Experimental Verification of Modal Identification of a High-rise Building Using Independent Component Analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Jae-Seung Hwang, Jung-Tae Noh, Sang-Hyun Lee, Ahsan Kareem

ABSTRACT

Independent component analysis is one of the linear transformation methods based the techniques for separating blind sources from the output signals of the system. Recently, the method has been analytically applied to the identification of mode shapes and modal responses from the output signal of structures. This study aims to experimentally validate the blind source separation using ICA method and propose a novel method for identification of the modal parameters from the decomposed modal responses. The result of the experimental testing on the three-story steel scale model shows that the mode shapes obtained by ICA method are in good agreement with those by the analytical and peak-picking method in the frequency domain. Based on the robust mathematical model, ICA can calculate the natural frequency and damping ratio effectively using the probability distribution function of the instantaneous natural frequency determined by Hilbert transform of the decomposed modal responses and the change in the output covariance. Finally, the validity of the proposed method paves the way for more effective output-only modal identification for assessment of existing steel-concrete buildings. More... »

PAGES

4

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40069-018-0319-7

DOI

http://dx.doi.org/10.1186/s40069-018-0319-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111219409


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chonnam National University", 
          "id": "https://www.grid.ac/institutes/grid.14005.30", 
          "name": [
            "School of Architecture, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186, Gwangju, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hwang", 
        "givenName": "Jae-Seung", 
        "id": "sg:person.012641752053.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012641752053.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ca Foscari University of Venice", 
          "id": "https://www.grid.ac/institutes/grid.7240.1", 
          "name": [
            "Department of Planning and Design in Complex Environments, IUAV University of Venice, 2206, Dorsoduro, 30123, Venice, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Noh", 
        "givenName": "Jung-Tae", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dankook University", 
          "id": "https://www.grid.ac/institutes/grid.411982.7", 
          "name": [
            "Department of Architectural Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, 16890, Yongin-Si, Gyeonggi-do, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Sang-Hyun", 
        "id": "sg:person.012314307211.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012314307211.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Notre Dame", 
          "id": "https://www.grid.ac/institutes/grid.131063.6", 
          "name": [
            "NatHaz Modeling Laboratory, Department of Civil & Environmental Engineering and Earth Sciences, University of Notre Dame, 46556, Notre Dame, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kareem", 
        "givenName": "Ahsan", 
        "id": "sg:person.011507167015.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011507167015.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ymssp.2012.08.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000624569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0735-7036.122.3.235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002130013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eqe.2302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004317667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/0899766054322964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006942853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/mssp.2002.1570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010319987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/mssp.2002.1570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010319987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2013.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010783814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2016.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014216087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11831-012-9069-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018414854", 
          "https://doi.org/10.1007/s11831-012-9069-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2005.07.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019607633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2015.10.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022026394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2015.10.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022026394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2015.10.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022026394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2015.10.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022026394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(00)00026-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025388351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jsvi.2001.4120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033173437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2006.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033885133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0964-1726/10/3/303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038375255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2010.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042599153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/mssp.1999.1249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044145866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2007.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047700350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1475921704041876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050077892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1475921704041876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050077892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/stc.1737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050120024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9445(1985)111:11(2479)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057595845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)em.1943-7889.0000133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057629684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)em.1943-7889.0000905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057630453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)st.1943-541x.0000621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057642266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)st.1943-541x.0001402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057643044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.720252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2010/691297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063203436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12989/sss.2015.15.1.081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064865791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2017.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084113460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40069-017-0198-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085440081", 
          "https://doi.org/10.1007/s40069-017-0198-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40069-017-0198-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085440081", 
          "https://doi.org/10.1007/s40069-017-0198-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40069-017-0207-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091592677", 
          "https://doi.org/10.1007/s40069-017-0207-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2002.5745435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094401848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471221317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471221317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)em.1943-7889.0001423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100523268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781119991656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108142989"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Independent component analysis is one of the linear transformation methods based the techniques for separating blind sources from the output signals of the system. Recently, the method has been analytically applied to the identification of mode shapes and modal responses from the output signal of structures. This study aims to experimentally validate the blind source separation using ICA method and propose a novel method for identification of the modal parameters from the decomposed modal responses. The result of the experimental testing on the three-story steel scale model shows that the mode shapes obtained by ICA method are in good agreement with those by the analytical and peak-picking method in the frequency domain. Based on the robust mathematical model, ICA can calculate the natural frequency and damping ratio effectively using the probability distribution function of the instantaneous natural frequency determined by Hilbert transform of the decomposed modal responses and the change in the output covariance. Finally, the validity of the proposed method paves the way for more effective output-only modal identification for assessment of existing steel-concrete buildings.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40069-018-0319-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6438991", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7497436", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136812", 
        "issn": [
          "1976-0485", 
          "2234-1315"
        ], 
        "name": "International Journal of Concrete Structures and Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Experimental Verification of Modal Identification of a High-rise Building Using Independent Component Analysis", 
    "pagination": "4", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "83472486e6f7970722ab3303fef1ae410bc5582475f456f1278f76e600ccd6a5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40069-018-0319-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111219409"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40069-018-0319-7", 
      "https://app.dimensions.ai/details/publication/pub.1111219409"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000314_0000000314/records_55829_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs40069-018-0319-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40069-018-0319-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40069-018-0319-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40069-018-0319-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40069-018-0319-7'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40069-018-0319-7 schema:about anzsrc-for:09
2 anzsrc-for:0905
3 schema:author Nb24cf7a6e0dc4510bc6c4b52a40dbfbc
4 schema:citation sg:pub.10.1007/s11831-012-9069-x
5 sg:pub.10.1007/s40069-017-0198-3
6 sg:pub.10.1007/s40069-017-0207-6
7 https://doi.org/10.1002/0471221317
8 https://doi.org/10.1002/9781119991656
9 https://doi.org/10.1002/eqe.2302
10 https://doi.org/10.1002/stc.1737
11 https://doi.org/10.1006/jsvi.2001.4120
12 https://doi.org/10.1006/mssp.1999.1249
13 https://doi.org/10.1006/mssp.2002.1570
14 https://doi.org/10.1016/j.jsv.2005.07.036
15 https://doi.org/10.1016/j.jsv.2016.02.011
16 https://doi.org/10.1016/j.sigpro.2010.11.002
17 https://doi.org/10.1016/j.ymssp.2006.12.005
18 https://doi.org/10.1016/j.ymssp.2007.05.007
19 https://doi.org/10.1016/j.ymssp.2012.08.029
20 https://doi.org/10.1016/j.ymssp.2013.05.003
21 https://doi.org/10.1016/j.ymssp.2015.10.031
22 https://doi.org/10.1016/j.ymssp.2017.03.001
23 https://doi.org/10.1016/s0893-6080(00)00026-5
24 https://doi.org/10.1037/0735-7036.122.3.235
25 https://doi.org/10.1061/(asce)0733-9445(1985)111:11(2479)
26 https://doi.org/10.1061/(asce)em.1943-7889.0000133
27 https://doi.org/10.1061/(asce)em.1943-7889.0000905
28 https://doi.org/10.1061/(asce)em.1943-7889.0001423
29 https://doi.org/10.1061/(asce)st.1943-541x.0000621
30 https://doi.org/10.1061/(asce)st.1943-541x.0001402
31 https://doi.org/10.1088/0964-1726/10/3/303
32 https://doi.org/10.1109/5.720252
33 https://doi.org/10.1109/icassp.2002.5745435
34 https://doi.org/10.1155/2010/691297
35 https://doi.org/10.1162/0899766054322964
36 https://doi.org/10.1177/1475921704041876
37 https://doi.org/10.12989/sss.2015.15.1.081
38 schema:datePublished 2019-12
39 schema:datePublishedReg 2019-12-01
40 schema:description Independent component analysis is one of the linear transformation methods based the techniques for separating blind sources from the output signals of the system. Recently, the method has been analytically applied to the identification of mode shapes and modal responses from the output signal of structures. This study aims to experimentally validate the blind source separation using ICA method and propose a novel method for identification of the modal parameters from the decomposed modal responses. The result of the experimental testing on the three-story steel scale model shows that the mode shapes obtained by ICA method are in good agreement with those by the analytical and peak-picking method in the frequency domain. Based on the robust mathematical model, ICA can calculate the natural frequency and damping ratio effectively using the probability distribution function of the instantaneous natural frequency determined by Hilbert transform of the decomposed modal responses and the change in the output covariance. Finally, the validity of the proposed method paves the way for more effective output-only modal identification for assessment of existing steel-concrete buildings.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N1551a1a78a12482e8dd0a4c502f39032
45 Nece46d5f91c44de698fff7f0735d9de8
46 sg:journal.1136812
47 schema:name Experimental Verification of Modal Identification of a High-rise Building Using Independent Component Analysis
48 schema:pagination 4
49 schema:productId N16d44b7906bf47a987259f4c50311c78
50 N86d8403a687e449297ded9c603fd68db
51 Ndde2860a9e314b1587990c8d37d129c9
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111219409
53 https://doi.org/10.1186/s40069-018-0319-7
54 schema:sdDatePublished 2019-04-11T08:36
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N88b1a8329def4674bb5c342077c47d0a
57 schema:url https://link.springer.com/10.1186%2Fs40069-018-0319-7
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N1551a1a78a12482e8dd0a4c502f39032 schema:issueNumber 1
62 rdf:type schema:PublicationIssue
63 N16d44b7906bf47a987259f4c50311c78 schema:name doi
64 schema:value 10.1186/s40069-018-0319-7
65 rdf:type schema:PropertyValue
66 N1ddb1a6245544bf689393aa8576f4983 schema:affiliation https://www.grid.ac/institutes/grid.7240.1
67 schema:familyName Noh
68 schema:givenName Jung-Tae
69 rdf:type schema:Person
70 N4eab7939924f4b5da033c01b0c43f92f rdf:first N1ddb1a6245544bf689393aa8576f4983
71 rdf:rest N703c205a0de7401e8dbbf4a1b0962226
72 N703c205a0de7401e8dbbf4a1b0962226 rdf:first sg:person.012314307211.01
73 rdf:rest Nd363fa28ad614e6091cff9d9bee3f35b
74 N86d8403a687e449297ded9c603fd68db schema:name dimensions_id
75 schema:value pub.1111219409
76 rdf:type schema:PropertyValue
77 N88b1a8329def4674bb5c342077c47d0a schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Nb24cf7a6e0dc4510bc6c4b52a40dbfbc rdf:first sg:person.012641752053.22
80 rdf:rest N4eab7939924f4b5da033c01b0c43f92f
81 Nd363fa28ad614e6091cff9d9bee3f35b rdf:first sg:person.011507167015.42
82 rdf:rest rdf:nil
83 Ndde2860a9e314b1587990c8d37d129c9 schema:name readcube_id
84 schema:value 83472486e6f7970722ab3303fef1ae410bc5582475f456f1278f76e600ccd6a5
85 rdf:type schema:PropertyValue
86 Nece46d5f91c44de698fff7f0735d9de8 schema:volumeNumber 13
87 rdf:type schema:PublicationVolume
88 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
89 schema:name Engineering
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
92 schema:name Civil Engineering
93 rdf:type schema:DefinedTerm
94 sg:grant.6438991 http://pending.schema.org/fundedItem sg:pub.10.1186/s40069-018-0319-7
95 rdf:type schema:MonetaryGrant
96 sg:grant.7497436 http://pending.schema.org/fundedItem sg:pub.10.1186/s40069-018-0319-7
97 rdf:type schema:MonetaryGrant
98 sg:journal.1136812 schema:issn 1976-0485
99 2234-1315
100 schema:name International Journal of Concrete Structures and Materials
101 rdf:type schema:Periodical
102 sg:person.011507167015.42 schema:affiliation https://www.grid.ac/institutes/grid.131063.6
103 schema:familyName Kareem
104 schema:givenName Ahsan
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011507167015.42
106 rdf:type schema:Person
107 sg:person.012314307211.01 schema:affiliation https://www.grid.ac/institutes/grid.411982.7
108 schema:familyName Lee
109 schema:givenName Sang-Hyun
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012314307211.01
111 rdf:type schema:Person
112 sg:person.012641752053.22 schema:affiliation https://www.grid.ac/institutes/grid.14005.30
113 schema:familyName Hwang
114 schema:givenName Jae-Seung
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012641752053.22
116 rdf:type schema:Person
117 sg:pub.10.1007/s11831-012-9069-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018414854
118 https://doi.org/10.1007/s11831-012-9069-x
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s40069-017-0198-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085440081
121 https://doi.org/10.1007/s40069-017-0198-3
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s40069-017-0207-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091592677
124 https://doi.org/10.1007/s40069-017-0207-6
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/0471221317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661117
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/9781119991656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108142989
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/eqe.2302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004317667
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/stc.1737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050120024
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1006/jsvi.2001.4120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033173437
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1006/mssp.1999.1249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044145866
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1006/mssp.2002.1570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010319987
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.jsv.2005.07.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019607633
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.jsv.2016.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014216087
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.sigpro.2010.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042599153
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.ymssp.2006.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033885133
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.ymssp.2007.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047700350
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.ymssp.2012.08.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000624569
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.ymssp.2013.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010783814
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.ymssp.2015.10.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022026394
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.ymssp.2017.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084113460
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0893-6080(00)00026-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025388351
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1037/0735-7036.122.3.235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002130013
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1061/(asce)0733-9445(1985)111:11(2479) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057595845
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1061/(asce)em.1943-7889.0000133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057629684
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1061/(asce)em.1943-7889.0000905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057630453
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1061/(asce)em.1943-7889.0001423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100523268
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1061/(asce)st.1943-541x.0000621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057642266
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1061/(asce)st.1943-541x.0001402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057643044
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1088/0964-1726/10/3/303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038375255
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/5.720252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179969
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/icassp.2002.5745435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094401848
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1155/2010/691297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063203436
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1162/0899766054322964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006942853
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1177/1475921704041876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050077892
185 rdf:type schema:CreativeWork
186 https://doi.org/10.12989/sss.2015.15.1.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064865791
187 rdf:type schema:CreativeWork
188 https://www.grid.ac/institutes/grid.131063.6 schema:alternateName University of Notre Dame
189 schema:name NatHaz Modeling Laboratory, Department of Civil & Environmental Engineering and Earth Sciences, University of Notre Dame, 46556, Notre Dame, IN, USA
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.14005.30 schema:alternateName Chonnam National University
192 schema:name School of Architecture, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186, Gwangju, Republic of Korea
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.411982.7 schema:alternateName Dankook University
195 schema:name Department of Architectural Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, 16890, Yongin-Si, Gyeonggi-do, Republic of Korea
196 rdf:type schema:Organization
197 https://www.grid.ac/institutes/grid.7240.1 schema:alternateName Ca Foscari University of Venice
198 schema:name Department of Planning and Design in Complex Environments, IUAV University of Venice, 2206, Dorsoduro, 30123, Venice, Italy
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...