Distinguishing potential bacteria-tumor associations from contamination in a secondary data analysis of public cancer genome sequence data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-01-25

AUTHORS

Kelly M. Robinson, Jonathan Crabtree, John S. A. Mattick, Kathleen E. Anderson, Julie C. Dunning Hotopp

ABSTRACT

BackgroundA variety of bacteria are known to influence carcinogenesis. Therefore, we sought to investigate if publicly available whole genome and whole transcriptome sequencing data generated by large public cancer genome efforts, like The Cancer Genome Atlas (TCGA), could be used to identify bacteria associated with cancer. The Burrows-Wheeler aligner (BWA) was used to align a subset of Illumina paired-end sequencing data from TCGA to the human reference genome and all complete bacterial genomes in the RefSeq database in an effort to identify bacterial read pairs from the microbiome.ResultsThrough careful consideration of all of the bacterial taxa present in the cancer types investigated, their relative abundance, and batch effects, we were able to identify some read pairs from certain taxa as likely resulting from contamination. In particular, the presence of Mycobacterium tuberculosis complex in the ovarian serous cystadenocarcinoma (OV) and glioblastoma multiforme (GBM) samples was correlated with the sequencing center of the samples. Additionally, there was a correlation between the presence of Ralstonia spp. and two specific plates of acute myeloid leukemia (AML) samples. At the end, associations remained between Pseudomonas-like and Acinetobacter-like read pairs in AML, and Pseudomonas-like read pairs in stomach adenocarcinoma (STAD) that could not be explained through batch effects or systematic contamination as seen in other samples.ConclusionsThis approach suggests that it is possible to identify bacteria that may be present in human tumor samples from public genome sequencing data that can be examined further experimentally. More weight should be given to this approach in the future when bacterial associations with diseases are suspected. More... »

PAGES

9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40168-016-0224-8

DOI

http://dx.doi.org/10.1186/s40168-016-0224-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1074206649

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28118849


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acinetobacter", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Ovarian Epithelial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cystadenocarcinoma, Serous", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glioblastoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Leukemia, Myeloid, Acute", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbiota", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mycobacterium tuberculosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms, Glandular and Epithelial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ovarian Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pseudomonas", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.411024.2", 
          "name": [
            "Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robinson", 
        "givenName": "Kelly M.", 
        "id": "sg:person.01215361553.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215361553.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.411024.2", 
          "name": [
            "Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crabtree", 
        "givenName": "Jonathan", 
        "id": "sg:person.01064750006.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064750006.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.411024.2", 
          "name": [
            "Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mattick", 
        "givenName": "John S. A.", 
        "id": "sg:person.016454136004.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016454136004.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.411024.2", 
          "name": [
            "Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anderson", 
        "givenName": "Kathleen E.", 
        "id": "sg:person.013073434143.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013073434143.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.411024.2", 
          "name": [
            "Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA", 
            "Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA", 
            "Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dunning Hotopp", 
        "givenName": "Julie C.", 
        "id": "sg:person.01322263734.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322263734.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrc3610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038185390", 
          "https://doi.org/10.1038/nrc3610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052782069", 
          "https://doi.org/10.1038/nrc1433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037780208", 
          "https://doi.org/10.1186/1471-2105-12-385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029485597", 
          "https://doi.org/10.1038/nrc703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035707124", 
          "https://doi.org/10.1038/nature13480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046017009", 
          "https://doi.org/10.1038/nbt.1868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036430565", 
          "https://doi.org/10.1038/ncomms3513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-s9-s6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039890050", 
          "https://doi.org/10.1186/1471-2105-11-s9-s6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.2015.465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029382454", 
          "https://doi.org/10.1038/bjc.2015.465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12915-014-0087-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027737035", 
          "https://doi.org/10.1186/s12915-014-0087-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1741-7015-11-236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018718292", 
          "https://doi.org/10.1186/1741-7015-11-236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023921293", 
          "https://doi.org/10.1186/1471-2164-15-262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1572-0241.2000.01860.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006204926", 
          "https://doi.org/10.1111/j.1572-0241.2000.01860.x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01-25", 
    "datePublishedReg": "2017-01-25", 
    "description": "BackgroundA variety of bacteria are known to influence carcinogenesis. Therefore, we sought to investigate if publicly available whole genome and whole transcriptome sequencing data generated by large public cancer genome efforts, like The Cancer Genome Atlas (TCGA), could be used to identify bacteria associated with cancer. The Burrows-Wheeler aligner (BWA) was used to align a subset of Illumina paired-end sequencing data from TCGA to the human reference genome and all complete bacterial genomes in the RefSeq database in an effort to identify bacterial read pairs from the microbiome.ResultsThrough careful consideration of all of the bacterial taxa present in the cancer types investigated, their relative abundance, and batch effects, we were able to identify some read pairs from certain taxa as likely resulting from contamination. In particular, the presence of Mycobacterium tuberculosis complex in the ovarian serous cystadenocarcinoma (OV) and glioblastoma multiforme (GBM) samples was correlated with the sequencing center of the samples. Additionally, there was a correlation between the presence of Ralstonia spp. and two specific plates of acute myeloid leukemia (AML) samples. At the end, associations remained between Pseudomonas-like and Acinetobacter-like read pairs in AML, and Pseudomonas-like read pairs in stomach adenocarcinoma (STAD) that could not be explained through batch effects or systematic contamination as seen in other samples.ConclusionsThis approach suggests that it is possible to identify bacteria that may be present in human tumor samples from public genome sequencing data that can be examined further experimentally. More weight should be given to this approach in the future when bacterial associations with diseases are suspected.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s40168-016-0224-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3110393", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2355386", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4455956", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1048878", 
        "issn": [
          "2049-2618"
        ], 
        "name": "Microbiome", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "ovarian serous cystadenocarcinoma", 
      "stomach adenocarcinoma", 
      "acute myeloid leukemia samples", 
      "human tumor samples", 
      "Cancer Genome Atlas", 
      "Mycobacterium tuberculosis complex", 
      "serous cystadenocarcinoma", 
      "secondary data analysis", 
      "tumor samples", 
      "cancer types", 
      "glioblastoma multiforme samples", 
      "BackgroundA variety", 
      "leukemia samples", 
      "Genome Atlas", 
      "tuberculosis complex", 
      "association", 
      "more weight", 
      "Burrows-Wheeler Aligner", 
      "ConclusionsThis approach", 
      "cystadenocarcinoma", 
      "adenocarcinoma", 
      "sequencing data", 
      "AML", 
      "cancer", 
      "careful consideration", 
      "transcriptome sequencing data", 
      "disease", 
      "carcinogenesis", 
      "TCGA", 
      "whole transcriptome sequencing data", 
      "bacterial associations", 
      "bacterial taxa", 
      "Ralstonia spp", 
      "bacteria", 
      "microbiome", 
      "genome sequencing data", 
      "effect", 
      "samples", 
      "data", 
      "Acinetobacter", 
      "presence", 
      "Pseudomonas", 
      "subset", 
      "data analysis", 
      "atlas", 
      "database", 
      "weight", 
      "center", 
      "correlation", 
      "spp", 
      "batch effects", 
      "whole genome", 
      "available whole genome", 
      "efforts", 
      "contamination", 
      "specific plate", 
      "relative abundance", 
      "types", 
      "end", 
      "genome", 
      "genome efforts", 
      "analysis", 
      "variety", 
      "human reference genome", 
      "approach", 
      "consideration", 
      "future", 
      "aligners", 
      "genome sequence data", 
      "pairs", 
      "sequencing centers", 
      "RefSeq database", 
      "complexes", 
      "plate", 
      "abundance", 
      "bacterial genomes", 
      "sequence data", 
      "certain taxa", 
      "reference genome", 
      "systematic contamination", 
      "complete bacterial genomes", 
      "Illumina paired-end sequencing data", 
      "taxa", 
      "paired-end sequencing data"
    ], 
    "name": "Distinguishing potential bacteria-tumor associations from contamination in a secondary data analysis of public cancer genome sequence data", 
    "pagination": "9", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1074206649"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40168-016-0224-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28118849"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40168-016-0224-8", 
      "https://app.dimensions.ai/details/publication/pub.1074206649"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_728.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s40168-016-0224-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40168-016-0224-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40168-016-0224-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40168-016-0224-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40168-016-0224-8'


 

This table displays all metadata directly associated to this object as RDF triples.

310 TRIPLES      22 PREDICATES      142 URIs      121 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40168-016-0224-8 schema:about N0a11c2760daf414ca873c62b7c9749ca
2 N3b596ad82b6e4c32bef7b802c75b2b46
3 N3dd3dc885d60441f961a4656c1cca734
4 N55b9bfc4e6a9494c8ff6403c10934d46
5 N700cd70ddf994be8b1370b1bb3064237
6 N75e9a4d7b7934bc7925e73155683d0c5
7 N7adb0e7e28284426ba69bc812a88f973
8 N910146233bbe4a759c1d6faf9e724a2f
9 N94c0cf4bbe0041a9b0c40c99d1d7a0c1
10 Na752243e69264eefa7cf46ade368a88e
11 Nb2e67fde375c41f78d01f0a592f271a5
12 Nc17a0e6954b147669d7a45d86589cdae
13 Nc27165f40b954118bc7b5b615d1659d0
14 Nc9267e8f6f3e49ddae3b6359ae063984
15 Nc9d2fe9db4de48a7b774ca082ca6e4c0
16 Nce427c24ef0d4d0eade810e4246f6682
17 Nd61a395996ed4fb690e020f5277b0a62
18 Nd667700911374adeba949a4c092bb3d1
19 Neef3be6f4a39441d92203a4de826f7be
20 anzsrc-for:11
21 anzsrc-for:1112
22 schema:author N2efcc90a6c6f432db97fe459b5bf4cd9
23 schema:citation sg:pub.10.1038/bjc.2015.465
24 sg:pub.10.1038/nature13480
25 sg:pub.10.1038/nbt.1868
26 sg:pub.10.1038/ncomms3513
27 sg:pub.10.1038/nrc1433
28 sg:pub.10.1038/nrc3610
29 sg:pub.10.1038/nrc703
30 sg:pub.10.1111/j.1572-0241.2000.01860.x
31 sg:pub.10.1186/1471-2105-11-s9-s6
32 sg:pub.10.1186/1471-2105-12-385
33 sg:pub.10.1186/1471-2164-15-262
34 sg:pub.10.1186/1741-7015-11-236
35 sg:pub.10.1186/s12915-014-0087-z
36 schema:datePublished 2017-01-25
37 schema:datePublishedReg 2017-01-25
38 schema:description BackgroundA variety of bacteria are known to influence carcinogenesis. Therefore, we sought to investigate if publicly available whole genome and whole transcriptome sequencing data generated by large public cancer genome efforts, like The Cancer Genome Atlas (TCGA), could be used to identify bacteria associated with cancer. The Burrows-Wheeler aligner (BWA) was used to align a subset of Illumina paired-end sequencing data from TCGA to the human reference genome and all complete bacterial genomes in the RefSeq database in an effort to identify bacterial read pairs from the microbiome.ResultsThrough careful consideration of all of the bacterial taxa present in the cancer types investigated, their relative abundance, and batch effects, we were able to identify some read pairs from certain taxa as likely resulting from contamination. In particular, the presence of Mycobacterium tuberculosis complex in the ovarian serous cystadenocarcinoma (OV) and glioblastoma multiforme (GBM) samples was correlated with the sequencing center of the samples. Additionally, there was a correlation between the presence of Ralstonia spp. and two specific plates of acute myeloid leukemia (AML) samples. At the end, associations remained between Pseudomonas-like and Acinetobacter-like read pairs in AML, and Pseudomonas-like read pairs in stomach adenocarcinoma (STAD) that could not be explained through batch effects or systematic contamination as seen in other samples.ConclusionsThis approach suggests that it is possible to identify bacteria that may be present in human tumor samples from public genome sequencing data that can be examined further experimentally. More weight should be given to this approach in the future when bacterial associations with diseases are suspected.
39 schema:genre article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N20a03376ddbe4d97b3d421ef7897a761
43 N6f3466adfe7f4652b9335b620442e8c1
44 sg:journal.1048878
45 schema:keywords AML
46 Acinetobacter
47 BackgroundA variety
48 Burrows-Wheeler Aligner
49 Cancer Genome Atlas
50 ConclusionsThis approach
51 Genome Atlas
52 Illumina paired-end sequencing data
53 Mycobacterium tuberculosis complex
54 Pseudomonas
55 Ralstonia spp
56 RefSeq database
57 TCGA
58 abundance
59 acute myeloid leukemia samples
60 adenocarcinoma
61 aligners
62 analysis
63 approach
64 association
65 atlas
66 available whole genome
67 bacteria
68 bacterial associations
69 bacterial genomes
70 bacterial taxa
71 batch effects
72 cancer
73 cancer types
74 carcinogenesis
75 careful consideration
76 center
77 certain taxa
78 complete bacterial genomes
79 complexes
80 consideration
81 contamination
82 correlation
83 cystadenocarcinoma
84 data
85 data analysis
86 database
87 disease
88 effect
89 efforts
90 end
91 future
92 genome
93 genome efforts
94 genome sequence data
95 genome sequencing data
96 glioblastoma multiforme samples
97 human reference genome
98 human tumor samples
99 leukemia samples
100 microbiome
101 more weight
102 ovarian serous cystadenocarcinoma
103 paired-end sequencing data
104 pairs
105 plate
106 presence
107 reference genome
108 relative abundance
109 samples
110 secondary data analysis
111 sequence data
112 sequencing centers
113 sequencing data
114 serous cystadenocarcinoma
115 specific plate
116 spp
117 stomach adenocarcinoma
118 subset
119 systematic contamination
120 taxa
121 transcriptome sequencing data
122 tuberculosis complex
123 tumor samples
124 types
125 variety
126 weight
127 whole genome
128 whole transcriptome sequencing data
129 schema:name Distinguishing potential bacteria-tumor associations from contamination in a secondary data analysis of public cancer genome sequence data
130 schema:pagination 9
131 schema:productId N32f7df87a1b2458a992e0d384a96dab3
132 N43006328c847458ba375d56cca16c726
133 N90617952d72e423db6e12d8583633817
134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074206649
135 https://doi.org/10.1186/s40168-016-0224-8
136 schema:sdDatePublished 2022-06-01T22:15
137 schema:sdLicense https://scigraph.springernature.com/explorer/license/
138 schema:sdPublisher Ncb0ef12b3bf34d92ba8f21b5c35ed310
139 schema:url https://doi.org/10.1186/s40168-016-0224-8
140 sgo:license sg:explorer/license/
141 sgo:sdDataset articles
142 rdf:type schema:ScholarlyArticle
143 N0a11c2760daf414ca873c62b7c9749ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Humans
145 rdf:type schema:DefinedTerm
146 N164cf577b69b4cf3b1f218b2fe3f653f rdf:first sg:person.013073434143.70
147 rdf:rest Nc26f6bff84504e938f1deb51e42c9f0f
148 N20a03376ddbe4d97b3d421ef7897a761 schema:volumeNumber 5
149 rdf:type schema:PublicationVolume
150 N2efcc90a6c6f432db97fe459b5bf4cd9 rdf:first sg:person.01215361553.27
151 rdf:rest N97d1714197624e378c25797f1d18229a
152 N32f7df87a1b2458a992e0d384a96dab3 schema:name dimensions_id
153 schema:value pub.1074206649
154 rdf:type schema:PropertyValue
155 N3b596ad82b6e4c32bef7b802c75b2b46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Genome, Human
157 rdf:type schema:DefinedTerm
158 N3dd3dc885d60441f961a4656c1cca734 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Neoplasms, Glandular and Epithelial
160 rdf:type schema:DefinedTerm
161 N43006328c847458ba375d56cca16c726 schema:name pubmed_id
162 schema:value 28118849
163 rdf:type schema:PropertyValue
164 N55b9bfc4e6a9494c8ff6403c10934d46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Carcinoma
166 rdf:type schema:DefinedTerm
167 N6f3466adfe7f4652b9335b620442e8c1 schema:issueNumber 1
168 rdf:type schema:PublicationIssue
169 N700cd70ddf994be8b1370b1bb3064237 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Chromosome Mapping
171 rdf:type schema:DefinedTerm
172 N75e9a4d7b7934bc7925e73155683d0c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Cystadenocarcinoma, Serous
174 rdf:type schema:DefinedTerm
175 N7adb0e7e28284426ba69bc812a88f973 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Leukemia, Myeloid, Acute
177 rdf:type schema:DefinedTerm
178 N90617952d72e423db6e12d8583633817 schema:name doi
179 schema:value 10.1186/s40168-016-0224-8
180 rdf:type schema:PropertyValue
181 N910146233bbe4a759c1d6faf9e724a2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Genome, Bacterial
183 rdf:type schema:DefinedTerm
184 N94c0cf4bbe0041a9b0c40c99d1d7a0c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Pseudomonas
186 rdf:type schema:DefinedTerm
187 N97d1714197624e378c25797f1d18229a rdf:first sg:person.01064750006.82
188 rdf:rest Nfa8b8f8790c14570a4176f3889fd7a0a
189 Na752243e69264eefa7cf46ade368a88e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Carcinoma, Ovarian Epithelial
191 rdf:type schema:DefinedTerm
192 Nb2e67fde375c41f78d01f0a592f271a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Bacteria
194 rdf:type schema:DefinedTerm
195 Nc17a0e6954b147669d7a45d86589cdae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Microbiota
197 rdf:type schema:DefinedTerm
198 Nc26f6bff84504e938f1deb51e42c9f0f rdf:first sg:person.01322263734.83
199 rdf:rest rdf:nil
200 Nc27165f40b954118bc7b5b615d1659d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Glioblastoma
202 rdf:type schema:DefinedTerm
203 Nc9267e8f6f3e49ddae3b6359ae063984 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Base Sequence
205 rdf:type schema:DefinedTerm
206 Nc9d2fe9db4de48a7b774ca082ca6e4c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name High-Throughput Nucleotide Sequencing
208 rdf:type schema:DefinedTerm
209 Ncb0ef12b3bf34d92ba8f21b5c35ed310 schema:name Springer Nature - SN SciGraph project
210 rdf:type schema:Organization
211 Nce427c24ef0d4d0eade810e4246f6682 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
212 schema:name Acinetobacter
213 rdf:type schema:DefinedTerm
214 Nd61a395996ed4fb690e020f5277b0a62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
215 schema:name Mycobacterium tuberculosis
216 rdf:type schema:DefinedTerm
217 Nd667700911374adeba949a4c092bb3d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
218 schema:name Databases, Genetic
219 rdf:type schema:DefinedTerm
220 Neef3be6f4a39441d92203a4de826f7be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
221 schema:name Ovarian Neoplasms
222 rdf:type schema:DefinedTerm
223 Nfa8b8f8790c14570a4176f3889fd7a0a rdf:first sg:person.016454136004.09
224 rdf:rest N164cf577b69b4cf3b1f218b2fe3f653f
225 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
226 schema:name Medical and Health Sciences
227 rdf:type schema:DefinedTerm
228 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
229 schema:name Oncology and Carcinogenesis
230 rdf:type schema:DefinedTerm
231 sg:grant.2355386 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-016-0224-8
232 rdf:type schema:MonetaryGrant
233 sg:grant.3110393 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-016-0224-8
234 rdf:type schema:MonetaryGrant
235 sg:grant.4455956 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-016-0224-8
236 rdf:type schema:MonetaryGrant
237 sg:journal.1048878 schema:issn 2049-2618
238 schema:name Microbiome
239 schema:publisher Springer Nature
240 rdf:type schema:Periodical
241 sg:person.01064750006.82 schema:affiliation grid-institutes:grid.411024.2
242 schema:familyName Crabtree
243 schema:givenName Jonathan
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064750006.82
245 rdf:type schema:Person
246 sg:person.01215361553.27 schema:affiliation grid-institutes:grid.411024.2
247 schema:familyName Robinson
248 schema:givenName Kelly M.
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215361553.27
250 rdf:type schema:Person
251 sg:person.013073434143.70 schema:affiliation grid-institutes:grid.411024.2
252 schema:familyName Anderson
253 schema:givenName Kathleen E.
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013073434143.70
255 rdf:type schema:Person
256 sg:person.01322263734.83 schema:affiliation grid-institutes:grid.411024.2
257 schema:familyName Dunning Hotopp
258 schema:givenName Julie C.
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322263734.83
260 rdf:type schema:Person
261 sg:person.016454136004.09 schema:affiliation grid-institutes:grid.411024.2
262 schema:familyName Mattick
263 schema:givenName John S. A.
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016454136004.09
265 rdf:type schema:Person
266 sg:pub.10.1038/bjc.2015.465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029382454
267 https://doi.org/10.1038/bjc.2015.465
268 rdf:type schema:CreativeWork
269 sg:pub.10.1038/nature13480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035707124
270 https://doi.org/10.1038/nature13480
271 rdf:type schema:CreativeWork
272 sg:pub.10.1038/nbt.1868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046017009
273 https://doi.org/10.1038/nbt.1868
274 rdf:type schema:CreativeWork
275 sg:pub.10.1038/ncomms3513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036430565
276 https://doi.org/10.1038/ncomms3513
277 rdf:type schema:CreativeWork
278 sg:pub.10.1038/nrc1433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052782069
279 https://doi.org/10.1038/nrc1433
280 rdf:type schema:CreativeWork
281 sg:pub.10.1038/nrc3610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038185390
282 https://doi.org/10.1038/nrc3610
283 rdf:type schema:CreativeWork
284 sg:pub.10.1038/nrc703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029485597
285 https://doi.org/10.1038/nrc703
286 rdf:type schema:CreativeWork
287 sg:pub.10.1111/j.1572-0241.2000.01860.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006204926
288 https://doi.org/10.1111/j.1572-0241.2000.01860.x
289 rdf:type schema:CreativeWork
290 sg:pub.10.1186/1471-2105-11-s9-s6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039890050
291 https://doi.org/10.1186/1471-2105-11-s9-s6
292 rdf:type schema:CreativeWork
293 sg:pub.10.1186/1471-2105-12-385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037780208
294 https://doi.org/10.1186/1471-2105-12-385
295 rdf:type schema:CreativeWork
296 sg:pub.10.1186/1471-2164-15-262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023921293
297 https://doi.org/10.1186/1471-2164-15-262
298 rdf:type schema:CreativeWork
299 sg:pub.10.1186/1741-7015-11-236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018718292
300 https://doi.org/10.1186/1741-7015-11-236
301 rdf:type schema:CreativeWork
302 sg:pub.10.1186/s12915-014-0087-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1027737035
303 https://doi.org/10.1186/s12915-014-0087-z
304 rdf:type schema:CreativeWork
305 grid-institutes:grid.411024.2 schema:alternateName Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
306 Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
307 schema:name Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
308 Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
309 Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
310 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...