Identification of recombination hotspots and quantitative trait loci for recombination rate in layer chickens View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Ziqing Weng, Anna Wolc, Hailin Su, Rohan L. Fernando, Jack C. M. Dekkers, Jesus Arango, Petek Settar, Janet E. Fulton, Neil P. O’Sullivan, Dorian J. Garrick

ABSTRACT

Background: The frequency of recombination events varies across the genome and between individuals, which may be related to some genomic features. The objective of this study was to assess the frequency of recombination events and to identify QTL (quantitative trait loci) for recombination rate in two purebred layer chicken lines. Methods: A total of 1200 white-egg layers (WL) were genotyped with 580 K SNPs and 5108 brown-egg layers (BL) were genotyped with 42 K SNPs (single nucleotide polymorphisms). Recombination events were identified within half-sib families and both the number of recombination events and the recombination rate was calculated within each 0.5 Mb window of the genome. The 10% of windows with the highest recombination rate on each chromosome were considered to be recombination hotspots. A BayesB model was used separately for each line to identify genomic regions associated with the genome-wide number of recombination event per meiosis. Regions that explained more than 0.8% of genetic variance of recombination rate were considered to harbor QTL. Results: Heritability of recombination rate was estimated at 0.17 in WL and 0.16 in BL. On average, 11.3 and 23.2 recombination events were detected per individual across the genome in 1301 and 9292 meioses in the WL and BL, respectively. The estimated recombination rates differed significantly between the lines, which could be due to differences in inbreeding levels, and haplotype structures. Dams had about 5% to 20% higher recombination rates per meiosis than sires in both lines. Recombination rate per 0.5 Mb window had a strong negative correlation with chromosome size and a strong positive correlation with GC content and with CpG island density across the genome in both lines. Different QTL for recombination rate were identified in the two lines. There were 190 and 199 non-overlapping recombination hotspots detected in WL and BL respectively, 28 of which were common to both lines. Conclusions: Differences in the recombination rates, hotspot locations, and QTL regions associated with genome-wide recombination were observed between lines, indicating the breed-specific feature of detected recombination events and the control of recombination events is a complex polygenic trait. More... »

PAGES

20

References to SciGraph publications

  • 2014-01. Common and low-frequency variants associated with genome-wide recombination rate in NATURE GENETICS
  • 2004-12. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution in NATURE
  • 2014-12. A new approach for efficient genotype imputation using information from relatives in BMC GENOMICS
  • 2013. Implementing a QTL Detection Study (GWAS) Using Genomic Prediction Methodology in GENOME-WIDE ASSOCIATION STUDIES AND GENOMIC PREDICTION
  • 2005-06. Human recombination hot spots hidden in regions of strong marker association in NATURE GENETICS
  • 2004-11. Recombination rate and reproductive success in humans in NATURE GENETICS
  • 2011-12. Persistence of accuracy of genomic estimated breeding values over generations in layer chickens in GENETICS SELECTION EVOLUTION
  • 2009-12. Comparison of linkage disequilibrium and haplotype diversity on macro- and microchromosomes in chicken in BMC GENETICS
  • 2014-12. Recombination locations and rates in beef cattle assessed from parent-offspring pairs in GENETICS SELECTION EVOLUTION
  • 2009-12. Deregressing estimated breeding values and weighting information for genomic regression analyses in GENETICS SELECTION EVOLUTION
  • 2010-03. Mammalian recombination hot spots: properties, control and evolution in NATURE REVIEWS GENETICS
  • 2013-12. Impact of GC content on gene expression pattern in chicken in GENETICS SELECTION EVOLUTION
  • 2002-07. A high-resolution recombination map of the human genome in NATURE GENETICS
  • 2013. Bayesian Methods Applied to GWAS in GENOME-WIDE ASSOCIATION STUDIES AND GENOMIC PREDICTION
  • 2011-08. Homolog pairing and sister chromatid cohesion in heterochromatin in Drosophila male meiosis I in CHROMOSOMA
  • 2011-12. Extension of the bayesian alphabet for genomic selection in BMC BIOINFORMATICS
  • 2015-12. A fast and efficient Gibbs sampler for BayesB in whole-genome analyses in GENETICS SELECTION EVOLUTION
  • 1996-03. Higher recombination frequencies in female compared to male meisoses in Brassica oleracea in THEORETICAL AND APPLIED GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40104-019-0332-y

    DOI

    http://dx.doi.org/10.1186/s40104-019-0332-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112386617

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30891237


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Iowa State University", 
              "id": "https://www.grid.ac/institutes/grid.34421.30", 
              "name": [
                "Department of Animal Science, Iowa State University, 50010, Ames, IA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Weng", 
            "givenName": "Ziqing", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hy-Line (United States)", 
              "id": "https://www.grid.ac/institutes/grid.498381.f", 
              "name": [
                "Department of Animal Science, Iowa State University, 50010, Ames, IA, USA", 
                "Hy-Line International, 50063, Dallas Center, IA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wolc", 
            "givenName": "Anna", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Iowa State University", 
              "id": "https://www.grid.ac/institutes/grid.34421.30", 
              "name": [
                "Department of Animal Science, Iowa State University, 50010, Ames, IA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Su", 
            "givenName": "Hailin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Iowa State University", 
              "id": "https://www.grid.ac/institutes/grid.34421.30", 
              "name": [
                "Department of Animal Science, Iowa State University, 50010, Ames, IA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fernando", 
            "givenName": "Rohan L.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Iowa State University", 
              "id": "https://www.grid.ac/institutes/grid.34421.30", 
              "name": [
                "Department of Animal Science, Iowa State University, 50010, Ames, IA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dekkers", 
            "givenName": "Jack C. M.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hy-Line (United States)", 
              "id": "https://www.grid.ac/institutes/grid.498381.f", 
              "name": [
                "Hy-Line International, 50063, Dallas Center, IA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Arango", 
            "givenName": "Jesus", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hy-Line (United States)", 
              "id": "https://www.grid.ac/institutes/grid.498381.f", 
              "name": [
                "Hy-Line International, 50063, Dallas Center, IA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Settar", 
            "givenName": "Petek", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hy-Line (United States)", 
              "id": "https://www.grid.ac/institutes/grid.498381.f", 
              "name": [
                "Hy-Line International, 50063, Dallas Center, IA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fulton", 
            "givenName": "Janet E.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hy-Line (United States)", 
              "id": "https://www.grid.ac/institutes/grid.498381.f", 
              "name": [
                "Hy-Line International, 50063, Dallas Center, IA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "O\u2019Sullivan", 
            "givenName": "Neil P.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massey University", 
              "id": "https://www.grid.ac/institutes/grid.148374.d", 
              "name": [
                "Department of Animal Science, Iowa State University, 50010, Ames, IA, USA", 
                "AL Rae Centre for Genetics and Breeding, Massey University, 4442, Palmerston North, New Zealand"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garrick", 
            "givenName": "Dorian J.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ng917", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002365953", 
              "https://doi.org/10.1038/ng917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng917", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002365953", 
              "https://doi.org/10.1038/ng917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-62703-447-0_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003060396", 
              "https://doi.org/10.1007/978-1-62703-447-0_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1445", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003108550", 
              "https://doi.org/10.1038/ng1445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1445", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003108550", 
              "https://doi.org/10.1038/ng1445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-41-55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004549609", 
              "https://doi.org/10.1186/1297-9686-41-55"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.3021305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004895021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006367901", 
              "https://doi.org/10.1038/nature03154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006367901", 
              "https://doi.org/10.1038/nature03154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00412-011-0314-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007610501", 
              "https://doi.org/10.1007/s00412-011-0314-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007770527", 
              "https://doi.org/10.1038/ng.2833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(95)90116-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007844187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bst0340531", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009810028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bst0340531", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009810028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1565", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010095814", 
              "https://doi.org/10.1038/ng1565"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1565", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010095814", 
              "https://doi.org/10.1038/ng1565"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014566053", 
              "https://doi.org/10.1186/1471-2105-12-186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-62703-447-0_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017415072", 
              "https://doi.org/10.1007/978-1-62703-447-0_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/519795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019061180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1002854", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023174446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-015-0157-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024038393", 
              "https://doi.org/10.1186/s12711-015-0157-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1006044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024960861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-478", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025098925", 
              "https://doi.org/10.1186/1471-2164-15-478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-43-23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025407857", 
              "https://doi.org/10.1186/1297-9686-43-23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.84.20.7218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026104133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0020321", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026594096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1005387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027238842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028409660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.185553", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028957288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.185553", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028957288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.185553", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028957288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1000648", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029774673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.112.141036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030310412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.112.141036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030310412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/gbe/evs046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033463244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-9525(03)00116-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034260011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0168-9525(03)00116-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034260011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jbg.12086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036876031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-46-34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038355306", 
              "https://doi.org/10.1186/1297-9686-46-34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.1970304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038640119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2712", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042715454", 
              "https://doi.org/10.1038/nrg2712"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2712", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042715454", 
              "https://doi.org/10.1038/nrg2712"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.086538.108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045232100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00223680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047095562", 
              "https://doi.org/10.1007/bf00223680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molcel.2005.09.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048058908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/geno.1995.1155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048752705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tig.2007.08.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052633205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-45-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052675341", 
              "https://doi.org/10.1186/1297-9686-45-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-10-86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053664265", 
              "https://doi.org/10.1186/1471-2156-10-86"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.109.108431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053725097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.109.108431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053725097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.204214.116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053786251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/302011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058609602"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1151851", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062457245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1152422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062457273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1181495", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062461218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/jas.2009-2064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070887006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/jas.2014-7821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070889529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074795580", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074949848", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082584365", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082939415", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7554/elife.24133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085905995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.117.300123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092091077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/dnares/dsx048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092623159"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Background: The frequency of recombination events varies across the genome and between individuals, which may be related to some genomic features. The objective of this study was to assess the frequency of recombination events and to identify QTL (quantitative trait loci) for recombination rate in two purebred layer chicken lines.\nMethods: A total of 1200 white-egg layers (WL) were genotyped with 580\u2009K SNPs and 5108 brown-egg layers (BL) were genotyped with 42\u2009K SNPs (single nucleotide polymorphisms). Recombination events were identified within half-sib families and both the number of recombination events and the recombination rate was calculated within each 0.5\u2009Mb window of the genome. The 10% of windows with the highest recombination rate on each chromosome were considered to be recombination hotspots. A BayesB model was used separately for each line to identify genomic regions associated with the genome-wide number of recombination event per meiosis. Regions that explained more than 0.8% of genetic variance of recombination rate were considered to harbor QTL.\nResults: Heritability of recombination rate was estimated at 0.17 in WL and 0.16 in BL. On average, 11.3 and 23.2 recombination events were detected per individual across the genome in 1301 and 9292 meioses in the WL and BL, respectively. The estimated recombination rates differed significantly between the lines, which could be due to differences in inbreeding levels, and haplotype structures. Dams had about 5% to 20% higher recombination rates per meiosis than sires in both lines. Recombination rate per 0.5\u2009Mb window had a strong negative correlation with chromosome size and a strong positive correlation with GC content and with CpG island density across the genome in both lines. Different QTL for recombination rate were identified in the two lines. There were 190 and 199 non-overlapping recombination hotspots detected in WL and BL respectively, 28 of which were common to both lines.\nConclusions: Differences in the recombination rates, hotspot locations, and QTL regions associated with genome-wide recombination were observed between lines, indicating the breed-specific feature of detected recombination events and the control of recombination events is a complex polygenic trait.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/s40104-019-0332-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3825270", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3955127", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1046697", 
            "issn": [
              "1674-9782", 
              "2049-1891"
            ], 
            "name": "Journal of Animal Science and Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "Identification of recombination hotspots and quantitative trait loci for recombination rate in layer chickens", 
        "pagination": "20", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e27a683e76cfe65e9faae0ff5a2cfb8a01766451aa61bb67d9037a742898000e"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30891237"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101581293"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40104-019-0332-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112386617"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40104-019-0332-y", 
          "https://app.dimensions.ai/details/publication/pub.1112386617"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78959_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1186%2Fs40104-019-0332-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40104-019-0332-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40104-019-0332-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40104-019-0332-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40104-019-0332-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    310 TRIPLES      21 PREDICATES      83 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40104-019-0332-y schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author Ndca470fc08454c4dac51f62c997a5548
    4 schema:citation sg:pub.10.1007/978-1-62703-447-0_10
    5 sg:pub.10.1007/978-1-62703-447-0_11
    6 sg:pub.10.1007/bf00223680
    7 sg:pub.10.1007/s00412-011-0314-0
    8 sg:pub.10.1038/nature03154
    9 sg:pub.10.1038/ng.2833
    10 sg:pub.10.1038/ng1445
    11 sg:pub.10.1038/ng1565
    12 sg:pub.10.1038/ng917
    13 sg:pub.10.1038/nrg2712
    14 sg:pub.10.1186/1297-9686-41-55
    15 sg:pub.10.1186/1297-9686-43-23
    16 sg:pub.10.1186/1297-9686-45-9
    17 sg:pub.10.1186/1297-9686-46-34
    18 sg:pub.10.1186/1471-2105-12-186
    19 sg:pub.10.1186/1471-2156-10-86
    20 sg:pub.10.1186/1471-2164-15-478
    21 sg:pub.10.1186/s12711-015-0157-x
    22 https://app.dimensions.ai/details/publication/pub.1074795580
    23 https://app.dimensions.ai/details/publication/pub.1074949848
    24 https://app.dimensions.ai/details/publication/pub.1082584365
    25 https://app.dimensions.ai/details/publication/pub.1082939415
    26 https://doi.org/10.1006/geno.1995.1155
    27 https://doi.org/10.1016/0092-8674(95)90116-7
    28 https://doi.org/10.1016/j.molcel.2005.09.021
    29 https://doi.org/10.1016/j.tig.2007.08.015
    30 https://doi.org/10.1016/s0168-9525(03)00116-1
    31 https://doi.org/10.1042/bst0340531
    32 https://doi.org/10.1073/pnas.84.20.7218
    33 https://doi.org/10.1086/302011
    34 https://doi.org/10.1086/519795
    35 https://doi.org/10.1093/bioinformatics/btu859
    36 https://doi.org/10.1093/dnares/dsx048
    37 https://doi.org/10.1093/gbe/evs046
    38 https://doi.org/10.1101/gr.086538.108
    39 https://doi.org/10.1101/gr.1970304
    40 https://doi.org/10.1101/gr.204214.116
    41 https://doi.org/10.1101/gr.3021305
    42 https://doi.org/10.1111/jbg.12086
    43 https://doi.org/10.1126/science.1151851
    44 https://doi.org/10.1126/science.1152422
    45 https://doi.org/10.1126/science.1181495
    46 https://doi.org/10.1371/journal.pgen.1000648
    47 https://doi.org/10.1371/journal.pgen.1002854
    48 https://doi.org/10.1371/journal.pgen.1005387
    49 https://doi.org/10.1371/journal.pgen.1006044
    50 https://doi.org/10.1371/journal.pone.0020321
    51 https://doi.org/10.1534/genetics.109.108431
    52 https://doi.org/10.1534/genetics.112.141036
    53 https://doi.org/10.1534/genetics.115.185553
    54 https://doi.org/10.1534/genetics.117.300123
    55 https://doi.org/10.2527/jas.2009-2064
    56 https://doi.org/10.2527/jas.2014-7821
    57 https://doi.org/10.7554/elife.24133
    58 schema:datePublished 2019-12
    59 schema:datePublishedReg 2019-12-01
    60 schema:description Background: The frequency of recombination events varies across the genome and between individuals, which may be related to some genomic features. The objective of this study was to assess the frequency of recombination events and to identify QTL (quantitative trait loci) for recombination rate in two purebred layer chicken lines. Methods: A total of 1200 white-egg layers (WL) were genotyped with 580 K SNPs and 5108 brown-egg layers (BL) were genotyped with 42 K SNPs (single nucleotide polymorphisms). Recombination events were identified within half-sib families and both the number of recombination events and the recombination rate was calculated within each 0.5 Mb window of the genome. The 10% of windows with the highest recombination rate on each chromosome were considered to be recombination hotspots. A BayesB model was used separately for each line to identify genomic regions associated with the genome-wide number of recombination event per meiosis. Regions that explained more than 0.8% of genetic variance of recombination rate were considered to harbor QTL. Results: Heritability of recombination rate was estimated at 0.17 in WL and 0.16 in BL. On average, 11.3 and 23.2 recombination events were detected per individual across the genome in 1301 and 9292 meioses in the WL and BL, respectively. The estimated recombination rates differed significantly between the lines, which could be due to differences in inbreeding levels, and haplotype structures. Dams had about 5% to 20% higher recombination rates per meiosis than sires in both lines. Recombination rate per 0.5 Mb window had a strong negative correlation with chromosome size and a strong positive correlation with GC content and with CpG island density across the genome in both lines. Different QTL for recombination rate were identified in the two lines. There were 190 and 199 non-overlapping recombination hotspots detected in WL and BL respectively, 28 of which were common to both lines. Conclusions: Differences in the recombination rates, hotspot locations, and QTL regions associated with genome-wide recombination were observed between lines, indicating the breed-specific feature of detected recombination events and the control of recombination events is a complex polygenic trait.
    61 schema:genre research_article
    62 schema:inLanguage en
    63 schema:isAccessibleForFree true
    64 schema:isPartOf N11899aa17cdc4fbdb7abdc65c0120fe7
    65 N15d6f5b013d142cc963b322d3ec70b2d
    66 sg:journal.1046697
    67 schema:name Identification of recombination hotspots and quantitative trait loci for recombination rate in layer chickens
    68 schema:pagination 20
    69 schema:productId N17b7a5ba1dfe463f86639d91900f75cd
    70 N27b56397999e4297894095a1e88c976f
    71 N74ff277be94a4d5da10e4099a0302d55
    72 N8a32392cc2044c9e94c39402708546e6
    73 Nc99944040dd046d2962e6e8dec208480
    74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112386617
    75 https://doi.org/10.1186/s40104-019-0332-y
    76 schema:sdDatePublished 2019-04-11T13:19
    77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    78 schema:sdPublisher N02a3537ae4ea450689e91be2fa4d1f52
    79 schema:url https://link.springer.com/10.1186%2Fs40104-019-0332-y
    80 sgo:license sg:explorer/license/
    81 sgo:sdDataset articles
    82 rdf:type schema:ScholarlyArticle
    83 N02a3537ae4ea450689e91be2fa4d1f52 schema:name Springer Nature - SN SciGraph project
    84 rdf:type schema:Organization
    85 N0769b55dd3f34210aec783b69657c595 rdf:first Nd3913719086b4d78b9f7a143d9bc5862
    86 rdf:rest Nfb4ab3c23a9549c694a6e0999dc25f19
    87 N11899aa17cdc4fbdb7abdc65c0120fe7 schema:volumeNumber 10
    88 rdf:type schema:PublicationVolume
    89 N15d6f5b013d142cc963b322d3ec70b2d schema:issueNumber 1
    90 rdf:type schema:PublicationIssue
    91 N17b7a5ba1dfe463f86639d91900f75cd schema:name pubmed_id
    92 schema:value 30891237
    93 rdf:type schema:PropertyValue
    94 N249727e72db448ef917a003ab710f670 schema:affiliation https://www.grid.ac/institutes/grid.148374.d
    95 schema:familyName Garrick
    96 schema:givenName Dorian J.
    97 rdf:type schema:Person
    98 N27b56397999e4297894095a1e88c976f schema:name dimensions_id
    99 schema:value pub.1112386617
    100 rdf:type schema:PropertyValue
    101 N39dc05a699f64138a5f81e965c568d5f schema:affiliation https://www.grid.ac/institutes/grid.498381.f
    102 schema:familyName Arango
    103 schema:givenName Jesus
    104 rdf:type schema:Person
    105 N3ca3ff053cf94e8b91cb7e0e973b5c19 rdf:first Nd535eb35205d4037b91fad2f332957ab
    106 rdf:rest N0769b55dd3f34210aec783b69657c595
    107 N47c86fe53f554d42bfc48c63c53bd121 schema:affiliation https://www.grid.ac/institutes/grid.498381.f
    108 schema:familyName Settar
    109 schema:givenName Petek
    110 rdf:type schema:Person
    111 N554fe849bb3644609e64145bdf991411 schema:affiliation https://www.grid.ac/institutes/grid.34421.30
    112 schema:familyName Fernando
    113 schema:givenName Rohan L.
    114 rdf:type schema:Person
    115 N5b645480be0b411ab4135ac33bdaafdc rdf:first N39dc05a699f64138a5f81e965c568d5f
    116 rdf:rest N6d6fa6ea05924681a88be31a5f561e5d
    117 N6d6fa6ea05924681a88be31a5f561e5d rdf:first N47c86fe53f554d42bfc48c63c53bd121
    118 rdf:rest N3ca3ff053cf94e8b91cb7e0e973b5c19
    119 N74ff277be94a4d5da10e4099a0302d55 schema:name nlm_unique_id
    120 schema:value 101581293
    121 rdf:type schema:PropertyValue
    122 N82321ec5357d4dadae49328ba3b4b60a schema:affiliation https://www.grid.ac/institutes/grid.34421.30
    123 schema:familyName Su
    124 schema:givenName Hailin
    125 rdf:type schema:Person
    126 N842ed6d58f9e446b92110c369322a0aa rdf:first N82321ec5357d4dadae49328ba3b4b60a
    127 rdf:rest Nd759da7ff6f640c8a852356077811751
    128 N84fe7d1a8f97429581e4881c43f8f846 schema:affiliation https://www.grid.ac/institutes/grid.34421.30
    129 schema:familyName Weng
    130 schema:givenName Ziqing
    131 rdf:type schema:Person
    132 N8a32392cc2044c9e94c39402708546e6 schema:name doi
    133 schema:value 10.1186/s40104-019-0332-y
    134 rdf:type schema:PropertyValue
    135 N8f67810976af4355bb48473e6bb2a727 schema:affiliation https://www.grid.ac/institutes/grid.34421.30
    136 schema:familyName Dekkers
    137 schema:givenName Jack C. M.
    138 rdf:type schema:Person
    139 Na5cd2cb9315b4317ad21d78aee0007e2 rdf:first Nb0fee90cc8e140b19710142bad7bb577
    140 rdf:rest N842ed6d58f9e446b92110c369322a0aa
    141 Nb0fee90cc8e140b19710142bad7bb577 schema:affiliation https://www.grid.ac/institutes/grid.498381.f
    142 schema:familyName Wolc
    143 schema:givenName Anna
    144 rdf:type schema:Person
    145 Nc81de819c528442c911f66400852a4a6 rdf:first N8f67810976af4355bb48473e6bb2a727
    146 rdf:rest N5b645480be0b411ab4135ac33bdaafdc
    147 Nc99944040dd046d2962e6e8dec208480 schema:name readcube_id
    148 schema:value e27a683e76cfe65e9faae0ff5a2cfb8a01766451aa61bb67d9037a742898000e
    149 rdf:type schema:PropertyValue
    150 Nd3913719086b4d78b9f7a143d9bc5862 schema:affiliation https://www.grid.ac/institutes/grid.498381.f
    151 schema:familyName O’Sullivan
    152 schema:givenName Neil P.
    153 rdf:type schema:Person
    154 Nd535eb35205d4037b91fad2f332957ab schema:affiliation https://www.grid.ac/institutes/grid.498381.f
    155 schema:familyName Fulton
    156 schema:givenName Janet E.
    157 rdf:type schema:Person
    158 Nd759da7ff6f640c8a852356077811751 rdf:first N554fe849bb3644609e64145bdf991411
    159 rdf:rest Nc81de819c528442c911f66400852a4a6
    160 Ndca470fc08454c4dac51f62c997a5548 rdf:first N84fe7d1a8f97429581e4881c43f8f846
    161 rdf:rest Na5cd2cb9315b4317ad21d78aee0007e2
    162 Nfb4ab3c23a9549c694a6e0999dc25f19 rdf:first N249727e72db448ef917a003ab710f670
    163 rdf:rest rdf:nil
    164 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    165 schema:name Biological Sciences
    166 rdf:type schema:DefinedTerm
    167 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    168 schema:name Genetics
    169 rdf:type schema:DefinedTerm
    170 sg:grant.3825270 http://pending.schema.org/fundedItem sg:pub.10.1186/s40104-019-0332-y
    171 rdf:type schema:MonetaryGrant
    172 sg:grant.3955127 http://pending.schema.org/fundedItem sg:pub.10.1186/s40104-019-0332-y
    173 rdf:type schema:MonetaryGrant
    174 sg:journal.1046697 schema:issn 1674-9782
    175 2049-1891
    176 schema:name Journal of Animal Science and Biotechnology
    177 rdf:type schema:Periodical
    178 sg:pub.10.1007/978-1-62703-447-0_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017415072
    179 https://doi.org/10.1007/978-1-62703-447-0_10
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/978-1-62703-447-0_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003060396
    182 https://doi.org/10.1007/978-1-62703-447-0_11
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/bf00223680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047095562
    185 https://doi.org/10.1007/bf00223680
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s00412-011-0314-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007610501
    188 https://doi.org/10.1007/s00412-011-0314-0
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nature03154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006367901
    191 https://doi.org/10.1038/nature03154
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/ng.2833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007770527
    194 https://doi.org/10.1038/ng.2833
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/ng1445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003108550
    197 https://doi.org/10.1038/ng1445
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/ng1565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010095814
    200 https://doi.org/10.1038/ng1565
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/ng917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002365953
    203 https://doi.org/10.1038/ng917
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nrg2712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042715454
    206 https://doi.org/10.1038/nrg2712
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1186/1297-9686-41-55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004549609
    209 https://doi.org/10.1186/1297-9686-41-55
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1186/1297-9686-43-23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025407857
    212 https://doi.org/10.1186/1297-9686-43-23
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1186/1297-9686-45-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052675341
    215 https://doi.org/10.1186/1297-9686-45-9
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1186/1297-9686-46-34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038355306
    218 https://doi.org/10.1186/1297-9686-46-34
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1186/1471-2105-12-186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014566053
    221 https://doi.org/10.1186/1471-2105-12-186
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1186/1471-2156-10-86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053664265
    224 https://doi.org/10.1186/1471-2156-10-86
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1186/1471-2164-15-478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025098925
    227 https://doi.org/10.1186/1471-2164-15-478
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1186/s12711-015-0157-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024038393
    230 https://doi.org/10.1186/s12711-015-0157-x
    231 rdf:type schema:CreativeWork
    232 https://app.dimensions.ai/details/publication/pub.1074795580 schema:CreativeWork
    233 https://app.dimensions.ai/details/publication/pub.1074949848 schema:CreativeWork
    234 https://app.dimensions.ai/details/publication/pub.1082584365 schema:CreativeWork
    235 https://app.dimensions.ai/details/publication/pub.1082939415 schema:CreativeWork
    236 https://doi.org/10.1006/geno.1995.1155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048752705
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1016/0092-8674(95)90116-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007844187
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1016/j.molcel.2005.09.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048058908
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1016/j.tig.2007.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052633205
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1016/s0168-9525(03)00116-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034260011
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1042/bst0340531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009810028
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1073/pnas.84.20.7218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026104133
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1086/302011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058609602
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1086/519795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061180
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1093/bioinformatics/btu859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028409660
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1093/dnares/dsx048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092623159
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1093/gbe/evs046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033463244
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1101/gr.086538.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045232100
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1101/gr.1970304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038640119
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1101/gr.204214.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053786251
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1101/gr.3021305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004895021
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1111/jbg.12086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036876031
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1126/science.1151851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457245
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1126/science.1152422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457273
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1126/science.1181495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062461218
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1371/journal.pgen.1000648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029774673
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1371/journal.pgen.1002854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023174446
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1371/journal.pgen.1005387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027238842
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1371/journal.pgen.1006044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024960861
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1371/journal.pone.0020321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026594096
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1534/genetics.109.108431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053725097
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1534/genetics.112.141036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030310412
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1534/genetics.115.185553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028957288
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1534/genetics.117.300123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092091077
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.2527/jas.2009-2064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070887006
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.2527/jas.2014-7821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070889529
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.7554/elife.24133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085905995
    299 rdf:type schema:CreativeWork
    300 https://www.grid.ac/institutes/grid.148374.d schema:alternateName Massey University
    301 schema:name AL Rae Centre for Genetics and Breeding, Massey University, 4442, Palmerston North, New Zealand
    302 Department of Animal Science, Iowa State University, 50010, Ames, IA, USA
    303 rdf:type schema:Organization
    304 https://www.grid.ac/institutes/grid.34421.30 schema:alternateName Iowa State University
    305 schema:name Department of Animal Science, Iowa State University, 50010, Ames, IA, USA
    306 rdf:type schema:Organization
    307 https://www.grid.ac/institutes/grid.498381.f schema:alternateName Hy-Line (United States)
    308 schema:name Department of Animal Science, Iowa State University, 50010, Ames, IA, USA
    309 Hy-Line International, 50063, Dallas Center, IA, USA
    310 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...