Establishment of a male fertility prediction model with sperm RNA markers in pigs as a translational animal model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-07-07

AUTHORS

Won-Ki Pang, Shehreen Amjad, Do-Yeal Ryu, Elikanah Olusayo Adegoke, Md Saidur Rahman, Yoo-Jin Park, Myung-Geol Pang

ABSTRACT

BackgroundMale infertility is an important issue that causes low production in the animal industry. To solve the male fertility crisis in the animal industry, the prediction of sperm quality is the most important step. Sperm RNA is the potential marker for male fertility prediction. We hypothesized that the expression of functional genes related to fertilization will be the best target for male fertility prediction markers. To investigate optimum male fertility prediction marker, we compared target genes expression level and a wide range of field data acquired from artificial insemination of boar semen.ResultsAmong the genes related to acrosomal vesicle exocytosis and sperm–oocyte fusion, equatorin (EQTN), zona pellucida sperm-binding protein 4 (ZP4), and sperm acrosome membrane-associated protein 3 exhibited high accuracy (70%, 90%, and 70%, respectively) as markers to evaluate male fertility. Combinations of EQTN-ZP4, ZP4-protein unc-13 homolog B, and ZP4-regulating synaptic membrane exocytosis protein 1 (RIMS1) showed the highest prediction value, and all these markers are involved in the acrosome reaction.ConclusionThe EQTN-ZP4 model was efficient in clustering the high-fertility group and may be useful for selection of animal that has superior fertility in the livestock industry. Compared to the EQTN-ZP4 model, the ZP4-RIMS1 model was more efficient in clustering the low-fertility group and may be useful in the diagnosis of male infertility in humans and other animals. The appointed translational animal model and established biomarker combination can be widely used in various scientific fields such as biomedical science. More... »

PAGES

84

References to SciGraph publications

  • 2019-06-24. Sperm RNA code programmes the metabolic health of offspring in NATURE REVIEWS ENDOCRINOLOGY
  • 2014-10-14. A comprehensive proteomic approach to identifying capacitation related proteins in boar spermatozoa in BMC GENOMICS
  • 2016-02-20. Identification of bovine sperm acrosomal proteins that interact with a 32-kDa acrosomal matrix protein in MOLECULAR AND CELLULAR BIOCHEMISTRY
  • 2007-07-11. A high utility integrated map of the pig genome in GENOME BIOLOGY
  • 2011-10-12. Sperm transcriptome profiling in oligozoospermia in JOURNAL OF ASSISTED REPRODUCTION AND GENETICS
  • 2002-10. Mouse models of male infertility in NATURE REVIEWS GENETICS
  • 2015-10-22. Increased male fertility using fertility-related biomarkers in SCIENTIFIC REPORTS
  • 2014-04-14. Sperm RNA carries marks of trauma in NATURE
  • 2014. Sexual Reproduction in Animals and Plants in NONE
  • 2015-10-31. Flexible combination of multiple diagnostic biomarkers to improve diagnostic accuracy in BMC MEDICAL RESEARCH METHODOLOGY
  • 2020-07-14. Optimization of sperm RNA processing for developmental research in SCIENTIFIC REPORTS
  • 2004-05. Delivering spermatozoan RNA to the oocyte in NATURE
  • 2015-07-14. Development of a blood-based molecular biomarker test for identification of schizophrenia before disease onset in TRANSLATIONAL PSYCHIATRY
  • 2017-03-09. Occurrence and functional significance of the transcriptome in bovine (Bos taurus) spermatozoa in SCIENTIFIC REPORTS
  • 1996. Advances in Swine in Biomedical Research, Volume 2 in NONE
  • 2018-10-30. Alterations in sperm long RNA contribute to the epigenetic inheritance of the effects of postnatal trauma in MOLECULAR PSYCHIATRY
  • 2020-09-21. Extensive germline genome engineering in pigs in NATURE BIOMEDICAL ENGINEERING
  • 2019-12-10. Selection of microbial biomarkers with genetic algorithm and principal component analysis in BMC BIOINFORMATICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40104-022-00729-9

    DOI

    http://dx.doi.org/10.1186/s40104-022-00729-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149278129

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/35794675


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Agricultural and Veterinary Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0702", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Animal Production", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1001", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Agricultural Biotechnology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, 17546, Anseong, Gyeonggi-do, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.254224.7", 
              "name": [
                "Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, 17546, Anseong, Gyeonggi-do, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pang", 
            "givenName": "Won-Ki", 
            "id": "sg:person.014110702130.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014110702130.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, 17546, Anseong, Gyeonggi-do, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.254224.7", 
              "name": [
                "Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, 17546, Anseong, Gyeonggi-do, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Amjad", 
            "givenName": "Shehreen", 
            "id": "sg:person.015625042563.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015625042563.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, 17546, Anseong, Gyeonggi-do, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.254224.7", 
              "name": [
                "Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, 17546, Anseong, Gyeonggi-do, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ryu", 
            "givenName": "Do-Yeal", 
            "id": "sg:person.01135057377.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135057377.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, 17546, Anseong, Gyeonggi-do, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.254224.7", 
              "name": [
                "Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, 17546, Anseong, Gyeonggi-do, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Adegoke", 
            "givenName": "Elikanah Olusayo", 
            "id": "sg:person.016634415543.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016634415543.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, 17546, Anseong, Gyeonggi-do, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.254224.7", 
              "name": [
                "Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, 17546, Anseong, Gyeonggi-do, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rahman", 
            "givenName": "Md Saidur", 
            "id": "sg:person.01105753742.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105753742.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, 17546, Anseong, Gyeonggi-do, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.254224.7", 
              "name": [
                "Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, 17546, Anseong, Gyeonggi-do, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Park", 
            "givenName": "Yoo-Jin", 
            "id": "sg:person.0740416502.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740416502.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, 17546, Anseong, Gyeonggi-do, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.254224.7", 
              "name": [
                "Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, 17546, Anseong, Gyeonggi-do, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pang", 
            "givenName": "Myung-Geol", 
            "id": "sg:person.01237206702.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237206702.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/508296a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030558369", 
              "https://doi.org/10.1038/508296a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-897", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026594151", 
              "https://doi.org/10.1186/1471-2164-15-897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41574-019-0226-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117478869", 
              "https://doi.org/10.1038/s41574-019-0226-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12874-015-0085-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040947318", 
              "https://doi.org/10.1186/s12874-015-0085-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11010-016-2668-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010730636", 
              "https://doi.org/10.1007/s11010-016-2668-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41551-020-00613-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131001005", 
              "https://doi.org/10.1038/s41551-020-00613-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41380-018-0271-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107871591", 
              "https://doi.org/10.1038/s41380-018-0271-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-4-431-54589-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040963667", 
              "https://doi.org/10.1007/978-4-431-54589-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep42392", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084131160", 
              "https://doi.org/10.1038/srep42392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2007-8-7-r139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024205457", 
              "https://doi.org/10.1186/gb-2007-8-7-r139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10815-011-9644-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018633697", 
              "https://doi.org/10.1007/s10815-011-9644-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-019-3001-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123256562", 
              "https://doi.org/10.1186/s12859-019-3001-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg911", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037604149", 
              "https://doi.org/10.1038/nrg911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/tp.2015.91", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009026786", 
              "https://doi.org/10.1038/tp.2015.91"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/429154a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038278786", 
              "https://doi.org/10.1038/429154a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep15654", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009015606", 
              "https://doi.org/10.1038/srep15654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4615-5885-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008291295", 
              "https://doi.org/10.1007/978-1-4615-5885-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-020-68486-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129322422", 
              "https://doi.org/10.1038/s41598-020-68486-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-07", 
        "datePublishedReg": "2022-07-07", 
        "description": "BackgroundMale infertility is an important issue that causes low production in the animal industry. To solve the male fertility crisis in the animal industry, the prediction of sperm quality is the most important step. Sperm RNA is the potential marker for male fertility prediction. We hypothesized that the expression of functional genes related to fertilization will be the best target for male fertility prediction markers. To investigate optimum male fertility prediction marker, we compared target genes expression level and a wide range of field data acquired from artificial insemination of boar semen.ResultsAmong the genes related to acrosomal vesicle exocytosis and sperm\u2013oocyte fusion, equatorin (EQTN), zona pellucida sperm-binding protein 4 (ZP4), and sperm acrosome membrane-associated protein 3 exhibited high accuracy (70%, 90%, and 70%, respectively) as markers to evaluate male fertility. Combinations of EQTN-ZP4, ZP4-protein unc-13 homolog B, and ZP4-regulating synaptic membrane exocytosis protein 1 (RIMS1) showed the highest prediction value, and all these markers are involved in the acrosome reaction.ConclusionThe EQTN-ZP4 model was efficient in clustering the high-fertility group and may be useful for selection of animal that has superior fertility in the livestock industry. Compared to the EQTN-ZP4 model, the ZP4-RIMS1 model was more efficient in clustering the low-fertility group and may be useful in the diagnosis of male infertility in humans and other animals. The appointed translational animal model and established biomarker combination can be widely used in various scientific fields such as biomedical science.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s40104-022-00729-9", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1046697", 
            "issn": [
              "1674-9782", 
              "2049-1891"
            ], 
            "name": "Journal of Animal Science and Biotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "keywords": [
          "translational animal models", 
          "animal models", 
          "prediction markers", 
          "animal industry", 
          "selection of animals", 
          "zona pellucida sperm", 
          "high fertility group", 
          "sperm-oocyte fusion", 
          "male infertility", 
          "biomarker combinations", 
          "livestock industry", 
          "low fertility group", 
          "protein 3", 
          "potential marker", 
          "homolog B", 
          "protein 4", 
          "superior fertility", 
          "protein 1", 
          "fertility prediction", 
          "expression levels", 
          "artificial insemination", 
          "low production", 
          "infertility", 
          "male fertility", 
          "markers", 
          "gene expression levels", 
          "target gene expression levels", 
          "acrosome reaction", 
          "RNA markers", 
          "sperm quality", 
          "good target", 
          "vesicle exocytosis", 
          "fertility", 
          "high prediction value", 
          "animals", 
          "functional genes", 
          "ResultsAmong", 
          "field data", 
          "group", 
          "sperm RNA", 
          "equatorin", 
          "diagnosis", 
          "fertilization", 
          "boar semen", 
          "pigs", 
          "genes", 
          "fertility crisis", 
          "industry", 
          "insemination", 
          "humans", 
          "production", 
          "ZP4", 
          "expression", 
          "semen", 
          "exocytosis", 
          "sperm", 
          "combination", 
          "establishment", 
          "RNA", 
          "target", 
          "levels", 
          "selection", 
          "wide range", 
          "prediction value", 
          "important step", 
          "quality", 
          "prediction model", 
          "fusion", 
          "data", 
          "model", 
          "field", 
          "important issue", 
          "values", 
          "biomedical sciences", 
          "reaction", 
          "prediction", 
          "range", 
          "issues", 
          "step", 
          "crisis", 
          "accuracy", 
          "science", 
          "high accuracy", 
          "scientific fields"
        ], 
        "name": "Establishment of a male fertility prediction model with sperm RNA markers in pigs as a translational animal model", 
        "pagination": "84", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149278129"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40104-022-00729-9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "35794675"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40104-022-00729-9", 
          "https://app.dimensions.ai/details/publication/pub.1149278129"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_936.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s40104-022-00729-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40104-022-00729-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40104-022-00729-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40104-022-00729-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40104-022-00729-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    267 TRIPLES      21 PREDICATES      129 URIs      101 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40104-022-00729-9 schema:about anzsrc-for:07
    2 anzsrc-for:0702
    3 anzsrc-for:10
    4 anzsrc-for:1001
    5 schema:author N5c1d0e6566bc4e46ae6bb7cc5e8330d4
    6 schema:citation sg:pub.10.1007/978-1-4615-5885-9
    7 sg:pub.10.1007/978-4-431-54589-7
    8 sg:pub.10.1007/s10815-011-9644-3
    9 sg:pub.10.1007/s11010-016-2668-3
    10 sg:pub.10.1038/429154a
    11 sg:pub.10.1038/508296a
    12 sg:pub.10.1038/nrg911
    13 sg:pub.10.1038/s41380-018-0271-6
    14 sg:pub.10.1038/s41551-020-00613-9
    15 sg:pub.10.1038/s41574-019-0226-2
    16 sg:pub.10.1038/s41598-020-68486-1
    17 sg:pub.10.1038/srep15654
    18 sg:pub.10.1038/srep42392
    19 sg:pub.10.1038/tp.2015.91
    20 sg:pub.10.1186/1471-2164-15-897
    21 sg:pub.10.1186/gb-2007-8-7-r139
    22 sg:pub.10.1186/s12859-019-3001-4
    23 sg:pub.10.1186/s12874-015-0085-z
    24 schema:datePublished 2022-07-07
    25 schema:datePublishedReg 2022-07-07
    26 schema:description BackgroundMale infertility is an important issue that causes low production in the animal industry. To solve the male fertility crisis in the animal industry, the prediction of sperm quality is the most important step. Sperm RNA is the potential marker for male fertility prediction. We hypothesized that the expression of functional genes related to fertilization will be the best target for male fertility prediction markers. To investigate optimum male fertility prediction marker, we compared target genes expression level and a wide range of field data acquired from artificial insemination of boar semen.ResultsAmong the genes related to acrosomal vesicle exocytosis and sperm–oocyte fusion, equatorin (EQTN), zona pellucida sperm-binding protein 4 (ZP4), and sperm acrosome membrane-associated protein 3 exhibited high accuracy (70%, 90%, and 70%, respectively) as markers to evaluate male fertility. Combinations of EQTN-ZP4, ZP4-protein unc-13 homolog B, and ZP4-regulating synaptic membrane exocytosis protein 1 (RIMS1) showed the highest prediction value, and all these markers are involved in the acrosome reaction.ConclusionThe EQTN-ZP4 model was efficient in clustering the high-fertility group and may be useful for selection of animal that has superior fertility in the livestock industry. Compared to the EQTN-ZP4 model, the ZP4-RIMS1 model was more efficient in clustering the low-fertility group and may be useful in the diagnosis of male infertility in humans and other animals. The appointed translational animal model and established biomarker combination can be widely used in various scientific fields such as biomedical science.
    27 schema:genre article
    28 schema:isAccessibleForFree true
    29 schema:isPartOf N05c17c0e935a47b6b68ab72ebd3f52b2
    30 N1f0c54b2026c459787aed16cb62a31f0
    31 sg:journal.1046697
    32 schema:keywords RNA
    33 RNA markers
    34 ResultsAmong
    35 ZP4
    36 accuracy
    37 acrosome reaction
    38 animal industry
    39 animal models
    40 animals
    41 artificial insemination
    42 biomarker combinations
    43 biomedical sciences
    44 boar semen
    45 combination
    46 crisis
    47 data
    48 diagnosis
    49 equatorin
    50 establishment
    51 exocytosis
    52 expression
    53 expression levels
    54 fertility
    55 fertility crisis
    56 fertility prediction
    57 fertilization
    58 field
    59 field data
    60 functional genes
    61 fusion
    62 gene expression levels
    63 genes
    64 good target
    65 group
    66 high accuracy
    67 high fertility group
    68 high prediction value
    69 homolog B
    70 humans
    71 important issue
    72 important step
    73 industry
    74 infertility
    75 insemination
    76 issues
    77 levels
    78 livestock industry
    79 low fertility group
    80 low production
    81 male fertility
    82 male infertility
    83 markers
    84 model
    85 pigs
    86 potential marker
    87 prediction
    88 prediction markers
    89 prediction model
    90 prediction value
    91 production
    92 protein 1
    93 protein 3
    94 protein 4
    95 quality
    96 range
    97 reaction
    98 science
    99 scientific fields
    100 selection
    101 selection of animals
    102 semen
    103 sperm
    104 sperm RNA
    105 sperm quality
    106 sperm-oocyte fusion
    107 step
    108 superior fertility
    109 target
    110 target gene expression levels
    111 translational animal models
    112 values
    113 vesicle exocytosis
    114 wide range
    115 zona pellucida sperm
    116 schema:name Establishment of a male fertility prediction model with sperm RNA markers in pigs as a translational animal model
    117 schema:pagination 84
    118 schema:productId N82c3ccc1059a4875bf9ba25f79baa1b4
    119 N9512abe1ccff4219bee6dd2b8d2e5571
    120 Ne93e5093ee9a40d1b32b78894e8fbf94
    121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149278129
    122 https://doi.org/10.1186/s40104-022-00729-9
    123 schema:sdDatePublished 2022-09-02T16:08
    124 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    125 schema:sdPublisher N8a9f8e0983f64c20b79bfb4b7379b3e4
    126 schema:url https://doi.org/10.1186/s40104-022-00729-9
    127 sgo:license sg:explorer/license/
    128 sgo:sdDataset articles
    129 rdf:type schema:ScholarlyArticle
    130 N05c17c0e935a47b6b68ab72ebd3f52b2 schema:issueNumber 1
    131 rdf:type schema:PublicationIssue
    132 N0a6743a86f7d4883acf34b610327ed33 rdf:first sg:person.016634415543.59
    133 rdf:rest N7898eb3637be4a27afb0e3e01f3dbfe1
    134 N1f0c54b2026c459787aed16cb62a31f0 schema:volumeNumber 13
    135 rdf:type schema:PublicationVolume
    136 N4ac829e7470b431092f5a4a003c0a744 rdf:first sg:person.0740416502.24
    137 rdf:rest N59b1832791ca44a18159d7313360a1bf
    138 N59b1832791ca44a18159d7313360a1bf rdf:first sg:person.01237206702.01
    139 rdf:rest rdf:nil
    140 N5c1d0e6566bc4e46ae6bb7cc5e8330d4 rdf:first sg:person.014110702130.70
    141 rdf:rest Nb5d7fdc327d243a9829033d5a90866c6
    142 N7898eb3637be4a27afb0e3e01f3dbfe1 rdf:first sg:person.01105753742.25
    143 rdf:rest N4ac829e7470b431092f5a4a003c0a744
    144 N82c3ccc1059a4875bf9ba25f79baa1b4 schema:name pubmed_id
    145 schema:value 35794675
    146 rdf:type schema:PropertyValue
    147 N8a9f8e0983f64c20b79bfb4b7379b3e4 schema:name Springer Nature - SN SciGraph project
    148 rdf:type schema:Organization
    149 N9512abe1ccff4219bee6dd2b8d2e5571 schema:name doi
    150 schema:value 10.1186/s40104-022-00729-9
    151 rdf:type schema:PropertyValue
    152 Na4cc59d552d843bd82e39ada23c3d833 rdf:first sg:person.01135057377.62
    153 rdf:rest N0a6743a86f7d4883acf34b610327ed33
    154 Nb5d7fdc327d243a9829033d5a90866c6 rdf:first sg:person.015625042563.90
    155 rdf:rest Na4cc59d552d843bd82e39ada23c3d833
    156 Ne93e5093ee9a40d1b32b78894e8fbf94 schema:name dimensions_id
    157 schema:value pub.1149278129
    158 rdf:type schema:PropertyValue
    159 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
    160 schema:name Agricultural and Veterinary Sciences
    161 rdf:type schema:DefinedTerm
    162 anzsrc-for:0702 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Animal Production
    164 rdf:type schema:DefinedTerm
    165 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    166 schema:name Technology
    167 rdf:type schema:DefinedTerm
    168 anzsrc-for:1001 schema:inDefinedTermSet anzsrc-for:
    169 schema:name Agricultural Biotechnology
    170 rdf:type schema:DefinedTerm
    171 sg:journal.1046697 schema:issn 1674-9782
    172 2049-1891
    173 schema:name Journal of Animal Science and Biotechnology
    174 schema:publisher Springer Nature
    175 rdf:type schema:Periodical
    176 sg:person.01105753742.25 schema:affiliation grid-institutes:grid.254224.7
    177 schema:familyName Rahman
    178 schema:givenName Md Saidur
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105753742.25
    180 rdf:type schema:Person
    181 sg:person.01135057377.62 schema:affiliation grid-institutes:grid.254224.7
    182 schema:familyName Ryu
    183 schema:givenName Do-Yeal
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135057377.62
    185 rdf:type schema:Person
    186 sg:person.01237206702.01 schema:affiliation grid-institutes:grid.254224.7
    187 schema:familyName Pang
    188 schema:givenName Myung-Geol
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237206702.01
    190 rdf:type schema:Person
    191 sg:person.014110702130.70 schema:affiliation grid-institutes:grid.254224.7
    192 schema:familyName Pang
    193 schema:givenName Won-Ki
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014110702130.70
    195 rdf:type schema:Person
    196 sg:person.015625042563.90 schema:affiliation grid-institutes:grid.254224.7
    197 schema:familyName Amjad
    198 schema:givenName Shehreen
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015625042563.90
    200 rdf:type schema:Person
    201 sg:person.016634415543.59 schema:affiliation grid-institutes:grid.254224.7
    202 schema:familyName Adegoke
    203 schema:givenName Elikanah Olusayo
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016634415543.59
    205 rdf:type schema:Person
    206 sg:person.0740416502.24 schema:affiliation grid-institutes:grid.254224.7
    207 schema:familyName Park
    208 schema:givenName Yoo-Jin
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740416502.24
    210 rdf:type schema:Person
    211 sg:pub.10.1007/978-1-4615-5885-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008291295
    212 https://doi.org/10.1007/978-1-4615-5885-9
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/978-4-431-54589-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040963667
    215 https://doi.org/10.1007/978-4-431-54589-7
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s10815-011-9644-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018633697
    218 https://doi.org/10.1007/s10815-011-9644-3
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s11010-016-2668-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010730636
    221 https://doi.org/10.1007/s11010-016-2668-3
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/429154a schema:sameAs https://app.dimensions.ai/details/publication/pub.1038278786
    224 https://doi.org/10.1038/429154a
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/508296a schema:sameAs https://app.dimensions.ai/details/publication/pub.1030558369
    227 https://doi.org/10.1038/508296a
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/nrg911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037604149
    230 https://doi.org/10.1038/nrg911
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/s41380-018-0271-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107871591
    233 https://doi.org/10.1038/s41380-018-0271-6
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/s41551-020-00613-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131001005
    236 https://doi.org/10.1038/s41551-020-00613-9
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/s41574-019-0226-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117478869
    239 https://doi.org/10.1038/s41574-019-0226-2
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/s41598-020-68486-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129322422
    242 https://doi.org/10.1038/s41598-020-68486-1
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/srep15654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009015606
    245 https://doi.org/10.1038/srep15654
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/srep42392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084131160
    248 https://doi.org/10.1038/srep42392
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/tp.2015.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009026786
    251 https://doi.org/10.1038/tp.2015.91
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1186/1471-2164-15-897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026594151
    254 https://doi.org/10.1186/1471-2164-15-897
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1186/gb-2007-8-7-r139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024205457
    257 https://doi.org/10.1186/gb-2007-8-7-r139
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1186/s12859-019-3001-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123256562
    260 https://doi.org/10.1186/s12859-019-3001-4
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1186/s12874-015-0085-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040947318
    263 https://doi.org/10.1186/s12874-015-0085-z
    264 rdf:type schema:CreativeWork
    265 grid-institutes:grid.254224.7 schema:alternateName Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, 17546, Anseong, Gyeonggi-do, Republic of Korea
    266 schema:name Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, 17546, Anseong, Gyeonggi-do, Republic of Korea
    267 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...