457673", 
              "https://doi.org/10.1186/gb-2004-5-10-r80"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biostatistics/kxm030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019122906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1000080107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019627885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1177486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019669855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2047-217x-2-16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022546943", 
              "https://doi.org/10.1186/2047-217x-2-16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp616", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023247882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1023818214614", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024177181", 
              "https://doi.org/10.1023/a:1023818214614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2014-15-6-r76", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024439294", 
              "https://doi.org/10.1186/gb-2014-15-6-r76"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024447086", 
              "https://doi.org/10.1038/nature03073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024447086", 
              "https://doi.org/10.1038/nature03073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1000352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024778766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.01996-06", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025834307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1890/08-1832.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026448306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12915-014-0087-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027737035", 
              "https://doi.org/10.1186/s12915-014-0087-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12915-014-0087-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027737035", 
              "https://doi.org/10.1186/s12915-014-0087-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chom.2014.02.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029005029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030170002", 
              "https://doi.org/10.1038/nature07540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2897", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030185276", 
              "https://doi.org/10.1038/nmeth.2897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0052078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031057368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.110.114983", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031164330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.110.114983", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031164330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-10-r106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031289083", 
              "https://doi.org/10.1186/gb-2010-11-10-r106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3402/mehd.v26.27663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031307715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/sim.1088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031403471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1890/12-2010.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032001038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0030126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033013533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2013.099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033430059", 
              "https://doi.org/10.1038/nprot.2013.099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspl.1896.0076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036679935"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2013-14-9-r95", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036803445", 
              "https://doi.org/10.1186/gb-2013-14-9-r95"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.01541-09", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038354310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0504978102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038909005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0504978102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038909005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2012.8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038992953", 
              "https://doi.org/10.1038/ismej.2012.8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0020296", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041053715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.95.19.11279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041121949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1002687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041839473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.71.12.8228-8235.2005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042157769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2010.133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042916034", 
              "https://doi.org/10.1038/ismej.2010.133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.00335-09", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043659253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btt143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043958816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044499388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.01451-14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044605406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2014-15-2-r29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045312009", 
              "https://doi.org/10.1186/gb-2014-15-2-r29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1942268", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046249265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2049-2618-2-15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046874717", 
              "https://doi.org/10.1186/2049-2618-2-15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1000162107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047845298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.151803.112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047899579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1241214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048095994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1003531", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048123102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11004-011-9338-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048467842", 
              "https://doi.org/10.1007/s11004-011-9338-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050498034", 
              "https://doi.org/10.1038/nature08821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050498034", 
              "https://doi.org/10.1038/nature08821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jpe/rtr044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050500549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chemolab.2015.02.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050642857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2011-12-5-r50", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050643751", 
              "https://doi.org/10.1186/gb-2011-12-5-r50"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053091615", 
              "https://doi.org/10.1186/1471-2105-11-94"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/53.3-4.325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059417555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1471082x14535524", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064025851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1471082x14535524", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064025851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/11-aoas493", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064392195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/12-aoas592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064392937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2333639", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069895113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2532338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069977754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5860/choice.28-4558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073303596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9781139013567", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098663901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470316801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109496256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109496256", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "BACKGROUND: Data from 16S ribosomal RNA (rRNA) amplicon sequencing present challenges to ecological and statistical interpretation. In particular, library sizes often vary over several ranges of magnitude, and the data contains many zeros. Although we are typically interested in comparing relative abundance of taxa in the ecosystem of two or more groups, we can only measure the taxon relative abundance in specimens obtained from the ecosystems. Because the comparison of taxon relative abundance in the specimen is not equivalent to the comparison of taxon relative abundance in the ecosystems, this presents a special challenge. Second, because the relative abundance of taxa in the specimen (as well as in the ecosystem) sum to 1, these are compositional data. Because the compositional data are constrained by the simplex (sum to 1) and are not unconstrained in the Euclidean space, many standard methods of analysis are not applicable. Here, we evaluate how these challenges impact the performance of existing normalization methods and differential abundance analyses.\nRESULTS: Effects on normalization: Most normalization methods enable successful clustering of samples according to biological origin when the groups differ substantially in their overall microbial composition. Rarefying more clearly clusters samples according to biological origin than other normalization techniques do for ordination metrics based on presence or absence. Alternate normalization measures are potentially vulnerable to artifacts due to library size. Effects on differential abundance testing: We build on a previous work to evaluate seven proposed statistical methods using rarefied as well as raw data. Our simulation studies suggest that the false discovery rates of many differential abundance-testing methods are not increased by rarefying itself, although of course rarefying results in a loss of sensitivity due to elimination of a portion of available data. For groups with large (~10\u00d7) differences in the average library size, rarefying lowers the false discovery rate. DESeq2, without addition of a constant, increased sensitivity on smaller datasets (<20 samples per group) but tends towards a higher false discovery rate with more samples, very uneven (~10\u00d7) library sizes, and/or compositional effects. For drawing inferences regarding taxon abundance in the ecosystem, analysis of composition of microbiomes (ANCOM) is not only very sensitive (for >20 samples per group) but also critically the only method tested that has a good control of false discovery rate.\nCONCLUSIONS: These findings guide which normalization and differential abundance techniques to use based on the data characteristics of a given study.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s40168-017-0237-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4242003", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2529347", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2691272", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2725281", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2717719", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1048878", 
            "issn": [
              "2049-2618"
            ], 
            "name": "Microbiome", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "name": "Normalization and microbial differential abundance strategies depend upon data characteristics", 
        "pagination": "27", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bac7827922b73a9cd112864fd776c8c135893d44635b33e1b29157159bc492d8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28253908"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101615147"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40168-017-0237-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084252802"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40168-017-0237-y", 
          "https://app.dimensions.ai/details/publication/pub.1084252802"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113673_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs40168-017-0237-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40168-017-0237-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40168-017-0237-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40168-017-0237-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40168-017-0237-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    474 TRIPLES      21 PREDICATES      117 URIs      31 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40168-017-0237-y schema:about N1c2a013057dc4a0a8524ecc48585430c
    2 N2353eacc69ea42d29b587b3444fc4f41
    3 N36478230201f4564a35bd265d51380b7
    4 N597cf1daeb2c460aa8050104bea1024b
    5 N59fdd585e01f49629df6068f8f68a7b2
    6 N5ddf091a9cc3486db69a7ee74fac8bb6
    7 N643c398730d547d2843cc37db5522317
    8 Nd352a421abc44a9aba8e71cae39f075b
    9 Nedcc14b9e93841ef846b377c2c453b19
    10 Nfbe0e295961647ba869676f7453e95a4
    11 anzsrc-for:01
    12 anzsrc-for:0104
    13 schema:author Nb59a32f3f9b549b999ef4fe4ad5e52a3
    14 schema:citation sg:pub.10.1007/bf00056509
    15 sg:pub.10.1007/s10260-005-0121-y
    16 sg:pub.10.1007/s10852-005-9022-1
    17 sg:pub.10.1007/s11004-011-9338-5
    18 sg:pub.10.1023/a:1023818214614
    19 sg:pub.10.1038/ismej.2010.133
    20 sg:pub.10.1038/ismej.2012.8
    21 sg:pub.10.1038/ismej.2014.76
    22 sg:pub.10.1038/nature03073
    23 sg:pub.10.1038/nature07540
    24 sg:pub.10.1038/nature08821
    25 sg:pub.10.1038/nature12820
    26 sg:pub.10.1038/nmeth.2658
    27 sg:pub.10.1038/nmeth.2897
    28 sg:pub.10.1038/nmeth.2898
    29 sg:pub.10.1038/nmeth.f.303
    30 sg:pub.10.1038/nprot.2013.099
    31 sg:pub.10.1186/1471-2105-11-94
    32 sg:pub.10.1186/1471-2105-14-91
    33 sg:pub.10.1186/2047-217x-2-16
    34 sg:pub.10.1186/2049-2618-2-15
    35 sg:pub.10.1186/gb-2004-5-10-r80
    36 sg:pub.10.1186/gb-2010-11-10-r106
    37 sg:pub.10.1186/gb-2011-12-5-r50
    38 sg:pub.10.1186/gb-2013-14-9-r95
    39 sg:pub.10.1186/gb-2014-15-2-r29
    40 sg:pub.10.1186/gb-2014-15-6-r76
    41 sg:pub.10.1186/s12915-014-0087-z
    42 sg:pub.10.1186/s13059-014-0550-8
    43 https://app.dimensions.ai/details/publication/pub.1109496256
    44 https://doi.org/10.1002/9780470316801
    45 https://doi.org/10.1002/sim.1088
    46 https://doi.org/10.1016/j.chemolab.2015.02.019
    47 https://doi.org/10.1016/j.chom.2013.08.006
    48 https://doi.org/10.1016/j.chom.2014.02.005
    49 https://doi.org/10.1017/cbo9781139013567
    50 https://doi.org/10.1046/j.1461-0248.2001.00230.x
    51 https://doi.org/10.1073/pnas.0504978102
    52 https://doi.org/10.1073/pnas.1000080107
    53 https://doi.org/10.1073/pnas.1000162107
    54 https://doi.org/10.1073/pnas.95.19.11279
    55 https://doi.org/10.1093/bib/bbs046
    56 https://doi.org/10.1093/bioinformatics/btp616
    57 https://doi.org/10.1093/bioinformatics/btt143
    58 https://doi.org/10.1093/biomet/53.3-4.325
    59 https://doi.org/10.1093/biostatistics/kxm030
    60 https://doi.org/10.1093/jpe/rtr044
    61 https://doi.org/10.1098/rspl.1896.0076
    62 https://doi.org/10.1101/gr.151803.112
    63 https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
    64 https://doi.org/10.1126/science.1177486
    65 https://doi.org/10.1126/science.1241214
    66 https://doi.org/10.1128/aem.00335-09
    67 https://doi.org/10.1128/aem.01451-14
    68 https://doi.org/10.1128/aem.01541-09
    69 https://doi.org/10.1128/aem.01996-06
    70 https://doi.org/10.1128/aem.05491-11
    71 https://doi.org/10.1128/aem.71.12.8228-8235.2005
    72 https://doi.org/10.1177/1471082x14535524
    73 https://doi.org/10.1214/11-aoas493
    74 https://doi.org/10.1214/12-aoas592
    75 https://doi.org/10.1371/journal.pcbi.1000352
    76 https://doi.org/10.1371/journal.pcbi.1002687
    77 https://doi.org/10.1371/journal.pcbi.1003531
    78 https://doi.org/10.1371/journal.pcbi.1004075
    79 https://doi.org/10.1371/journal.pone.0020296
    80 https://doi.org/10.1371/journal.pone.0030126
    81 https://doi.org/10.1371/journal.pone.0052078
    82 https://doi.org/10.1371/journal.pone.0061217
    83 https://doi.org/10.1371/journal.pone.0085611
    84 https://doi.org/10.1534/genetics.110.114983
    85 https://doi.org/10.1890/08-1832.1
    86 https://doi.org/10.1890/12-2010.1
    87 https://doi.org/10.2307/1942268
    88 https://doi.org/10.2307/2333639
    89 https://doi.org/10.2307/2532338
    90 https://doi.org/10.3402/mehd.v26.27663
    91 https://doi.org/10.5860/choice.28-4558
    92 schema:datePublished 2017-12
    93 schema:datePublishedReg 2017-12-01
    94 schema:description BACKGROUND: Data from 16S ribosomal RNA (rRNA) amplicon sequencing present challenges to ecological and statistical interpretation. In particular, library sizes often vary over several ranges of magnitude, and the data contains many zeros. Although we are typically interested in comparing relative abundance of taxa in the ecosystem of two or more groups, we can only measure the taxon relative abundance in specimens obtained from the ecosystems. Because the comparison of taxon relative abundance in the specimen is not equivalent to the comparison of taxon relative abundance in the ecosystems, this presents a special challenge. Second, because the relative abundance of taxa in the specimen (as well as in the ecosystem) sum to 1, these are compositional data. Because the compositional data are constrained by the simplex (sum to 1) and are not unconstrained in the Euclidean space, many standard methods of analysis are not applicable. Here, we evaluate how these challenges impact the performance of existing normalization methods and differential abundance analyses. RESULTS: Effects on normalization: Most normalization methods enable successful clustering of samples according to biological origin when the groups differ substantially in their overall microbial composition. Rarefying more clearly clusters samples according to biological origin than other normalization techniques do for ordination metrics based on presence or absence. Alternate normalization measures are potentially vulnerable to artifacts due to library size. Effects on differential abundance testing: We build on a previous work to evaluate seven proposed statistical methods using rarefied as well as raw data. Our simulation studies suggest that the false discovery rates of many differential abundance-testing methods are not increased by rarefying itself, although of course rarefying results in a loss of sensitivity due to elimination of a portion of available data. For groups with large (~10×) differences in the average library size, rarefying lowers the false discovery rate. DESeq2, without addition of a constant, increased sensitivity on smaller datasets (<20 samples per group) but tends towards a higher false discovery rate with more samples, very uneven (~10×) library sizes, and/or compositional effects. For drawing inferences regarding taxon abundance in the ecosystem, analysis of composition of microbiomes (ANCOM) is not only very sensitive (for >20 samples per group) but also critically the only method tested that has a good control of false discovery rate. CONCLUSIONS: These findings guide which normalization and differential abundance techniques to use based on the data characteristics of a given study.
    95 schema:genre research_article
    96 schema:inLanguage en
    97 schema:isAccessibleForFree true
    98 schema:isPartOf N130eea332eb74e289aa5e2d2f4ea1046
    99 Ne00783f5d8584b1f91020dbc06f502ec
    100 sg:journal.1048878
    101 schema:name Normalization and microbial differential abundance strategies depend upon data characteristics
    102 schema:pagination 27
    103 schema:productId N106cdb98949949cb927d30d72ddf641b
    104 N8d4dbcea42f1430893b73b2965f89649
    105 Ncab439eff1314714b4454e8602d8ddcf
    106 Nd8a5991e006b417fb558c5a7445aca50
    107 Nfea341ca04a84876a0b94b961bdf4d00
    108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084252802
    109 https://doi.org/10.1186/s40168-017-0237-y
    110 schema:sdDatePublished 2019-04-11T10:37
    111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    112 schema:sdPublisher N89614493b3a94608977dd497fd30a824
    113 schema:url https://link.springer.com/10.1186%2Fs40168-017-0237-y
    114 sgo:license sg:explorer/license/
    115 sgo:sdDataset articles
    116 rdf:type schema:ScholarlyArticle
    117 N0ec11df6a1e14904926450f23d380141 rdf:first sg:person.01161573701.69
    118 rdf:rest N2f1cae381352434b8392c27636d1b024
    119 N106cdb98949949cb927d30d72ddf641b schema:name readcube_id
    120 schema:value bac7827922b73a9cd112864fd776c8c135893d44635b33e1b29157159bc492d8
    121 rdf:type schema:PropertyValue
    122 N1109ff4bd2f64187b7222d6af865428d rdf:first sg:person.0672337357.81
    123 rdf:rest N9cb93d308fda403ab0152a298f34794d
    124 N130eea332eb74e289aa5e2d2f4ea1046 schema:volumeNumber 5
    125 rdf:type schema:PublicationVolume
    126 N1c2a013057dc4a0a8524ecc48585430c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Bacteria
    128 rdf:type schema:DefinedTerm
    129 N2353eacc69ea42d29b587b3444fc4f41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Microbial Consortia
    131 rdf:type schema:DefinedTerm
    132 N2f1cae381352434b8392c27636d1b024 rdf:first sg:person.015365450637.65
    133 rdf:rest Nb084621feb3a41c9969c6dbbf4466065
    134 N36478230201f4564a35bd265d51380b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Humans
    136 rdf:type schema:DefinedTerm
    137 N597cf1daeb2c460aa8050104bea1024b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Base Sequence
    139 rdf:type schema:DefinedTerm
    140 N59fdd585e01f49629df6068f8f68a7b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Bacterial Load
    142 rdf:type schema:DefinedTerm
    143 N5d74ad88d3dc4f1083f3877f0a22cf0e rdf:first sg:person.016311745377.96
    144 rdf:rest rdf:nil
    145 N5ddf091a9cc3486db69a7ee74fac8bb6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Sequence Analysis, DNA
    147 rdf:type schema:DefinedTerm
    148 N643c398730d547d2843cc37db5522317 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Ecosystem
    150 rdf:type schema:DefinedTerm
    151 N7b40b847835d4478a00b8bba36dcec8e rdf:first sg:person.01113460501.49
    152 rdf:rest Nd57b2716bac04f1aa4eac2707507df47
    153 N7f12d19a22dd4cbfb6309d081794ed3e rdf:first sg:person.0756335676.60
    154 rdf:rest N5d74ad88d3dc4f1083f3877f0a22cf0e
    155 N89614493b3a94608977dd497fd30a824 schema:name Springer Nature - SN SciGraph project
    156 rdf:type schema:Organization
    157 N8d4dbcea42f1430893b73b2965f89649 schema:name nlm_unique_id
    158 schema:value 101615147
    159 rdf:type schema:PropertyValue
    160 N9cb93d308fda403ab0152a298f34794d rdf:first sg:person.0753705541.65
    161 rdf:rest N7b40b847835d4478a00b8bba36dcec8e
    162 Nb0685a4f1aa84bd6a44e4d2ada7d0b96 rdf:first sg:person.01301120245.46
    163 rdf:rest N1109ff4bd2f64187b7222d6af865428d
    164 Nb084621feb3a41c9969c6dbbf4466065 rdf:first sg:person.01163102774.24
    165 rdf:rest Nc30c9643edc944518b7772dbbf2db2cc
    166 Nb59a32f3f9b549b999ef4fe4ad5e52a3 rdf:first sg:person.01166324530.84
    167 rdf:rest N0ec11df6a1e14904926450f23d380141
    168 Nc30c9643edc944518b7772dbbf2db2cc rdf:first sg:person.01244225361.13
    169 rdf:rest Nb0685a4f1aa84bd6a44e4d2ada7d0b96
    170 Ncab439eff1314714b4454e8602d8ddcf schema:name doi
    171 schema:value 10.1186/s40168-017-0237-y
    172 rdf:type schema:PropertyValue
    173 Nd352a421abc44a9aba8e71cae39f075b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name RNA, Ribosomal, 16S
    175 rdf:type schema:DefinedTerm
    176 Nd57b2716bac04f1aa4eac2707507df47 rdf:first sg:person.01231155371.50
    177 rdf:rest N7f12d19a22dd4cbfb6309d081794ed3e
    178 Nd8a5991e006b417fb558c5a7445aca50 schema:name pubmed_id
    179 schema:value 28253908
    180 rdf:type schema:PropertyValue
    181 Ne00783f5d8584b1f91020dbc06f502ec schema:issueNumber 1
    182 rdf:type schema:PublicationIssue
    183 Nedcc14b9e93841ef846b377c2c453b19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name DNA, Bacterial
    185 rdf:type schema:DefinedTerm
    186 Nf98925e9cc0c409595fda04c620fa048 schema:name Biostatistics and Computational Biology Branch, NIEHS, NIH, Research Triangle Park Durham, NC, USA
    187 rdf:type schema:Organization
    188 Nfbe0e295961647ba869676f7453e95a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name Gene Library
    190 rdf:type schema:DefinedTerm
    191 Nfea341ca04a84876a0b94b961bdf4d00 schema:name dimensions_id
    192 schema:value pub.1084252802
    193 rdf:type schema:PropertyValue
    194 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    195 schema:name Mathematical Sciences
    196 rdf:type schema:DefinedTerm
    197 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    198 schema:name Statistics
    199 rdf:type schema:DefinedTerm
    200 sg:grant.2529347 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-017-0237-y
    201 rdf:type schema:MonetaryGrant
    202 sg:grant.2691272 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-017-0237-y
    203 rdf:type schema:MonetaryGrant
    204 sg:grant.2717719 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-017-0237-y
    205 rdf:type schema:MonetaryGrant
    206 sg:grant.2725281 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-017-0237-y
    207 rdf:type schema:MonetaryGrant
    208 sg:grant.4242003 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-017-0237-y
    209 rdf:type schema:MonetaryGrant
    210 sg:journal.1048878 schema:issn 2049-2618
    211 schema:name Microbiome
    212 rdf:type schema:Periodical
    213 sg:person.01113460501.49 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
    214 schema:familyName Vázquez-Baeza
    215 schema:givenName Yoshiki
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113460501.49
    217 rdf:type schema:Person
    218 sg:person.01161573701.69 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
    219 schema:familyName Xu
    220 schema:givenName Zhenjiang Zech
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161573701.69
    222 rdf:type schema:Person
    223 sg:person.01163102774.24 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
    224 schema:familyName Amir
    225 schema:givenName Amnon
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163102774.24
    227 rdf:type schema:Person
    228 sg:person.01166324530.84 schema:affiliation https://www.grid.ac/institutes/grid.266190.a
    229 schema:familyName Weiss
    230 schema:givenName Sophie
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166324530.84
    232 rdf:type schema:Person
    233 sg:person.01231155371.50 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
    234 schema:familyName Birmingham
    235 schema:givenName Amanda
    236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231155371.50
    237 rdf:type schema:Person
    238 sg:person.01244225361.13 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
    239 schema:familyName Bittinger
    240 schema:givenName Kyle
    241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244225361.13
    242 rdf:type schema:Person
    243 sg:person.01301120245.46 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
    244 schema:familyName Gonzalez
    245 schema:givenName Antonio
    246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301120245.46
    247 rdf:type schema:Person
    248 sg:person.015365450637.65 schema:affiliation Nf98925e9cc0c409595fda04c620fa048
    249 schema:familyName Peddada
    250 schema:givenName Shyamal
    251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365450637.65
    252 rdf:type schema:Person
    253 sg:person.016311745377.96 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
    254 schema:familyName Knight
    255 schema:givenName Rob
    256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96
    257 rdf:type schema:Person
    258 sg:person.0672337357.81 schema:affiliation https://www.grid.ac/institutes/grid.241116.1
    259 schema:familyName Lozupone
    260 schema:givenName Catherine
    261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672337357.81
    262 rdf:type schema:Person
    263 sg:person.0753705541.65 schema:affiliation https://www.grid.ac/institutes/grid.4391.f
    264 schema:familyName Zaneveld
    265 schema:givenName Jesse R.
    266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753705541.65
    267 rdf:type schema:Person
    268 sg:person.0756335676.60 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
    269 schema:familyName Hyde
    270 schema:givenName Embriette R.
    271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756335676.60
    272 rdf:type schema:Person
    273 sg:pub.10.1007/bf00056509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007450841
    274 https://doi.org/10.1007/bf00056509
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1007/s10260-005-0121-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007650443
    277 https://doi.org/10.1007/s10260-005-0121-y
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1007/s10852-005-9022-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011366574
    280 https://doi.org/10.1007/s10852-005-9022-1
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1007/s11004-011-9338-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048467842
    283 https://doi.org/10.1007/s11004-011-9338-5
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1023/a:1023818214614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024177181
    286 https://doi.org/10.1023/a:1023818214614
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/ismej.2010.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042916034
    289 https://doi.org/10.1038/ismej.2010.133
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/ismej.2012.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038992953
    292 https://doi.org/10.1038/ismej.2012.8
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/ismej.2014.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006057368
    295 https://doi.org/10.1038/ismej.2014.76
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/nature03073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024447086
    298 https://doi.org/10.1038/nature03073
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/nature07540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030170002
    301 https://doi.org/10.1038/nature07540
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1038/nature08821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050498034
    304 https://doi.org/10.1038/nature08821
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1038/nature12820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013830289
    307 https://doi.org/10.1038/nature12820
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1038/nmeth.2658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002139060
    310 https://doi.org/10.1038/nmeth.2658
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1038/nmeth.2897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030185276
    313 https://doi.org/10.1038/nmeth.2897
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1038/nmeth.2898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007964999
    316 https://doi.org/10.1038/nmeth.2898
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
    319 https://doi.org/10.1038/nmeth.f.303
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1038/nprot.2013.099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033430059
    322 https://doi.org/10.1038/nprot.2013.099
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1186/1471-2105-11-94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053091615
    325 https://doi.org/10.1186/1471-2105-11-94
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1186/1471-2105-14-91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016675314
    328 https://doi.org/10.1186/1471-2105-14-91
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1186/2047-217x-2-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022546943
    331 https://doi.org/10.1186/2047-217x-2-16
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1186/2049-2618-2-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046874717
    334 https://doi.org/10.1186/2049-2618-2-15
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
    337 https://doi.org/10.1186/gb-2004-5-10-r80
    338 rdf:type schema:CreativeWork
    339 sg:pub.10.1186/gb-2010-11-10-r106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031289083
    340 https://doi.org/10.1186/gb-2010-11-10-r106
    341 rdf:type schema:CreativeWork
    342 sg:pub.10.1186/gb-2011-12-5-r50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050643751
    343 https://doi.org/10.1186/gb-2011-12-5-r50
    344 rdf:type schema:CreativeWork
    345 sg:pub.10.1186/gb-2013-14-9-r95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036803445
    346 https://doi.org/10.1186/gb-2013-14-9-r95
    347 rdf:type schema:CreativeWork
    348 sg:pub.10.1186/gb-2014-15-2-r29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045312009
    349 https://doi.org/10.1186/gb-2014-15-2-r29
    350 rdf:type schema:CreativeWork
    351 sg:pub.10.1186/gb-2014-15-6-r76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024439294
    352 https://doi.org/10.1186/gb-2014-15-6-r76
    353 rdf:type schema:CreativeWork
    354 sg:pub.10.1186/s12915-014-0087-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1027737035
    355 https://doi.org/10.1186/s12915-014-0087-z
    356 rdf:type schema:CreativeWork
    357 sg:pub.10.1186/s13059-014-0550-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015222646
    358 https://doi.org/10.1186/s13059-014-0550-8
    359 rdf:type schema:CreativeWork
    360 https://app.dimensions.ai/details/publication/pub.1109496256 schema:CreativeWork
    361 https://doi.org/10.1002/9780470316801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109496256
    362 rdf:type schema:CreativeWork
    363 https://doi.org/10.1002/sim.1088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031403471
    364 rdf:type schema:CreativeWork
    365 https://doi.org/10.1016/j.chemolab.2015.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050642857
    366 rdf:type schema:CreativeWork
    367 https://doi.org/10.1016/j.chom.2013.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004067470
    368 rdf:type schema:CreativeWork
    369 https://doi.org/10.1016/j.chom.2014.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029005029
    370 rdf:type schema:CreativeWork
    371 https://doi.org/10.1017/cbo9781139013567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098663901
    372 rdf:type schema:CreativeWork
    373 https://doi.org/10.1046/j.1461-0248.2001.00230.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015653758
    374 rdf:type schema:CreativeWork
    375 https://doi.org/10.1073/pnas.0504978102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038909005
    376 rdf:type schema:CreativeWork
    377 https://doi.org/10.1073/pnas.1000080107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019627885
    378 rdf:type schema:CreativeWork
    379 https://doi.org/10.1073/pnas.1000162107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047845298
    380 rdf:type schema:CreativeWork
    381 https://doi.org/10.1073/pnas.95.19.11279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041121949
    382 rdf:type schema:CreativeWork
    383 https://doi.org/10.1093/bib/bbs046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013843285
    384 rdf:type schema:CreativeWork
    385 https://doi.org/10.1093/bioinformatics/btp616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023247882
    386 rdf:type schema:CreativeWork
    387 https://doi.org/10.1093/bioinformatics/btt143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043958816
    388 rdf:type schema:CreativeWork
    389 https://doi.org/10.1093/biomet/53.3-4.325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417555
    390 rdf:type schema:CreativeWork
    391 https://doi.org/10.1093/biostatistics/kxm030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019122906
    392 rdf:type schema:CreativeWork
    393 https://doi.org/10.1093/jpe/rtr044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050500549
    394 rdf:type schema:CreativeWork
    395 https://doi.org/10.1098/rspl.1896.0076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036679935
    396 rdf:type schema:CreativeWork
    397 https://doi.org/10.1101/gr.151803.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047899579
    398 rdf:type schema:CreativeWork
    399 https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044499388
    400 rdf:type schema:CreativeWork
    401 https://doi.org/10.1126/science.1177486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019669855
    402 rdf:type schema:CreativeWork
    403 https://doi.org/10.1126/science.1241214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048095994
    404 rdf:type schema:CreativeWork
    405 https://doi.org/10.1128/aem.00335-09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043659253
    406 rdf:type schema:CreativeWork
    407 https://doi.org/10.1128/aem.01451-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044605406
    408 rdf:type schema:CreativeWork
    409 https://doi.org/10.1128/aem.01541-09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038354310
    410 rdf:type schema:CreativeWork
    411 https://doi.org/10.1128/aem.01996-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025834307
    412 rdf:type schema:CreativeWork
    413 https://doi.org/10.1128/aem.05491-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003940478
    414 rdf:type schema:CreativeWork
    415 https://doi.org/10.1128/aem.71.12.8228-8235.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042157769
    416 rdf:type schema:CreativeWork
    417 https://doi.org/10.1177/1471082x14535524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064025851
    418 rdf:type schema:CreativeWork
    419 https://doi.org/10.1214/11-aoas493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064392195
    420 rdf:type schema:CreativeWork
    421 https://doi.org/10.1214/12-aoas592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064392937
    422 rdf:type schema:CreativeWork
    423 https://doi.org/10.1371/journal.pcbi.1000352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024778766
    424 rdf:type schema:CreativeWork
    425 https://doi.org/10.1371/journal.pcbi.1002687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041839473
    426 rdf:type schema:CreativeWork
    427 https://doi.org/10.1371/journal.pcbi.1003531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048123102
    428 rdf:type schema:CreativeWork
    429 https://doi.org/10.1371/journal.pcbi.1004075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006702233
    430 rdf:type schema:CreativeWork
    431 https://doi.org/10.1371/journal.pone.0020296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041053715
    432 rdf:type schema:CreativeWork
    433 https://doi.org/10.1371/journal.pone.0030126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033013533
    434 rdf:type schema:CreativeWork
    435 https://doi.org/10.1371/journal.pone.0052078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031057368
    436 rdf:type schema:CreativeWork
    437 https://doi.org/10.1371/journal.pone.0061217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010556699
    438 rdf:type schema:CreativeWork
    439 https://doi.org/10.1371/journal.pone.0085611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009762352
    440 rdf:type schema:CreativeWork
    441 https://doi.org/10.1534/genetics.110.114983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031164330
    442 rdf:type schema:CreativeWork
    443 https://doi.org/10.1890/08-1832.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026448306
    444 rdf:type schema:CreativeWork
    445 https://doi.org/10.1890/12-2010.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032001038
    446 rdf:type schema:CreativeWork
    447 https://doi.org/10.2307/1942268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046249265
    448 rdf:type schema:CreativeWork
    449 https://doi.org/10.2307/2333639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069895113
    450 rdf:type schema:CreativeWork
    451 https://doi.org/10.2307/2532338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977754
    452 rdf:type schema:CreativeWork
    453 https://doi.org/10.3402/mehd.v26.27663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031307715
    454 rdf:type schema:CreativeWork
    455 https://doi.org/10.5860/choice.28-4558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073303596
    456 rdf:type schema:CreativeWork
    457 https://www.grid.ac/institutes/grid.241116.1 schema:alternateName University of Colorado Denver
    458 schema:name Department of Medicine, University of Colorado, 80204, Denver, CO, USA
    459 rdf:type schema:Organization
    460 https://www.grid.ac/institutes/grid.25879.31 schema:alternateName University of Pennsylvania
    461 schema:name Department of Microbiology, University of Pennsylvania, 18014, Philadelphia, PA, USA
    462 rdf:type schema:Organization
    463 https://www.grid.ac/institutes/grid.266100.3 schema:alternateName University of California, San Diego
    464 schema:name Center for Computational Biology and Bioinformatics, Dept. of Medicine, University of California San Diego, 92093, La Jolla, CA, USA
    465 Center for Microbiome Innovation, University of California San Diego, 92093, La Jolla, CA, USA
    466 Department of Computer Science & Engineering, University of California San Diego, 92093, La Jolla, CA, USA
    467 Departments of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0763, 92093, La Jolla, CA, USA
    468 rdf:type schema:Organization
    469 https://www.grid.ac/institutes/grid.266190.a schema:alternateName University of Colorado Boulder
    470 schema:name Department of Chemical and Biological Engineering, University of Colorado at Boulder, 80309, Boulder, CO, USA
    471 rdf:type schema:Organization
    472 https://www.grid.ac/institutes/grid.4391.f schema:alternateName Oregon State University
    473 schema:name Department of Microbiology, Oregon State University, 226 Nash Hall, 97331, Corvallis, OR, USA
    474 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...