Genome wide association study identifies SNPs associated with fatty acid composition in Chinese Wagyu cattle View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Zezhao Wang, Bo Zhu, Hong Niu, Wengang Zhang, Ling Xu, Lei Xu, Yan Chen, Lupei Zhang, Xue Gao, Huijiang Gao, Shengli Zhang, Lingyang Xu, Junya Li

ABSTRACT

Background: Fatty acids are important traits that affect meat quality and nutritive values in beef cattle. Detection of genetic variants for fatty acid composition can help to elucidate the genetic mechanism underpinning these traits and promote the improvement of fatty acid profiles. In this study, we performed a genome-wide association study (GWAS) on fatty acid composition using high-density single nucleotide polymorphism (SNP) arrays in Chinese Wagyu cattle. Results: In total, we detected 15 and 8 significant genome-wide SNPs for individual fatty acids and fatty acid groups in Chinese Wagyu cattle, respectively. Also, we identified nine candidate genes based on 100 kb regions around associated SNPs. Four SNPs significantly associated with C14:1 cis-9 were embedded with stearoyl-CoA desaturase (SCD), while three SNPs in total were identified for C22:6 n-3 within Phospholipid scramblase family member 5 (PLSCR5), Cytoplasmic linker associated protein 1 (CLASP1), and Chymosin (CYM). Notably, we found the top candidate SNP within SCD can explain ~ 7.37% of phenotypic variance for C14:1 cis-9. Moreover, we detected several blocks with high LD in the 100 kb region around SCD. In addition, we found three significant SNPs within a 100 kb region showing pleiotropic effects related to multiple FA groups (PUFA, n-6, and PUFA/SFA), which contains BAI1 associated protein 2 like 2 (BAIAP2L2), MAF bZIP transcription factor F (MAFF), and transmembrane protein 184B (TMEM184B). Conclusions: Our study identified several significant SNPs and candidate genes for individual fatty acids and fatty acid groups in Chinese Wagyu cattle, and these findings will further assist the design of breeding programs for meat quality in cattle. More... »

PAGES

27

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40104-019-0322-0

DOI

http://dx.doi.org/10.1186/s40104-019-0322-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112527738

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30867906


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Animal Sciences", 
          "id": "https://www.grid.ac/institutes/grid.464332.4", 
          "name": [
            "Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193, Beijing, China", 
            "National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zezhao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Animal Sciences", 
          "id": "https://www.grid.ac/institutes/grid.464332.4", 
          "name": [
            "Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Bo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Animal Sciences", 
          "id": "https://www.grid.ac/institutes/grid.464332.4", 
          "name": [
            "Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niu", 
        "givenName": "Hong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Animal Sciences", 
          "id": "https://www.grid.ac/institutes/grid.464332.4", 
          "name": [
            "Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Wengang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Animal Sciences", 
          "id": "https://www.grid.ac/institutes/grid.464332.4", 
          "name": [
            "Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Ling", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anhui Academy of Agricultural Sciences", 
          "id": "https://www.grid.ac/institutes/grid.469521.d", 
          "name": [
            "Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193, Beijing, China", 
            "Institute of Animal Husbandry and Veterinary Research, Anhui Academy of Agricultural Sciences, 230031, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Lei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Animal Sciences", 
          "id": "https://www.grid.ac/institutes/grid.464332.4", 
          "name": [
            "Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Animal Sciences", 
          "id": "https://www.grid.ac/institutes/grid.464332.4", 
          "name": [
            "Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Lupei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Animal Sciences", 
          "id": "https://www.grid.ac/institutes/grid.464332.4", 
          "name": [
            "Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Xue", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Animal Sciences", 
          "id": "https://www.grid.ac/institutes/grid.464332.4", 
          "name": [
            "Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Huijiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Shengli", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Animal Sciences", 
          "id": "https://www.grid.ac/institutes/grid.464332.4", 
          "name": [
            "Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Lingyang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Animal Sciences", 
          "id": "https://www.grid.ac/institutes/grid.464332.4", 
          "name": [
            "Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Junya", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1074/mcp.m113.035600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000153846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/nu4121989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000643958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1740-0929.2006.00375.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004506952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meatsci.2012.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004960965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meatsci.2012.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004960965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2015-9383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007906493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40104-015-0026-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007928290", 
          "https://doi.org/10.1186/s40104-015-0026-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40104-015-0026-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007928290", 
          "https://doi.org/10.1186/s40104-015-0026-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008081196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2011.02213.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009485775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/pns2005465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010051165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/pns2005465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010051165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00335-003-2286-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011417847", 
          "https://doi.org/10.1007/s00335-003-2286-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-14-730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013612567", 
          "https://doi.org/10.1186/1471-2164-14-730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/an16107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014886516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1005767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017686874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1194/jlr.m004747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018306970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/519795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019061180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12863-015-0290-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021443076", 
          "https://doi.org/10.1186/s12863-015-0290-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meatsci.2007.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022344100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2156-15-39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022386366", 
          "https://doi.org/10.1186/1471-2156-15-39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-09-0775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022411866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/bbrc.1999.1704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025874617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0309-1740(98)00065-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027150932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0096186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029753219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/physiolgenomics.00066.2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031061530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/asj.12622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031211660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0309-1740(96)84588-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031350401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13258-016-0401-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032580349", 
          "https://doi.org/10.1007/s13258-016-0401-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0309-1740(01)00053-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034153936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036147444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1751731111000012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037047077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12711-015-0173-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038373209", 
          "https://doi.org/10.1186/s12711-015-0173-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2012.02331.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038411920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meatsci.2013.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042120596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-9-516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042702003", 
          "https://doi.org/10.1186/1471-2164-9-516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/asj.12595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044268717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12711-016-0184-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045138155", 
          "https://doi.org/10.1186/s12711-016-0184-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1004198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045915564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1439-0396.2000.00256.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046553450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/asj.12613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048142395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-016-3232-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049271355", 
          "https://doi.org/10.1186/s12864-016-3232-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-016-3232-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049271355", 
          "https://doi.org/10.1186/s12864-016-3232-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-016-2511-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049514063", 
          "https://doi.org/10.1186/s12864-016-2511-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0065554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050312479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meatsci.2014.07.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050588360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/asj.12063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051079843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2011.02217.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051251723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051461847", 
          "https://doi.org/10.1038/nrg2575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051461847", 
          "https://doi.org/10.1038/nrg2575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2052.2010.02088.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051994576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-14-519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053560160", 
          "https://doi.org/10.1186/1471-2164-14-519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s002202991100080x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054086821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/animres:2004003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056949273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v023.i08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/2002.80112825x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070881815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/jas.2009-2300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070887101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/jas.2010-3121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070887472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/jas.2013-6901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070889127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/jas1982.55177x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070899967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075727656", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077799697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meatsci.2017.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083765085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0175777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084870686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpls.2017.00886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085716171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-017-3847-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086034711", 
          "https://doi.org/10.1186/s12864-017-3847-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-017-3847-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086034711", 
          "https://doi.org/10.1186/s12864-017-3847-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-09170-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091148424", 
          "https://doi.org/10.1038/s41598-017-09170-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-09170-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091148424", 
          "https://doi.org/10.1038/s41598-017-09170-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2017-13225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099663278"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Background: Fatty acids are important traits that affect meat quality and nutritive values in beef cattle. Detection of genetic variants for fatty acid composition can help to elucidate the genetic mechanism underpinning these traits and promote the improvement of fatty acid profiles. In this study, we performed a genome-wide association study (GWAS) on fatty acid composition using high-density single nucleotide polymorphism (SNP) arrays in Chinese Wagyu cattle.\nResults: In total, we detected 15 and 8 significant genome-wide SNPs for individual fatty acids and fatty acid groups in Chinese Wagyu cattle, respectively. Also, we identified nine candidate genes based on 100\u2009kb regions around associated SNPs. Four SNPs significantly associated with C14:1 cis-9 were embedded with stearoyl-CoA desaturase (SCD), while three SNPs in total were identified for C22:6 n-3 within Phospholipid scramblase family member 5 (PLSCR5), Cytoplasmic linker associated protein 1 (CLASP1), and Chymosin (CYM). Notably, we found the top candidate SNP within SCD can explain ~\u20097.37% of phenotypic variance for C14:1 cis-9. Moreover, we detected several blocks with high LD in the 100\u2009kb region around SCD. In addition, we found three significant SNPs within a 100\u2009kb region showing pleiotropic effects related to multiple FA groups (PUFA, n-6, and PUFA/SFA), which contains BAI1 associated protein 2 like 2 (BAIAP2L2), MAF bZIP transcription factor F (MAFF), and transmembrane protein 184B (TMEM184B).\nConclusions: Our study identified several significant SNPs and candidate genes for individual fatty acids and fatty acid groups in Chinese Wagyu cattle, and these findings will further assist the design of breeding programs for meat quality in cattle.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40104-019-0322-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1046697", 
        "issn": [
          "1674-9782", 
          "2049-1891"
        ], 
        "name": "Journal of Animal Science and Biotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Genome wide association study identifies SNPs associated with fatty acid composition in Chinese Wagyu cattle", 
    "pagination": "27", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "131470a4677dec606a933eaf423c407c8f88c09d0a7e34e477286b0536be4475"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30867906"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101581293"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40104-019-0322-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112527738"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40104-019-0322-0", 
      "https://app.dimensions.ai/details/publication/pub.1112527738"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78965_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs40104-019-0322-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40104-019-0322-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40104-019-0322-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40104-019-0322-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40104-019-0322-0'


 

This table displays all metadata directly associated to this object as RDF triples.

350 TRIPLES      21 PREDICATES      92 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40104-019-0322-0 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Nd758f1ab024a44a98d6f57f841ee2bd3
4 schema:citation sg:pub.10.1007/s00335-003-2286-8
5 sg:pub.10.1007/s13258-016-0401-y
6 sg:pub.10.1038/nrg2575
7 sg:pub.10.1038/s41598-017-09170-9
8 sg:pub.10.1186/1471-2156-15-39
9 sg:pub.10.1186/1471-2164-14-519
10 sg:pub.10.1186/1471-2164-14-730
11 sg:pub.10.1186/1471-2164-9-516
12 sg:pub.10.1186/s12711-015-0173-x
13 sg:pub.10.1186/s12711-016-0184-2
14 sg:pub.10.1186/s12863-015-0290-0
15 sg:pub.10.1186/s12864-016-2511-y
16 sg:pub.10.1186/s12864-016-3232-y
17 sg:pub.10.1186/s12864-017-3847-7
18 sg:pub.10.1186/s40104-015-0026-z
19 https://app.dimensions.ai/details/publication/pub.1075727656
20 https://doi.org/10.1006/bbrc.1999.1704
21 https://doi.org/10.1016/0309-1740(96)84588-8
22 https://doi.org/10.1016/j.meatsci.2007.07.019
23 https://doi.org/10.1016/j.meatsci.2012.03.016
24 https://doi.org/10.1016/j.meatsci.2013.10.011
25 https://doi.org/10.1016/j.meatsci.2014.07.030
26 https://doi.org/10.1016/j.meatsci.2017.02.007
27 https://doi.org/10.1016/s0309-1740(01)00053-5
28 https://doi.org/10.1016/s0309-1740(98)00065-5
29 https://doi.org/10.1017/s002202991100080x
30 https://doi.org/10.1017/s1751731111000012
31 https://doi.org/10.1046/j.1439-0396.2000.00256.x
32 https://doi.org/10.1051/animres:2004003
33 https://doi.org/10.1071/an16107
34 https://doi.org/10.1074/mcp.m113.035600
35 https://doi.org/10.1079/pns2005465
36 https://doi.org/10.1086/519795
37 https://doi.org/10.1093/bioinformatics/bth457
38 https://doi.org/10.1093/bioinformatics/bts444
39 https://doi.org/10.1111/asj.12063
40 https://doi.org/10.1111/asj.12595
41 https://doi.org/10.1111/asj.12613
42 https://doi.org/10.1111/asj.12622
43 https://doi.org/10.1111/j.1365-2052.2010.02088.x
44 https://doi.org/10.1111/j.1365-2052.2011.02213.x
45 https://doi.org/10.1111/j.1365-2052.2011.02217.x
46 https://doi.org/10.1111/j.1365-2052.2012.02331.x
47 https://doi.org/10.1111/j.1740-0929.2006.00375.x
48 https://doi.org/10.1152/physiolgenomics.00066.2013
49 https://doi.org/10.1158/0008-5472.can-09-0775
50 https://doi.org/10.1194/jlr.m004747
51 https://doi.org/10.1371/journal.pgen.1004198
52 https://doi.org/10.1371/journal.pgen.1005767
53 https://doi.org/10.1371/journal.pone.0065554
54 https://doi.org/10.1371/journal.pone.0096186
55 https://doi.org/10.1371/journal.pone.0175777
56 https://doi.org/10.18637/jss.v023.i08
57 https://doi.org/10.2527/2002.80112825x
58 https://doi.org/10.2527/jas.2009-2300
59 https://doi.org/10.2527/jas.2010-3121
60 https://doi.org/10.2527/jas.2013-6901
61 https://doi.org/10.2527/jas1982.55177x
62 https://doi.org/10.3168/jds.2007-0980
63 https://doi.org/10.3168/jds.2015-9383
64 https://doi.org/10.3168/jds.2017-13225
65 https://doi.org/10.3389/fpls.2017.00886
66 https://doi.org/10.3390/nu4121989
67 schema:datePublished 2019-12
68 schema:datePublishedReg 2019-12-01
69 schema:description Background: Fatty acids are important traits that affect meat quality and nutritive values in beef cattle. Detection of genetic variants for fatty acid composition can help to elucidate the genetic mechanism underpinning these traits and promote the improvement of fatty acid profiles. In this study, we performed a genome-wide association study (GWAS) on fatty acid composition using high-density single nucleotide polymorphism (SNP) arrays in Chinese Wagyu cattle. Results: In total, we detected 15 and 8 significant genome-wide SNPs for individual fatty acids and fatty acid groups in Chinese Wagyu cattle, respectively. Also, we identified nine candidate genes based on 100 kb regions around associated SNPs. Four SNPs significantly associated with C14:1 cis-9 were embedded with stearoyl-CoA desaturase (SCD), while three SNPs in total were identified for C22:6 n-3 within Phospholipid scramblase family member 5 (PLSCR5), Cytoplasmic linker associated protein 1 (CLASP1), and Chymosin (CYM). Notably, we found the top candidate SNP within SCD can explain ~ 7.37% of phenotypic variance for C14:1 cis-9. Moreover, we detected several blocks with high LD in the 100 kb region around SCD. In addition, we found three significant SNPs within a 100 kb region showing pleiotropic effects related to multiple FA groups (PUFA, n-6, and PUFA/SFA), which contains BAI1 associated protein 2 like 2 (BAIAP2L2), MAF bZIP transcription factor F (MAFF), and transmembrane protein 184B (TMEM184B). Conclusions: Our study identified several significant SNPs and candidate genes for individual fatty acids and fatty acid groups in Chinese Wagyu cattle, and these findings will further assist the design of breeding programs for meat quality in cattle.
70 schema:genre research_article
71 schema:inLanguage en
72 schema:isAccessibleForFree true
73 schema:isPartOf Nc92db890010a492ba5cd414e270ab9a9
74 Ndbc8ae6ce71c49bca1453591a125bd6d
75 sg:journal.1046697
76 schema:name Genome wide association study identifies SNPs associated with fatty acid composition in Chinese Wagyu cattle
77 schema:pagination 27
78 schema:productId N175a3237db19479e91749c0eee230525
79 N43af2647fe7b4e529990d1ff128f0956
80 Nc79c7cadd4af47548ab69b836388b742
81 Nd906badfdc3f49c0ae627fe2b05054db
82 Neae53725d6f947c498f4012824bc9cd5
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112527738
84 https://doi.org/10.1186/s40104-019-0322-0
85 schema:sdDatePublished 2019-04-11T13:20
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher N46be0751e36043c88ad793f0b57842d9
88 schema:url https://link.springer.com/10.1186%2Fs40104-019-0322-0
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N1465194715b84e38b7ac707654c5f4de schema:affiliation https://www.grid.ac/institutes/grid.464332.4
93 schema:familyName Li
94 schema:givenName Junya
95 rdf:type schema:Person
96 N175a3237db19479e91749c0eee230525 schema:name dimensions_id
97 schema:value pub.1112527738
98 rdf:type schema:PropertyValue
99 N189bcaca796c4a0bbecad631ce1018e5 rdf:first N2dd5d5b6a3fc45d89c8ce9a4755aaa4f
100 rdf:rest Nf63c3948c409452ebc17331f055975f0
101 N2dd5d5b6a3fc45d89c8ce9a4755aaa4f schema:affiliation https://www.grid.ac/institutes/grid.464332.4
102 schema:familyName Xu
103 schema:givenName Lingyang
104 rdf:type schema:Person
105 N3269e538d69a40ff8c8775eb7b7c9945 schema:affiliation Nedfe97fdb01f4a84888be9c9449687b5
106 schema:familyName Zhang
107 schema:givenName Shengli
108 rdf:type schema:Person
109 N43af2647fe7b4e529990d1ff128f0956 schema:name readcube_id
110 schema:value 131470a4677dec606a933eaf423c407c8f88c09d0a7e34e477286b0536be4475
111 rdf:type schema:PropertyValue
112 N46be0751e36043c88ad793f0b57842d9 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 N47ddd6c916604572a306fd185e6fe6da schema:affiliation https://www.grid.ac/institutes/grid.464332.4
115 schema:familyName Gao
116 schema:givenName Xue
117 rdf:type schema:Person
118 N4eb2b52703734110b15c9d6ee2352480 rdf:first Nc5c78934f0b34844b57ba41d3c62b5b7
119 rdf:rest N9257cbb4870b44749c86b3327bc15863
120 N582b601e188d4e12b7602beca46a17fa schema:affiliation https://www.grid.ac/institutes/grid.464332.4
121 schema:familyName Zhang
122 schema:givenName Wengang
123 rdf:type schema:Person
124 N6304ceb5addc4ebd9e79dcf830ac195c schema:affiliation https://www.grid.ac/institutes/grid.464332.4
125 schema:familyName Zhu
126 schema:givenName Bo
127 rdf:type schema:Person
128 N67d57fb7d4034b66a6af103209a761f6 rdf:first N6304ceb5addc4ebd9e79dcf830ac195c
129 rdf:rest N8ecbaa9569b34af1b6b4470ef9d52c30
130 N6d763e4fd48e4e8b9c0354265582d313 rdf:first N8f86359ccb914d149f8f27c85920875c
131 rdf:rest N4eb2b52703734110b15c9d6ee2352480
132 N6dcc0b604c55474192b13543aca59e34 rdf:first Ne4ef5c2887174b108437595acbc3e898
133 rdf:rest Ne09035bdbb784f709f5a69aed3dd0cc6
134 N7f2937b90e7541a68bd04b79e4bf9cd4 rdf:first Nf3b6c32506634ad191c9d5ec2a637c60
135 rdf:rest N6d763e4fd48e4e8b9c0354265582d313
136 N8ecbaa9569b34af1b6b4470ef9d52c30 rdf:first N94d6c1ae817c42878ffa51fe0e651d4e
137 rdf:rest N9a0c2b5c88ce40ef9485828a72f85f4f
138 N8f86359ccb914d149f8f27c85920875c schema:affiliation https://www.grid.ac/institutes/grid.464332.4
139 schema:familyName Chen
140 schema:givenName Yan
141 rdf:type schema:Person
142 N9257cbb4870b44749c86b3327bc15863 rdf:first N47ddd6c916604572a306fd185e6fe6da
143 rdf:rest N6dcc0b604c55474192b13543aca59e34
144 N94d6c1ae817c42878ffa51fe0e651d4e schema:affiliation https://www.grid.ac/institutes/grid.464332.4
145 schema:familyName Niu
146 schema:givenName Hong
147 rdf:type schema:Person
148 N9a0c2b5c88ce40ef9485828a72f85f4f rdf:first N582b601e188d4e12b7602beca46a17fa
149 rdf:rest N9e912ca2cfe94cce9721c32ede60e5e2
150 N9e912ca2cfe94cce9721c32ede60e5e2 rdf:first Na0b7455fbdf845c2a076a405e359e3fb
151 rdf:rest N7f2937b90e7541a68bd04b79e4bf9cd4
152 Na0b7455fbdf845c2a076a405e359e3fb schema:affiliation https://www.grid.ac/institutes/grid.464332.4
153 schema:familyName Xu
154 schema:givenName Ling
155 rdf:type schema:Person
156 Nc5c78934f0b34844b57ba41d3c62b5b7 schema:affiliation https://www.grid.ac/institutes/grid.464332.4
157 schema:familyName Zhang
158 schema:givenName Lupei
159 rdf:type schema:Person
160 Nc79c7cadd4af47548ab69b836388b742 schema:name nlm_unique_id
161 schema:value 101581293
162 rdf:type schema:PropertyValue
163 Nc92db890010a492ba5cd414e270ab9a9 schema:issueNumber 1
164 rdf:type schema:PublicationIssue
165 Nd758f1ab024a44a98d6f57f841ee2bd3 rdf:first Ne44e6a22617e457b82489d5d17d0ab03
166 rdf:rest N67d57fb7d4034b66a6af103209a761f6
167 Nd906badfdc3f49c0ae627fe2b05054db schema:name pubmed_id
168 schema:value 30867906
169 rdf:type schema:PropertyValue
170 Ndbc8ae6ce71c49bca1453591a125bd6d schema:volumeNumber 10
171 rdf:type schema:PublicationVolume
172 Ne09035bdbb784f709f5a69aed3dd0cc6 rdf:first N3269e538d69a40ff8c8775eb7b7c9945
173 rdf:rest N189bcaca796c4a0bbecad631ce1018e5
174 Ne44e6a22617e457b82489d5d17d0ab03 schema:affiliation https://www.grid.ac/institutes/grid.464332.4
175 schema:familyName Wang
176 schema:givenName Zezhao
177 rdf:type schema:Person
178 Ne4ef5c2887174b108437595acbc3e898 schema:affiliation https://www.grid.ac/institutes/grid.464332.4
179 schema:familyName Gao
180 schema:givenName Huijiang
181 rdf:type schema:Person
182 Neae53725d6f947c498f4012824bc9cd5 schema:name doi
183 schema:value 10.1186/s40104-019-0322-0
184 rdf:type schema:PropertyValue
185 Nedfe97fdb01f4a84888be9c9449687b5 schema:name National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
186 rdf:type schema:Organization
187 Nf3b6c32506634ad191c9d5ec2a637c60 schema:affiliation https://www.grid.ac/institutes/grid.469521.d
188 schema:familyName Xu
189 schema:givenName Lei
190 rdf:type schema:Person
191 Nf63c3948c409452ebc17331f055975f0 rdf:first N1465194715b84e38b7ac707654c5f4de
192 rdf:rest rdf:nil
193 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
194 schema:name Biological Sciences
195 rdf:type schema:DefinedTerm
196 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
197 schema:name Genetics
198 rdf:type schema:DefinedTerm
199 sg:journal.1046697 schema:issn 1674-9782
200 2049-1891
201 schema:name Journal of Animal Science and Biotechnology
202 rdf:type schema:Periodical
203 sg:pub.10.1007/s00335-003-2286-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011417847
204 https://doi.org/10.1007/s00335-003-2286-8
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/s13258-016-0401-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1032580349
207 https://doi.org/10.1007/s13258-016-0401-y
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/nrg2575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051461847
210 https://doi.org/10.1038/nrg2575
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/s41598-017-09170-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091148424
213 https://doi.org/10.1038/s41598-017-09170-9
214 rdf:type schema:CreativeWork
215 sg:pub.10.1186/1471-2156-15-39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022386366
216 https://doi.org/10.1186/1471-2156-15-39
217 rdf:type schema:CreativeWork
218 sg:pub.10.1186/1471-2164-14-519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053560160
219 https://doi.org/10.1186/1471-2164-14-519
220 rdf:type schema:CreativeWork
221 sg:pub.10.1186/1471-2164-14-730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013612567
222 https://doi.org/10.1186/1471-2164-14-730
223 rdf:type schema:CreativeWork
224 sg:pub.10.1186/1471-2164-9-516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042702003
225 https://doi.org/10.1186/1471-2164-9-516
226 rdf:type schema:CreativeWork
227 sg:pub.10.1186/s12711-015-0173-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038373209
228 https://doi.org/10.1186/s12711-015-0173-x
229 rdf:type schema:CreativeWork
230 sg:pub.10.1186/s12711-016-0184-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045138155
231 https://doi.org/10.1186/s12711-016-0184-2
232 rdf:type schema:CreativeWork
233 sg:pub.10.1186/s12863-015-0290-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021443076
234 https://doi.org/10.1186/s12863-015-0290-0
235 rdf:type schema:CreativeWork
236 sg:pub.10.1186/s12864-016-2511-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1049514063
237 https://doi.org/10.1186/s12864-016-2511-y
238 rdf:type schema:CreativeWork
239 sg:pub.10.1186/s12864-016-3232-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1049271355
240 https://doi.org/10.1186/s12864-016-3232-y
241 rdf:type schema:CreativeWork
242 sg:pub.10.1186/s12864-017-3847-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086034711
243 https://doi.org/10.1186/s12864-017-3847-7
244 rdf:type schema:CreativeWork
245 sg:pub.10.1186/s40104-015-0026-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1007928290
246 https://doi.org/10.1186/s40104-015-0026-z
247 rdf:type schema:CreativeWork
248 https://app.dimensions.ai/details/publication/pub.1075727656 schema:CreativeWork
249 https://doi.org/10.1006/bbrc.1999.1704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025874617
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/0309-1740(96)84588-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031350401
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/j.meatsci.2007.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022344100
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1016/j.meatsci.2012.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004960965
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/j.meatsci.2013.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042120596
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1016/j.meatsci.2014.07.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050588360
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1016/j.meatsci.2017.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083765085
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1016/s0309-1740(01)00053-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034153936
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1016/s0309-1740(98)00065-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027150932
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1017/s002202991100080x schema:sameAs https://app.dimensions.ai/details/publication/pub.1054086821
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1017/s1751731111000012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037047077
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1046/j.1439-0396.2000.00256.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046553450
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1051/animres:2004003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056949273
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1071/an16107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014886516
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1074/mcp.m113.035600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000153846
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1079/pns2005465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010051165
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1086/519795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061180
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1093/bioinformatics/bth457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008081196
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1093/bioinformatics/bts444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036147444
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1111/asj.12063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051079843
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1111/asj.12595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044268717
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1111/asj.12613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048142395
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1111/asj.12622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031211660
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1111/j.1365-2052.2010.02088.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051994576
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1111/j.1365-2052.2011.02213.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009485775
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1111/j.1365-2052.2011.02217.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051251723
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1111/j.1365-2052.2012.02331.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038411920
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1111/j.1740-0929.2006.00375.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004506952
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1152/physiolgenomics.00066.2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031061530
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1158/0008-5472.can-09-0775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022411866
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1194/jlr.m004747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018306970
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1371/journal.pgen.1004198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045915564
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1371/journal.pgen.1005767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017686874
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1371/journal.pone.0065554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050312479
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1371/journal.pone.0096186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029753219
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1371/journal.pone.0175777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084870686
320 rdf:type schema:CreativeWork
321 https://doi.org/10.18637/jss.v023.i08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672344
322 rdf:type schema:CreativeWork
323 https://doi.org/10.2527/2002.80112825x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070881815
324 rdf:type schema:CreativeWork
325 https://doi.org/10.2527/jas.2009-2300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070887101
326 rdf:type schema:CreativeWork
327 https://doi.org/10.2527/jas.2010-3121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070887472
328 rdf:type schema:CreativeWork
329 https://doi.org/10.2527/jas.2013-6901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070889127
330 rdf:type schema:CreativeWork
331 https://doi.org/10.2527/jas1982.55177x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070899967
332 rdf:type schema:CreativeWork
333 https://doi.org/10.3168/jds.2007-0980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077799697
334 rdf:type schema:CreativeWork
335 https://doi.org/10.3168/jds.2015-9383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007906493
336 rdf:type schema:CreativeWork
337 https://doi.org/10.3168/jds.2017-13225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099663278
338 rdf:type schema:CreativeWork
339 https://doi.org/10.3389/fpls.2017.00886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085716171
340 rdf:type schema:CreativeWork
341 https://doi.org/10.3390/nu4121989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000643958
342 rdf:type schema:CreativeWork
343 https://www.grid.ac/institutes/grid.464332.4 schema:alternateName Institute of Animal Sciences
344 schema:name Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
345 National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
346 rdf:type schema:Organization
347 https://www.grid.ac/institutes/grid.469521.d schema:alternateName Anhui Academy of Agricultural Sciences
348 schema:name Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
349 Institute of Animal Husbandry and Veterinary Research, Anhui Academy of Agricultural Sciences, 230031, Hefei, China
350 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...