Context and the human microbiome View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-11-04

AUTHORS

Daniel McDonald, Amanda Birmingham, Rob Knight

ABSTRACT

Human microbiome reference datasets provide epidemiological context for researchers, enabling them to uncover new insights into their own data through meta-analyses. In addition, large and comprehensive reference sets offer a means to develop or test hypotheses and can pave the way for addressing practical study design considerations such as sample size decisions. We discuss the importance of reference sets in human microbiome research, limitations of existing resources, technical challenges to employing reference sets, examples of their usage, and contributions of the American Gut Project to the development of a comprehensive reference set. Through engaging the general public, the American Gut Project aims to address many of the issues present in existing reference resources, characterizing health and disease, lifestyle, and dietary choices of the participants while extending its efforts globally through international collaborations. More... »

PAGES

52

References to SciGraph publications

  • 2008-10. Worlds within worlds: evolution of the vertebrate gut microbiota in NATURE REVIEWS MICROBIOLOGY
  • 2012-06-13. A framework for human microbiome research in NATURE
  • 2012-03-08. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2014-09-13. Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition in MOLECULAR NEURODEGENERATION
  • 2012-05-09. Human gut microbiome viewed across age and geography in NATURE
  • 2014-11-12. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses in BMC BIOLOGY
  • 2013-02-14. Waiting for the human intestinal Eukaryotome in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2011-12-01. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2014-08-22. The Earth Microbiome project: successes and aspirations in BMC BIOLOGY
  • 2011-05-30. Moving pictures of the human microbiome in GENOME BIOLOGY
  • 2010-03. A human gut microbial gene catalogue established by metagenomic sequencing in NATURE
  • 2012-06-13. Structure, Function and Diversity of the Healthy Human Microbiome in NATURE
  • 2011-05-06. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications in NATURE BIOTECHNOLOGY
  • 2010-05-05. Direct sequencing of the human microbiome readily reveals community differences in GENOME BIOLOGY
  • 2010-04-11. QIIME allows analysis of high-throughput community sequencing data in NATURE METHODS
  • 2013-12-11. Diet rapidly and reproducibly alters the human gut microbiome in NATURE
  • 2011-06-15. Genetics and pathogenesis of inflammatory bowel disease in NATURE
  • 2010-07. Viruses in the fecal microbiota of monozygotic twins and their mothers in NATURE
  • 2014-05-13. Microbiome therapy gains market traction in NATURE
  • 2010-07-30. Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags in BMC MICROBIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40168-015-0117-2

    DOI

    http://dx.doi.org/10.1186/s40168-015-0117-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028122611

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26530830


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Ecology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Factual", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gastrointestinal Microbiome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbiota", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Research", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "BioFrontiers Institute, University of Colorado, 3415 Colorado Avenue, Boulder, CO 80304 USA", 
              "id": "http://www.grid.ac/institutes/grid.266190.a", 
              "name": [
                "Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80304 USA", 
                "BioFrontiers Institute, University of Colorado, 3415 Colorado Avenue, Boulder, CO 80304 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McDonald", 
            "givenName": "Daniel", 
            "id": "sg:person.01324411177.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324411177.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Computational Biology & Bioinformatics, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Center for Computational Biology & Bioinformatics, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Birmingham", 
            "givenName": "Amanda", 
            "id": "sg:person.01231155371.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231155371.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA", 
                "Department of Computer Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Knight", 
            "givenName": "Rob", 
            "id": "sg:person.016311745377.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ismej.2013.21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027720638", 
              "https://doi.org/10.1038/ismej.2013.21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013830289", 
              "https://doi.org/10.1038/nature12820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12915-014-0069-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000588445", 
              "https://doi.org/10.1186/s12915-014-0069-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.f.303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009032055", 
              "https://doi.org/10.1038/nmeth.f.303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007740093", 
              "https://doi.org/10.1038/nature11234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052378845", 
              "https://doi.org/10.1038/nature11053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2180-10-206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027026649", 
              "https://doi.org/10.1186/1471-2180-10-206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2011.139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051863807", 
              "https://doi.org/10.1038/ismej.2011.139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031776599", 
              "https://doi.org/10.1038/nature09199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027248000", 
              "https://doi.org/10.1038/nature11209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2011-12-5-r50", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050643751", 
              "https://doi.org/10.1186/gb-2011-12-5-r50"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/509269a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023468138", 
              "https://doi.org/10.1038/509269a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1978", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015675255", 
              "https://doi.org/10.1038/nrmicro1978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011250403", 
              "https://doi.org/10.1038/nature10209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1823", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005906569", 
              "https://doi.org/10.1038/nbt.1823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050498034", 
              "https://doi.org/10.1038/nature08821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-5-210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042123396", 
              "https://doi.org/10.1186/gb-2010-11-5-210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12915-014-0087-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027737035", 
              "https://doi.org/10.1186/s12915-014-0087-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1750-1326-9-36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023269156", 
              "https://doi.org/10.1186/1750-1326-9-36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2012.8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038992953", 
              "https://doi.org/10.1038/ismej.2012.8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-11-04", 
        "datePublishedReg": "2015-11-04", 
        "description": "Human microbiome reference datasets provide epidemiological context for researchers, enabling them to uncover new insights into their own data through meta-analyses. In addition, large and comprehensive reference sets offer a means to develop or test hypotheses and can pave the way for addressing practical study design considerations such as sample size decisions. We discuss the importance of reference sets in human microbiome research, limitations of existing resources, technical challenges to employing reference sets, examples of their usage, and contributions of the American Gut Project to the development of a comprehensive reference set. Through engaging the general public, the American Gut Project aims to address many of the issues present in existing reference resources, characterizing health and disease, lifestyle, and dietary choices of the participants while extending its efforts globally through international collaborations. ", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s40168-015-0117-2", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3131779", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1048878", 
            "issn": [
              "2049-2618"
            ], 
            "name": "Microbiome", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "keywords": [
          "comprehensive reference set", 
          "reference set", 
          "size decision", 
          "own data", 
          "reference dataset", 
          "technical challenges", 
          "set", 
          "reference resource", 
          "sample size decisions", 
          "dataset", 
          "resources", 
          "design considerations", 
          "project", 
          "usage", 
          "general public", 
          "context", 
          "collaboration", 
          "challenges", 
          "researchers", 
          "decisions", 
          "issues", 
          "way", 
          "example", 
          "data", 
          "limitations", 
          "efforts", 
          "research", 
          "international collaboration", 
          "means", 
          "consideration", 
          "microbiome research", 
          "development", 
          "public", 
          "contribution", 
          "choice", 
          "human microbiome research", 
          "insights", 
          "American Gut Project", 
          "addition", 
          "importance", 
          "new insights", 
          "participants", 
          "lifestyle", 
          "study design considerations", 
          "health", 
          "human microbiome", 
          "hypothesis", 
          "epidemiological context", 
          "disease", 
          "dietary choices", 
          "microbiome", 
          "Human microbiome reference datasets", 
          "microbiome reference datasets", 
          "practical study design considerations", 
          "Gut Project"
        ], 
        "name": "Context and the human microbiome", 
        "pagination": "52", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028122611"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40168-015-0117-2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26530830"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40168-015-0117-2", 
          "https://app.dimensions.ai/details/publication/pub.1028122611"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_652.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s40168-015-0117-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40168-015-0117-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40168-015-0117-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40168-015-0117-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40168-015-0117-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    251 TRIPLES      22 PREDICATES      109 URIs      78 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40168-015-0117-2 schema:about N02ce98cb46bf41e0b44a937e874032e2
    2 N13020b4fe8ce4063bc83410b19f88f54
    3 N39abeb011baa424f8306f7b8ef46da28
    4 Nb1416e98c3ca49e1ad5ca68c49af4407
    5 Ne9aca75518704719ab8c664764dbe5cb
    6 anzsrc-for:06
    7 anzsrc-for:0602
    8 anzsrc-for:0605
    9 anzsrc-for:11
    10 anzsrc-for:1108
    11 schema:author Ne7e42adc4c314b94897bb057fb398848
    12 schema:citation sg:pub.10.1038/509269a
    13 sg:pub.10.1038/ismej.2011.139
    14 sg:pub.10.1038/ismej.2012.8
    15 sg:pub.10.1038/ismej.2013.21
    16 sg:pub.10.1038/nature08821
    17 sg:pub.10.1038/nature09199
    18 sg:pub.10.1038/nature10209
    19 sg:pub.10.1038/nature11053
    20 sg:pub.10.1038/nature11209
    21 sg:pub.10.1038/nature11234
    22 sg:pub.10.1038/nature12820
    23 sg:pub.10.1038/nbt.1823
    24 sg:pub.10.1038/nmeth.f.303
    25 sg:pub.10.1038/nrmicro1978
    26 sg:pub.10.1186/1471-2180-10-206
    27 sg:pub.10.1186/1750-1326-9-36
    28 sg:pub.10.1186/gb-2010-11-5-210
    29 sg:pub.10.1186/gb-2011-12-5-r50
    30 sg:pub.10.1186/s12915-014-0069-1
    31 sg:pub.10.1186/s12915-014-0087-z
    32 schema:datePublished 2015-11-04
    33 schema:datePublishedReg 2015-11-04
    34 schema:description Human microbiome reference datasets provide epidemiological context for researchers, enabling them to uncover new insights into their own data through meta-analyses. In addition, large and comprehensive reference sets offer a means to develop or test hypotheses and can pave the way for addressing practical study design considerations such as sample size decisions. We discuss the importance of reference sets in human microbiome research, limitations of existing resources, technical challenges to employing reference sets, examples of their usage, and contributions of the American Gut Project to the development of a comprehensive reference set. Through engaging the general public, the American Gut Project aims to address many of the issues present in existing reference resources, characterizing health and disease, lifestyle, and dietary choices of the participants while extending its efforts globally through international collaborations.
    35 schema:genre article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree true
    38 schema:isPartOf N45d660496ae84268a8b5e2477099b34d
    39 N9b1e11ce70564a63a6f389e5a7542f41
    40 sg:journal.1048878
    41 schema:keywords American Gut Project
    42 Gut Project
    43 Human microbiome reference datasets
    44 addition
    45 challenges
    46 choice
    47 collaboration
    48 comprehensive reference set
    49 consideration
    50 context
    51 contribution
    52 data
    53 dataset
    54 decisions
    55 design considerations
    56 development
    57 dietary choices
    58 disease
    59 efforts
    60 epidemiological context
    61 example
    62 general public
    63 health
    64 human microbiome
    65 human microbiome research
    66 hypothesis
    67 importance
    68 insights
    69 international collaboration
    70 issues
    71 lifestyle
    72 limitations
    73 means
    74 microbiome
    75 microbiome reference datasets
    76 microbiome research
    77 new insights
    78 own data
    79 participants
    80 practical study design considerations
    81 project
    82 public
    83 reference dataset
    84 reference resource
    85 reference set
    86 research
    87 researchers
    88 resources
    89 sample size decisions
    90 set
    91 size decision
    92 study design considerations
    93 technical challenges
    94 usage
    95 way
    96 schema:name Context and the human microbiome
    97 schema:pagination 52
    98 schema:productId N4d4ebc1038fa4e4e9ecf26557e377ca5
    99 N5e0505a6d4884aa48a4edcbcdc21a4fa
    100 Na3111e51e784403ca2c04543e1e97df6
    101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028122611
    102 https://doi.org/10.1186/s40168-015-0117-2
    103 schema:sdDatePublished 2022-01-01T18:35
    104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    105 schema:sdPublisher Nc467a34547a24bb89ae9966ecc35d662
    106 schema:url https://doi.org/10.1186/s40168-015-0117-2
    107 sgo:license sg:explorer/license/
    108 sgo:sdDataset articles
    109 rdf:type schema:ScholarlyArticle
    110 N02ce98cb46bf41e0b44a937e874032e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Humans
    112 rdf:type schema:DefinedTerm
    113 N13020b4fe8ce4063bc83410b19f88f54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Databases, Factual
    115 rdf:type schema:DefinedTerm
    116 N39abeb011baa424f8306f7b8ef46da28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Gastrointestinal Microbiome
    118 rdf:type schema:DefinedTerm
    119 N45d660496ae84268a8b5e2477099b34d schema:volumeNumber 3
    120 rdf:type schema:PublicationVolume
    121 N4d4ebc1038fa4e4e9ecf26557e377ca5 schema:name doi
    122 schema:value 10.1186/s40168-015-0117-2
    123 rdf:type schema:PropertyValue
    124 N5e0505a6d4884aa48a4edcbcdc21a4fa schema:name pubmed_id
    125 schema:value 26530830
    126 rdf:type schema:PropertyValue
    127 N5f7ff9bdd9f34320bd324f375812d9f5 rdf:first sg:person.01231155371.50
    128 rdf:rest Naadc5e6c362f44fdbc7b0ccc88b6acc1
    129 N9b1e11ce70564a63a6f389e5a7542f41 schema:issueNumber 1
    130 rdf:type schema:PublicationIssue
    131 Na3111e51e784403ca2c04543e1e97df6 schema:name dimensions_id
    132 schema:value pub.1028122611
    133 rdf:type schema:PropertyValue
    134 Naadc5e6c362f44fdbc7b0ccc88b6acc1 rdf:first sg:person.016311745377.96
    135 rdf:rest rdf:nil
    136 Nb1416e98c3ca49e1ad5ca68c49af4407 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Research
    138 rdf:type schema:DefinedTerm
    139 Nc467a34547a24bb89ae9966ecc35d662 schema:name Springer Nature - SN SciGraph project
    140 rdf:type schema:Organization
    141 Ne7e42adc4c314b94897bb057fb398848 rdf:first sg:person.01324411177.44
    142 rdf:rest N5f7ff9bdd9f34320bd324f375812d9f5
    143 Ne9aca75518704719ab8c664764dbe5cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Microbiota
    145 rdf:type schema:DefinedTerm
    146 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Biological Sciences
    148 rdf:type schema:DefinedTerm
    149 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
    150 schema:name Ecology
    151 rdf:type schema:DefinedTerm
    152 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    153 schema:name Microbiology
    154 rdf:type schema:DefinedTerm
    155 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Medical and Health Sciences
    157 rdf:type schema:DefinedTerm
    158 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
    159 schema:name Medical Microbiology
    160 rdf:type schema:DefinedTerm
    161 sg:grant.3131779 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-015-0117-2
    162 rdf:type schema:MonetaryGrant
    163 sg:journal.1048878 schema:issn 2049-2618
    164 schema:name Microbiome
    165 schema:publisher Springer Nature
    166 rdf:type schema:Periodical
    167 sg:person.01231155371.50 schema:affiliation grid-institutes:grid.266100.3
    168 schema:familyName Birmingham
    169 schema:givenName Amanda
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231155371.50
    171 rdf:type schema:Person
    172 sg:person.01324411177.44 schema:affiliation grid-institutes:grid.266190.a
    173 schema:familyName McDonald
    174 schema:givenName Daniel
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324411177.44
    176 rdf:type schema:Person
    177 sg:person.016311745377.96 schema:affiliation grid-institutes:grid.266100.3
    178 schema:familyName Knight
    179 schema:givenName Rob
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96
    181 rdf:type schema:Person
    182 sg:pub.10.1038/509269a schema:sameAs https://app.dimensions.ai/details/publication/pub.1023468138
    183 https://doi.org/10.1038/509269a
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/ismej.2011.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051863807
    186 https://doi.org/10.1038/ismej.2011.139
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/ismej.2012.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038992953
    189 https://doi.org/10.1038/ismej.2012.8
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/ismej.2013.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027720638
    192 https://doi.org/10.1038/ismej.2013.21
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nature08821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050498034
    195 https://doi.org/10.1038/nature08821
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nature09199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031776599
    198 https://doi.org/10.1038/nature09199
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nature10209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011250403
    201 https://doi.org/10.1038/nature10209
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nature11053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052378845
    204 https://doi.org/10.1038/nature11053
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nature11209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027248000
    207 https://doi.org/10.1038/nature11209
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nature11234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007740093
    210 https://doi.org/10.1038/nature11234
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nature12820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013830289
    213 https://doi.org/10.1038/nature12820
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nbt.1823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005906569
    216 https://doi.org/10.1038/nbt.1823
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
    219 https://doi.org/10.1038/nmeth.f.303
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nrmicro1978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015675255
    222 https://doi.org/10.1038/nrmicro1978
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1186/1471-2180-10-206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027026649
    225 https://doi.org/10.1186/1471-2180-10-206
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1186/1750-1326-9-36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023269156
    228 https://doi.org/10.1186/1750-1326-9-36
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1186/gb-2010-11-5-210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042123396
    231 https://doi.org/10.1186/gb-2010-11-5-210
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1186/gb-2011-12-5-r50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050643751
    234 https://doi.org/10.1186/gb-2011-12-5-r50
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1186/s12915-014-0069-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000588445
    237 https://doi.org/10.1186/s12915-014-0069-1
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1186/s12915-014-0087-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1027737035
    240 https://doi.org/10.1186/s12915-014-0087-z
    241 rdf:type schema:CreativeWork
    242 grid-institutes:grid.266100.3 schema:alternateName Center for Computational Biology & Bioinformatics, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
    243 Department of Computer Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
    244 schema:name Center for Computational Biology & Bioinformatics, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
    245 Department of Computer Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
    246 Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
    247 rdf:type schema:Organization
    248 grid-institutes:grid.266190.a schema:alternateName BioFrontiers Institute, University of Colorado, 3415 Colorado Avenue, Boulder, CO 80304 USA
    249 schema:name BioFrontiers Institute, University of Colorado, 3415 Colorado Avenue, Boulder, CO 80304 USA
    250 Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80304 USA
    251 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...