Cardiovascular magnetic resonance evaluation of left ventricular peak filling rate using steady-state free precession and phase contrast sequences View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Shotaro Komi, Yusuke Inoue, Hirofumi Hata, Ai Nakajima, Hiroki Miyatake

ABSTRACT

BACKGROUND: We investigated a practical method to measure peak filling rate (PFR) as an indicator of diastolic function of the left ventricle. Ten adult volunteers underwent cine MR imaging using steady-state free precession (SSFP) and phase contrast (PC) sequences to measure PFR. Two PC image sets were acquired at the mitral valve orifice, and PFR was determined from the set with high true temporal resolution (temporal PC method) or with high spatial resolution (spatial PC method). SSFP images covering the left ventricle were acquired, and a time-volume curve was generated around the peak filling phase. PFR was determined using parabolic curve fitting on the first-derivative curve of the LV time-volume curve. FINDINGS: PFR values estimated by the PC methods correlated well with those estimated by the SSFP method, despite apparent underestimation. The underestimation was smaller for the temporal PC method (12 %) than for the spatial PC method (28 %). Intra- and inter-observer repeatabilities were better for the PC methods than for the SSFP method. CONCLUSIONS: PFR measurement by PC imaging with high true temporal resolution is convenient and offers excellent repeatability and acceptable accuracy, indicating suitability for clinical use. More... »

PAGES

1163

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40064-016-2878-x

DOI

http://dx.doi.org/10.1186/s40064-016-2878-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044586690

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27512622


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kitasato Institute Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415395.f", 
          "name": [
            "Department of Radiology, Kitasato University Hospital, Sagamihara, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Komi", 
        "givenName": "Shotaro", 
        "id": "sg:person.01250501406.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250501406.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kitasato University", 
          "id": "https://www.grid.ac/institutes/grid.410786.c", 
          "name": [
            "Department of Diagnostic Radiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, 252-0374, Sagamihara, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Inoue", 
        "givenName": "Yusuke", 
        "id": "sg:person.010476276272.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476276272.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kitasato Institute Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415395.f", 
          "name": [
            "Department of Radiology, Kitasato University Hospital, Sagamihara, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hata", 
        "givenName": "Hirofumi", 
        "id": "sg:person.01006453750.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006453750.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kitasato Institute Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415395.f", 
          "name": [
            "Department of Radiology, Kitasato University Hospital, Sagamihara, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakajima", 
        "givenName": "Ai", 
        "id": "sg:person.014104666475.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014104666475.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kitasato Institute Hospital", 
          "id": "https://www.grid.ac/institutes/grid.415395.f", 
          "name": [
            "Department of Radiology, Kitasato University Hospital, Sagamihara, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyatake", 
        "givenName": "Hiroki", 
        "id": "sg:person.014702247075.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014702247075.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jmri.22424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007019977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2005.09.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013927801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-009-9571-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019060879", 
          "https://doi.org/10.1007/s10554-009-9571-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-009-9571-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019060879", 
          "https://doi.org/10.1007/s10554-009-9571-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2009.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023155811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2231010235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026276914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.106.661983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035592167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2008.10.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040270043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-014-3488-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040586235", 
          "https://doi.org/10.1007/s00330-014-3488-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2012.12.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041575705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2005.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044156519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12574-010-0055-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046164019", 
          "https://doi.org/10.1007/s12574-010-0055-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2412041866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046664965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051716334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0008-6363(99)00399-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054580675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1081/jcmr-120019422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058431685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.195.2.7724769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082480613"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "BACKGROUND: We investigated a practical method to measure peak filling rate (PFR) as an indicator of diastolic function of the left ventricle. Ten adult volunteers underwent cine MR imaging using steady-state free precession (SSFP) and phase contrast (PC) sequences to measure PFR. Two PC image sets were acquired at the mitral valve orifice, and PFR was determined from the set with high true temporal resolution (temporal PC method) or with high spatial resolution (spatial PC method). SSFP images covering the left ventricle were acquired, and a time-volume curve was generated around the peak filling phase. PFR was determined using parabolic curve fitting on the first-derivative curve of the LV time-volume curve.\nFINDINGS: PFR values estimated by the PC methods correlated well with those estimated by the SSFP method, despite apparent underestimation. The underestimation was smaller for the temporal PC method (12\u00a0%) than for the spatial PC method (28\u00a0%). Intra- and inter-observer repeatabilities were better for the PC methods than for the SSFP method.\nCONCLUSIONS: PFR measurement by PC imaging with high true temporal resolution is convenient and offers excellent repeatability and acceptable accuracy, indicating suitability for clinical use.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40064-016-2878-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1047790", 
        "issn": [
          "2193-1801"
        ], 
        "name": "SpringerPlus", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Cardiovascular magnetic resonance evaluation of left ventricular peak filling rate using steady-state free precession and phase contrast sequences", 
    "pagination": "1163", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d461f13c4bbd873dbb7b0635e21dd0469667f4d961cecd8c401650ec95a8ee43"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27512622"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101597967"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40064-016-2878-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044586690"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40064-016-2878-x", 
      "https://app.dimensions.ai/details/publication/pub.1044586690"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70049_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs40064-016-2878-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40064-016-2878-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40064-016-2878-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40064-016-2878-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40064-016-2878-x'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      45 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40064-016-2878-x schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N2d449c03e3de42c7a2654e539cb9a6db
4 schema:citation sg:pub.10.1007/s00330-014-3488-z
5 sg:pub.10.1007/s10554-009-9571-x
6 sg:pub.10.1007/s12574-010-0055-8
7 https://doi.org/10.1002/jmri.21081
8 https://doi.org/10.1002/jmri.22424
9 https://doi.org/10.1016/j.amjcard.2008.10.039
10 https://doi.org/10.1016/j.ejrad.2012.12.019
11 https://doi.org/10.1016/j.jacc.2005.09.032
12 https://doi.org/10.1016/j.jcmg.2009.12.011
13 https://doi.org/10.1016/j.mri.2005.04.004
14 https://doi.org/10.1016/s0008-6363(99)00399-5
15 https://doi.org/10.1081/jcmr-120019422
16 https://doi.org/10.1148/radiol.2231010235
17 https://doi.org/10.1148/radiol.2412041866
18 https://doi.org/10.1148/radiology.195.2.7724769
19 https://doi.org/10.1161/circulationaha.106.661983
20 schema:datePublished 2016-12
21 schema:datePublishedReg 2016-12-01
22 schema:description BACKGROUND: We investigated a practical method to measure peak filling rate (PFR) as an indicator of diastolic function of the left ventricle. Ten adult volunteers underwent cine MR imaging using steady-state free precession (SSFP) and phase contrast (PC) sequences to measure PFR. Two PC image sets were acquired at the mitral valve orifice, and PFR was determined from the set with high true temporal resolution (temporal PC method) or with high spatial resolution (spatial PC method). SSFP images covering the left ventricle were acquired, and a time-volume curve was generated around the peak filling phase. PFR was determined using parabolic curve fitting on the first-derivative curve of the LV time-volume curve. FINDINGS: PFR values estimated by the PC methods correlated well with those estimated by the SSFP method, despite apparent underestimation. The underestimation was smaller for the temporal PC method (12 %) than for the spatial PC method (28 %). Intra- and inter-observer repeatabilities were better for the PC methods than for the SSFP method. CONCLUSIONS: PFR measurement by PC imaging with high true temporal resolution is convenient and offers excellent repeatability and acceptable accuracy, indicating suitability for clinical use.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N6dd197037cbe488d84d058f7fe19c499
27 Nd916dc7047cf4f7aac88598bd9497b8e
28 sg:journal.1047790
29 schema:name Cardiovascular magnetic resonance evaluation of left ventricular peak filling rate using steady-state free precession and phase contrast sequences
30 schema:pagination 1163
31 schema:productId N563d4f30f4bf4babb916b3856c430b75
32 N62b161ed7b46445d868df3a7cb737e13
33 N6d67705dc83c4144bd324e7220716333
34 Nd7456966793143689791e24134725bdc
35 Nda0b8694be05453780839326c0d2204c
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044586690
37 https://doi.org/10.1186/s40064-016-2878-x
38 schema:sdDatePublished 2019-04-11T12:40
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N95b788f8aab542268dfa26d9730961a2
41 schema:url https://link.springer.com/10.1186%2Fs40064-016-2878-x
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N04c75d9efc304a1d9bcd5c19d4411e1d rdf:first sg:person.010476276272.43
46 rdf:rest N902959a7c20f4d93952ccef64def42d4
47 N2d449c03e3de42c7a2654e539cb9a6db rdf:first sg:person.01250501406.88
48 rdf:rest N04c75d9efc304a1d9bcd5c19d4411e1d
49 N563d4f30f4bf4babb916b3856c430b75 schema:name nlm_unique_id
50 schema:value 101597967
51 rdf:type schema:PropertyValue
52 N62b161ed7b46445d868df3a7cb737e13 schema:name pubmed_id
53 schema:value 27512622
54 rdf:type schema:PropertyValue
55 N6d67705dc83c4144bd324e7220716333 schema:name dimensions_id
56 schema:value pub.1044586690
57 rdf:type schema:PropertyValue
58 N6dd197037cbe488d84d058f7fe19c499 schema:issueNumber 1
59 rdf:type schema:PublicationIssue
60 N902959a7c20f4d93952ccef64def42d4 rdf:first sg:person.01006453750.32
61 rdf:rest Nc782c930237a4b69b4f6ee0d769cc694
62 N95b788f8aab542268dfa26d9730961a2 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Nc782c930237a4b69b4f6ee0d769cc694 rdf:first sg:person.014104666475.22
65 rdf:rest Nd757aa0946894b13b0667c5c4002d3e8
66 Nd7456966793143689791e24134725bdc schema:name doi
67 schema:value 10.1186/s40064-016-2878-x
68 rdf:type schema:PropertyValue
69 Nd757aa0946894b13b0667c5c4002d3e8 rdf:first sg:person.014702247075.88
70 rdf:rest rdf:nil
71 Nd916dc7047cf4f7aac88598bd9497b8e schema:volumeNumber 5
72 rdf:type schema:PublicationVolume
73 Nda0b8694be05453780839326c0d2204c schema:name readcube_id
74 schema:value d461f13c4bbd873dbb7b0635e21dd0469667f4d961cecd8c401650ec95a8ee43
75 rdf:type schema:PropertyValue
76 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
77 schema:name Information and Computing Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
80 schema:name Artificial Intelligence and Image Processing
81 rdf:type schema:DefinedTerm
82 sg:journal.1047790 schema:issn 2193-1801
83 schema:name SpringerPlus
84 rdf:type schema:Periodical
85 sg:person.01006453750.32 schema:affiliation https://www.grid.ac/institutes/grid.415395.f
86 schema:familyName Hata
87 schema:givenName Hirofumi
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006453750.32
89 rdf:type schema:Person
90 sg:person.010476276272.43 schema:affiliation https://www.grid.ac/institutes/grid.410786.c
91 schema:familyName Inoue
92 schema:givenName Yusuke
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476276272.43
94 rdf:type schema:Person
95 sg:person.01250501406.88 schema:affiliation https://www.grid.ac/institutes/grid.415395.f
96 schema:familyName Komi
97 schema:givenName Shotaro
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250501406.88
99 rdf:type schema:Person
100 sg:person.014104666475.22 schema:affiliation https://www.grid.ac/institutes/grid.415395.f
101 schema:familyName Nakajima
102 schema:givenName Ai
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014104666475.22
104 rdf:type schema:Person
105 sg:person.014702247075.88 schema:affiliation https://www.grid.ac/institutes/grid.415395.f
106 schema:familyName Miyatake
107 schema:givenName Hiroki
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014702247075.88
109 rdf:type schema:Person
110 sg:pub.10.1007/s00330-014-3488-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040586235
111 https://doi.org/10.1007/s00330-014-3488-z
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s10554-009-9571-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019060879
114 https://doi.org/10.1007/s10554-009-9571-x
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s12574-010-0055-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046164019
117 https://doi.org/10.1007/s12574-010-0055-8
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/jmri.21081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051716334
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/jmri.22424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007019977
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.amjcard.2008.10.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040270043
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.ejrad.2012.12.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041575705
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.jacc.2005.09.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013927801
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.jcmg.2009.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023155811
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.mri.2005.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044156519
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/s0008-6363(99)00399-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054580675
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1081/jcmr-120019422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058431685
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1148/radiol.2231010235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026276914
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1148/radiol.2412041866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046664965
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1148/radiology.195.2.7724769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082480613
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1161/circulationaha.106.661983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035592167
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.410786.c schema:alternateName Kitasato University
146 schema:name Department of Diagnostic Radiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, 252-0374, Sagamihara, Kanagawa, Japan
147 rdf:type schema:Organization
148 https://www.grid.ac/institutes/grid.415395.f schema:alternateName Kitasato Institute Hospital
149 schema:name Department of Radiology, Kitasato University Hospital, Sagamihara, Kanagawa, Japan
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...