Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-04-13

AUTHORS

Brett J Baker, Cassandre Sara Lazar, Andreas P Teske, Gregory J Dick

ABSTRACT

BACKGROUND: Estuaries are among the most productive habitats on the planet. Bacteria in estuary sediments control the turnover of organic carbon and the cycling of nitrogen and sulfur. These communities are complex and primarily made up of uncultured lineages, thus little is known about how ecological and metabolic processes are partitioned in sediments. RESULTS: De novo assembly and binning resulted in the reconstruction of 82 bacterial genomes from different redox regimes of estuary sediments. These genomes belong to 23 bacterial groups, including uncultured candidate phyla (for example, KSB1, TA06, and KD3-62) and three newly described phyla (White Oak River (WOR)-1, WOR-2, and WOR-3). The uncultured phyla are generally most abundant in the sulfate-methane transition (SMTZ) and methane-rich zones, and genomic data predict that they mediate essential biogeochemical processes of the estuarine environment, including organic carbon degradation and fermentation. Among the most abundant organisms in the sulfate-rich layer are novel Gammaproteobacteria that have genes for the oxidation of sulfur and the reduction of nitrate and nitrite. Interestingly, the terminal steps of denitrification (NO3 to N2O and then N2O to N2) are present in distinct bacterial populations. CONCLUSIONS: This dataset extends our knowledge of the metabolic potential of several uncultured phyla. Within the sediments, there is redundancy in the genomic potential in different lineages, often distinct phyla, for essential biogeochemical processes. We were able to chart the flow of carbon and nutrients through the multiple geochemical layers of bacterial processing and reveal potential ecological interactions within the communities. More... »

PAGES

14

References to SciGraph publications

  • 2009-08-21. Community-wide analysis of microbial genome sequence signatures in GENOME BIOLOGY
  • 2013-08-05. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling in MICROBIOME
  • 2011-05-19. EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data in GENOME BIOLOGY
  • 2007-01-15. Prediction of effective genome size in metagenomic samples in GENOME BIOLOGY
  • 1994-01. Sulfur and iron cycling in a coastal sediment: Radiotracer studies and seasonal dynamics in BIOGEOCHEMISTRY
  • 2013-08-27. Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment in NATURE COMMUNICATIONS
  • 2013-12-04. The changing carbon cycle of the coastal ocean in NATURE
  • 2013-03-27. Predominant archaea in marine sediments degrade detrital proteins in NATURE
  • 2011-01-13. Stratification of Archaeal communities in shallow sediments of the Pearl River Estuary, Southern China in ANTONIE VAN LEEUWENHOEK
  • 2013-08-22. Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2014-03-13. Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2012-05-03. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 1975. The Biosphere and Man in PRIMARY PRODUCTIVITY OF THE BIOSPHERE
  • 2012-06-28. Salt marsh sediment diversity: a test of the variability of the rare biosphere among environmental replicates in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40168-015-0077-6

    DOI

    http://dx.doi.org/10.1186/s40168-015-0077-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1036864474

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/25922666


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Earth and Environmental Sciences, University of Michigan, 1100 N. University Ave., Ann Arbor, MI 48109 USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Department of Marine Science, University of Texas-Austin, Marine Science Institute, 750 Channel View Dr., Port Aransas, TX 78373 USA", 
                "Department of Earth and Environmental Sciences, University of Michigan, 1100 N. University Ave., Ann Arbor, MI 48109 USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Baker", 
            "givenName": "Brett J", 
            "id": "sg:person.0651757375.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651757375.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences, Department of Geosciences, University of Bremen, Bremen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.7704.4", 
              "name": [
                "Department of Marine Sciences, University of North Carolina, Chapel Hill, NC USA", 
                "Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences, Department of Geosciences, University of Bremen, Bremen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lazar", 
            "givenName": "Cassandre Sara", 
            "id": "sg:person.01320347670.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320347670.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Marine Sciences, University of North Carolina, Chapel Hill, NC USA", 
              "id": "http://www.grid.ac/institutes/grid.410711.2", 
              "name": [
                "Department of Marine Sciences, University of North Carolina, Chapel Hill, NC USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Teske", 
            "givenName": "Andreas P", 
            "id": "sg:person.01207717526.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207717526.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Department of Earth and Environmental Sciences, University of Michigan, 1100 N. University Ave., Ann Arbor, MI 48109 USA", 
                "Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dick", 
            "givenName": "Gregory J", 
            "id": "sg:person.01030501116.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030501116.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/gb-2011-12-5-r44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000326175", 
              "https://doi.org/10.1186/gb-2011-12-5-r44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2013.249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038736944", 
              "https://doi.org/10.1038/ismej.2013.249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-80913-2_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013725302", 
              "https://doi.org/10.1007/978-3-642-80913-2_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2007-8-1-r10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044994861", 
              "https://doi.org/10.1186/gb-2007-8-1-r10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00002815", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004894584", 
              "https://doi.org/10.1007/bf00002815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2012.37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016487667", 
              "https://doi.org/10.1038/ismej.2012.37"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2013.143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023200292", 
              "https://doi.org/10.1038/ismej.2013.143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2009-10-8-r85", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014147708", 
              "https://doi.org/10.1186/gb-2009-10-8-r85"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10482-011-9548-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040735689", 
              "https://doi.org/10.1007/s10482-011-9548-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2012.47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044196707", 
              "https://doi.org/10.1038/ismej.2012.47"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms3120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002664779", 
              "https://doi.org/10.1038/ncomms3120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2049-2618-1-22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043707608", 
              "https://doi.org/10.1186/2049-2618-1-22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12857", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015681401", 
              "https://doi.org/10.1038/nature12857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049073961", 
              "https://doi.org/10.1038/nature12033"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-04-13", 
        "datePublishedReg": "2015-04-13", 
        "description": "BACKGROUND: Estuaries are among the most productive habitats on the planet. Bacteria in estuary sediments control the turnover of organic carbon and the cycling of nitrogen and sulfur. These communities are complex and primarily made up of uncultured lineages, thus little is known about how ecological and metabolic processes are partitioned in sediments.\nRESULTS: De novo assembly and binning resulted in the reconstruction of 82 bacterial genomes from different redox regimes of estuary sediments. These genomes belong to 23 bacterial groups, including uncultured candidate phyla (for example, KSB1, TA06, and KD3-62) and three newly described phyla (White Oak River (WOR)-1, WOR-2, and WOR-3). The uncultured phyla are generally most abundant in the sulfate-methane transition (SMTZ) and methane-rich zones, and genomic data predict that they mediate essential biogeochemical processes of the estuarine environment, including organic carbon degradation and fermentation. Among the most abundant organisms in the sulfate-rich layer are novel Gammaproteobacteria that have genes for the oxidation of sulfur and the reduction of nitrate and nitrite. Interestingly, the terminal steps of denitrification (NO3 to N2O and then N2O to N2) are present in distinct bacterial populations.\nCONCLUSIONS: This dataset extends our knowledge of the metabolic potential of several uncultured phyla. Within the sediments, there is redundancy in the genomic potential in different lineages, often distinct phyla, for essential biogeochemical processes. We were able to chart the flow of carbon and nutrients through the multiple geochemical layers of bacterial processing and reveal potential ecological interactions within the communities.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s40168-015-0077-6", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3783035", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1048878", 
            "issn": [
              "2049-2618"
            ], 
            "name": "Microbiome", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "keywords": [
          "essential biogeochemical processes", 
          "uncultured phyla", 
          "potential ecological interactions", 
          "uncultured candidate phyla", 
          "de novo assembly", 
          "distinct bacterial populations", 
          "biogeochemical processes", 
          "estuary sediments", 
          "flow of carbon", 
          "uncultured lineages", 
          "genomic potential", 
          "candidate phyla", 
          "ecological interactions", 
          "distinct phyla", 
          "genomic resolution", 
          "bacterial genomes", 
          "cycling of nitrogen", 
          "novo assembly", 
          "productive habitats", 
          "metabolic potential", 
          "abundant organisms", 
          "sulfate-methane transition", 
          "different lineages", 
          "sulfate-rich layer", 
          "methane-rich zones", 
          "genomic data", 
          "different redox regimes", 
          "phyla", 
          "organic carbon degradation", 
          "terminal step", 
          "bacterial groups", 
          "metabolic processes", 
          "bacterial populations", 
          "bacterial processing", 
          "sediment bacteria", 
          "sulfur cycling", 
          "estuarine environments", 
          "geochemical layers", 
          "genome", 
          "carbon degradation", 
          "redox regimes", 
          "lineages", 
          "organic carbon", 
          "sediments", 
          "reduction of nitrate", 
          "oxidation of sulfur", 
          "bacteria", 
          "Gammaproteobacteria", 
          "habitats", 
          "genes", 
          "carbon", 
          "organisms", 
          "sulfur", 
          "cycling", 
          "estuary", 
          "nutrients", 
          "nitrogen", 
          "assembly", 
          "turnover", 
          "community", 
          "fermentation", 
          "zone", 
          "planets", 
          "denitrification", 
          "layer", 
          "degradation", 
          "linkage", 
          "population", 
          "nitrate", 
          "interaction", 
          "regime", 
          "potential", 
          "reconstruction", 
          "process", 
          "flow", 
          "resolution", 
          "binning", 
          "redundancy", 
          "dataset", 
          "environment", 
          "nitrite", 
          "data", 
          "step", 
          "oxidation", 
          "knowledge", 
          "transition", 
          "reduction", 
          "group", 
          "processing", 
          "novel Gammaproteobacteria", 
          "multiple geochemical layers", 
          "widespread estuary sediment bacteria", 
          "estuary sediment bacteria"
        ], 
        "name": "Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria", 
        "pagination": "14", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1036864474"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40168-015-0077-6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "25922666"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40168-015-0077-6", 
          "https://app.dimensions.ai/details/publication/pub.1036864474"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_656.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s40168-015-0077-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40168-015-0077-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40168-015-0077-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40168-015-0077-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40168-015-0077-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    247 TRIPLES      22 PREDICATES      134 URIs      111 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40168-015-0077-6 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 anzsrc-for:0605
    4 schema:author N5b964786954a480ebef251cbd0cfcac3
    5 schema:citation sg:pub.10.1007/978-3-642-80913-2_15
    6 sg:pub.10.1007/bf00002815
    7 sg:pub.10.1007/s10482-011-9548-3
    8 sg:pub.10.1038/ismej.2012.37
    9 sg:pub.10.1038/ismej.2012.47
    10 sg:pub.10.1038/ismej.2013.143
    11 sg:pub.10.1038/ismej.2013.249
    12 sg:pub.10.1038/nature12033
    13 sg:pub.10.1038/nature12857
    14 sg:pub.10.1038/ncomms3120
    15 sg:pub.10.1186/2049-2618-1-22
    16 sg:pub.10.1186/gb-2007-8-1-r10
    17 sg:pub.10.1186/gb-2009-10-8-r85
    18 sg:pub.10.1186/gb-2011-12-5-r44
    19 schema:datePublished 2015-04-13
    20 schema:datePublishedReg 2015-04-13
    21 schema:description BACKGROUND: Estuaries are among the most productive habitats on the planet. Bacteria in estuary sediments control the turnover of organic carbon and the cycling of nitrogen and sulfur. These communities are complex and primarily made up of uncultured lineages, thus little is known about how ecological and metabolic processes are partitioned in sediments. RESULTS: De novo assembly and binning resulted in the reconstruction of 82 bacterial genomes from different redox regimes of estuary sediments. These genomes belong to 23 bacterial groups, including uncultured candidate phyla (for example, KSB1, TA06, and KD3-62) and three newly described phyla (White Oak River (WOR)-1, WOR-2, and WOR-3). The uncultured phyla are generally most abundant in the sulfate-methane transition (SMTZ) and methane-rich zones, and genomic data predict that they mediate essential biogeochemical processes of the estuarine environment, including organic carbon degradation and fermentation. Among the most abundant organisms in the sulfate-rich layer are novel Gammaproteobacteria that have genes for the oxidation of sulfur and the reduction of nitrate and nitrite. Interestingly, the terminal steps of denitrification (NO3 to N2O and then N2O to N2) are present in distinct bacterial populations. CONCLUSIONS: This dataset extends our knowledge of the metabolic potential of several uncultured phyla. Within the sediments, there is redundancy in the genomic potential in different lineages, often distinct phyla, for essential biogeochemical processes. We were able to chart the flow of carbon and nutrients through the multiple geochemical layers of bacterial processing and reveal potential ecological interactions within the communities.
    22 schema:genre article
    23 schema:inLanguage en
    24 schema:isAccessibleForFree true
    25 schema:isPartOf N274611da5731433885f7292ff07d8079
    26 Na6f903bd2c244438b2d837b50ae268e2
    27 sg:journal.1048878
    28 schema:keywords Gammaproteobacteria
    29 abundant organisms
    30 assembly
    31 bacteria
    32 bacterial genomes
    33 bacterial groups
    34 bacterial populations
    35 bacterial processing
    36 binning
    37 biogeochemical processes
    38 candidate phyla
    39 carbon
    40 carbon degradation
    41 community
    42 cycling
    43 cycling of nitrogen
    44 data
    45 dataset
    46 de novo assembly
    47 degradation
    48 denitrification
    49 different lineages
    50 different redox regimes
    51 distinct bacterial populations
    52 distinct phyla
    53 ecological interactions
    54 environment
    55 essential biogeochemical processes
    56 estuarine environments
    57 estuary
    58 estuary sediment bacteria
    59 estuary sediments
    60 fermentation
    61 flow
    62 flow of carbon
    63 genes
    64 genome
    65 genomic data
    66 genomic potential
    67 genomic resolution
    68 geochemical layers
    69 group
    70 habitats
    71 interaction
    72 knowledge
    73 layer
    74 lineages
    75 linkage
    76 metabolic potential
    77 metabolic processes
    78 methane-rich zones
    79 multiple geochemical layers
    80 nitrate
    81 nitrite
    82 nitrogen
    83 novel Gammaproteobacteria
    84 novo assembly
    85 nutrients
    86 organic carbon
    87 organic carbon degradation
    88 organisms
    89 oxidation
    90 oxidation of sulfur
    91 phyla
    92 planets
    93 population
    94 potential
    95 potential ecological interactions
    96 process
    97 processing
    98 productive habitats
    99 reconstruction
    100 redox regimes
    101 reduction
    102 reduction of nitrate
    103 redundancy
    104 regime
    105 resolution
    106 sediment bacteria
    107 sediments
    108 step
    109 sulfate-methane transition
    110 sulfate-rich layer
    111 sulfur
    112 sulfur cycling
    113 terminal step
    114 transition
    115 turnover
    116 uncultured candidate phyla
    117 uncultured lineages
    118 uncultured phyla
    119 widespread estuary sediment bacteria
    120 zone
    121 schema:name Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria
    122 schema:pagination 14
    123 schema:productId N11746690bc7d417c8d5d903de3072d2d
    124 Nbf0a148365954989b9223e1d279faecc
    125 Nf63f8e4b5a244c73b59b18be38190c7b
    126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036864474
    127 https://doi.org/10.1186/s40168-015-0077-6
    128 schema:sdDatePublished 2022-01-01T18:35
    129 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    130 schema:sdPublisher Nc1e3ec5228c24d809223a8eefb0484a9
    131 schema:url https://doi.org/10.1186/s40168-015-0077-6
    132 sgo:license sg:explorer/license/
    133 sgo:sdDataset articles
    134 rdf:type schema:ScholarlyArticle
    135 N0412d5b3e4a1470c8ed7c00dbe39c71d rdf:first sg:person.01207717526.03
    136 rdf:rest N892daa2e913a4021b8bf42626d4fb9f8
    137 N11746690bc7d417c8d5d903de3072d2d schema:name doi
    138 schema:value 10.1186/s40168-015-0077-6
    139 rdf:type schema:PropertyValue
    140 N274611da5731433885f7292ff07d8079 schema:volumeNumber 3
    141 rdf:type schema:PublicationVolume
    142 N52268705f4d84bbab65b0ddbe2c8d45b rdf:first sg:person.01320347670.85
    143 rdf:rest N0412d5b3e4a1470c8ed7c00dbe39c71d
    144 N5b964786954a480ebef251cbd0cfcac3 rdf:first sg:person.0651757375.15
    145 rdf:rest N52268705f4d84bbab65b0ddbe2c8d45b
    146 N892daa2e913a4021b8bf42626d4fb9f8 rdf:first sg:person.01030501116.39
    147 rdf:rest rdf:nil
    148 Na6f903bd2c244438b2d837b50ae268e2 schema:issueNumber 1
    149 rdf:type schema:PublicationIssue
    150 Nbf0a148365954989b9223e1d279faecc schema:name dimensions_id
    151 schema:value pub.1036864474
    152 rdf:type schema:PropertyValue
    153 Nc1e3ec5228c24d809223a8eefb0484a9 schema:name Springer Nature - SN SciGraph project
    154 rdf:type schema:Organization
    155 Nf63f8e4b5a244c73b59b18be38190c7b schema:name pubmed_id
    156 schema:value 25922666
    157 rdf:type schema:PropertyValue
    158 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    159 schema:name Biological Sciences
    160 rdf:type schema:DefinedTerm
    161 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    162 schema:name Genetics
    163 rdf:type schema:DefinedTerm
    164 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    165 schema:name Microbiology
    166 rdf:type schema:DefinedTerm
    167 sg:grant.3783035 http://pending.schema.org/fundedItem sg:pub.10.1186/s40168-015-0077-6
    168 rdf:type schema:MonetaryGrant
    169 sg:journal.1048878 schema:issn 2049-2618
    170 schema:name Microbiome
    171 schema:publisher Springer Nature
    172 rdf:type schema:Periodical
    173 sg:person.01030501116.39 schema:affiliation grid-institutes:grid.214458.e
    174 schema:familyName Dick
    175 schema:givenName Gregory J
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030501116.39
    177 rdf:type schema:Person
    178 sg:person.01207717526.03 schema:affiliation grid-institutes:grid.410711.2
    179 schema:familyName Teske
    180 schema:givenName Andreas P
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207717526.03
    182 rdf:type schema:Person
    183 sg:person.01320347670.85 schema:affiliation grid-institutes:grid.7704.4
    184 schema:familyName Lazar
    185 schema:givenName Cassandre Sara
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320347670.85
    187 rdf:type schema:Person
    188 sg:person.0651757375.15 schema:affiliation grid-institutes:grid.214458.e
    189 schema:familyName Baker
    190 schema:givenName Brett J
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651757375.15
    192 rdf:type schema:Person
    193 sg:pub.10.1007/978-3-642-80913-2_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013725302
    194 https://doi.org/10.1007/978-3-642-80913-2_15
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/bf00002815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004894584
    197 https://doi.org/10.1007/bf00002815
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s10482-011-9548-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040735689
    200 https://doi.org/10.1007/s10482-011-9548-3
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/ismej.2012.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016487667
    203 https://doi.org/10.1038/ismej.2012.37
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/ismej.2012.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044196707
    206 https://doi.org/10.1038/ismej.2012.47
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/ismej.2013.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023200292
    209 https://doi.org/10.1038/ismej.2013.143
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/ismej.2013.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038736944
    212 https://doi.org/10.1038/ismej.2013.249
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/nature12033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049073961
    215 https://doi.org/10.1038/nature12033
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nature12857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015681401
    218 https://doi.org/10.1038/nature12857
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/ncomms3120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002664779
    221 https://doi.org/10.1038/ncomms3120
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1186/2049-2618-1-22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043707608
    224 https://doi.org/10.1186/2049-2618-1-22
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1186/gb-2007-8-1-r10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044994861
    227 https://doi.org/10.1186/gb-2007-8-1-r10
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1186/gb-2009-10-8-r85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014147708
    230 https://doi.org/10.1186/gb-2009-10-8-r85
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1186/gb-2011-12-5-r44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000326175
    233 https://doi.org/10.1186/gb-2011-12-5-r44
    234 rdf:type schema:CreativeWork
    235 grid-institutes:grid.214458.e schema:alternateName Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI USA
    236 Department of Earth and Environmental Sciences, University of Michigan, 1100 N. University Ave., Ann Arbor, MI 48109 USA
    237 schema:name Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI USA
    238 Department of Earth and Environmental Sciences, University of Michigan, 1100 N. University Ave., Ann Arbor, MI 48109 USA
    239 Department of Marine Science, University of Texas-Austin, Marine Science Institute, 750 Channel View Dr., Port Aransas, TX 78373 USA
    240 rdf:type schema:Organization
    241 grid-institutes:grid.410711.2 schema:alternateName Department of Marine Sciences, University of North Carolina, Chapel Hill, NC USA
    242 schema:name Department of Marine Sciences, University of North Carolina, Chapel Hill, NC USA
    243 rdf:type schema:Organization
    244 grid-institutes:grid.7704.4 schema:alternateName Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences, Department of Geosciences, University of Bremen, Bremen, Germany
    245 schema:name Department of Marine Sciences, University of North Carolina, Chapel Hill, NC USA
    246 Organic Geochemistry Group, MARUM Center for Marine Environmental Sciences, Department of Geosciences, University of Bremen, Bremen, Germany
    247 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...