Characterizing and explaining spatio-temporal variation of water quality in a highly disturbed river by multi-statistical techniques View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Jianfeng Liu, Xiang Zhang, Jun Xia, Shaofei Wu, Dunxian She, Lei Zou

ABSTRACT

Assessing the spatio-temporal variations of surface water quality is important for water environment management. In this study, surface water samples are collected from 2008 to 2015 at 17 stations in the Ying River basin in China. The two pollutants i.e. chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) are analyzed to characterize the river water quality. Cluster analysis and the seasonal Kendall test are used to detect the seasonal and inter-annual variations in the dataset, while the Moran's index is utilized to understand the spatial autocorrelation of the variables. The influence of natural factors such as hydrological regime, water temperature and etc., and anthropogenic activities with respect to land use and pollutant load are considered as driving factors to understand the water quality evolution. The results of cluster analysis present three groups according to the similarity in seasonal pattern of water quality. The trend analysis indicates an improvement in water quality during the dry seasons at most of the stations. Further, the spatial autocorrelation of water quality shows great difference between the dry and wet seasons due to sluices and dams regulation and local nonpoint source pollution. The seasonal variation in water quality is found associated with the climatic factors (hydrological and biochemical processes) and flow regulation. The analysis of land use indicates a good explanation for spatial distribution and seasonality of COD at the sub-catchment scale. Our results suggest that an integrated water quality measures including city sewage treatment, agricultural diffuse pollution control as well as joint scientific operations of river projects is needed for an effective water quality management in the Ying River basin. More... »

PAGES

1171

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40064-016-2815-z

DOI

http://dx.doi.org/10.1186/s40064-016-2815-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053034518

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27512630


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China", 
            "Hubei Provincial Collaborative Innovation Center for Water Resources Security, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jianfeng", 
        "id": "sg:person.07706365275.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706365275.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China", 
            "Hubei Provincial Collaborative Innovation Center for Water Resources Security, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xiang", 
        "id": "sg:person.010503745675.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010503745675.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China", 
            "Hubei Provincial Collaborative Innovation Center for Water Resources Security, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xia", 
        "givenName": "Jun", 
        "id": "sg:person.015112000633.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112000633.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China", 
            "Hubei Provincial Collaborative Innovation Center for Water Resources Security, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Shaofei", 
        "id": "sg:person.012076706675.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012076706675.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China", 
            "Hubei Provincial Collaborative Innovation Center for Water Resources Security, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "She", 
        "givenName": "Dunxian", 
        "id": "sg:person.012674267275.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012674267275.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wuhan University", 
          "id": "https://www.grid.ac/institutes/grid.49470.3e", 
          "name": [
            "State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China", 
            "Hubei Provincial Collaborative Innovation Center for Water Resources Security, Wuhan University, 430072, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zou", 
        "givenName": "Lei", 
        "id": "sg:person.010472043727.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010472043727.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00267-008-9119-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000470001", 
          "https://doi.org/10.1007/s00267-008-9119-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00267-008-9119-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000470001", 
          "https://doi.org/10.1007/s00267-008-9119-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-013-0284-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003860467", 
          "https://doi.org/10.1007/s11269-013-0284-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11135-006-9018-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005771510", 
          "https://doi.org/10.1007/s11135-006-9018-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-4632.1995.tb00338.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005958961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-4632.1995.tb00338.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005958961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b907306j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006219910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2008.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006860903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2008.07.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009590892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jenvman.2004.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010913819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2008.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013036251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-013-1996-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018156027", 
          "https://doi.org/10.1007/s11356-013-1996-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/w6072144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019138474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2009.10.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020826254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-009-9477-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021424753", 
          "https://doi.org/10.1007/s11269-009-9477-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-009-9477-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021424753", 
          "https://doi.org/10.1007/s11269-009-9477-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10750-011-0734-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022610342", 
          "https://doi.org/10.1007/s10750-011-0734-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-015-4354-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023006211", 
          "https://doi.org/10.1007/s10661-015-4354-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.9603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023876266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecoleng.2014.11.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025504132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2006.08.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027683241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procbio.2008.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027773875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1354(98)00138-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028806455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11356-013-2461-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029098311", 
          "https://doi.org/10.1007/s11356-013-2461-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecoleng.2004.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029274438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-10-913-2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030078704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/su7010782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030984573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2014.06.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031854124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2011.01.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033255074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-015-4474-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035221513", 
          "https://doi.org/10.1007/s10661-015-4474-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-013-2378-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035646037", 
          "https://doi.org/10.1007/s12665-013-2378-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1752-1688.2010.00419.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040264691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lno.10129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040980027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2010.05.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041338045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1354(01)00062-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042871732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-006-9505-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046914546", 
          "https://doi.org/10.1007/s10661-006-9505-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2014.01.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048109558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2004.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048418466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2003.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049106220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apgeochem.2009.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050519868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolind.2009.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051071057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rra.1533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052781289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00267-014-0238-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053472782", 
          "https://doi.org/10.1007/s00267-014-0238-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es051650b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055498543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es051650b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055498543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/684005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058865399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0309133302pp324ra", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064151935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0309133302pp324ra", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064151935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/jeq2008.0250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069009961"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "Assessing the spatio-temporal variations of surface water quality is important for water environment management. In this study, surface water samples are collected from 2008 to 2015 at 17 stations in the Ying River basin in China. The two pollutants i.e. chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) are analyzed to characterize the river water quality. Cluster analysis and the seasonal Kendall test are used to detect the seasonal and inter-annual variations in the dataset, while the Moran's index is utilized to understand the spatial autocorrelation of the variables. The influence of natural factors such as hydrological regime, water temperature and etc., and anthropogenic activities with respect to land use and pollutant load are considered as driving factors to understand the water quality evolution. The results of cluster analysis present three groups according to the similarity in seasonal pattern of water quality. The trend analysis indicates an improvement in water quality during the dry seasons at most of the stations. Further, the spatial autocorrelation of water quality shows great difference between the dry and wet seasons due to sluices and dams regulation and local nonpoint source pollution. The seasonal variation in water quality is found associated with the climatic factors (hydrological and biochemical processes) and flow regulation. The analysis of land use indicates a good explanation for spatial distribution and seasonality of COD at the sub-catchment scale. Our results suggest that an integrated water quality measures including city sewage treatment, agricultural diffuse pollution control as well as joint scientific operations of river projects is needed for an effective water quality management in the Ying River basin. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s40064-016-2815-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7185705", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1047790", 
        "issn": [
          "2193-1801"
        ], 
        "name": "SpringerPlus", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Characterizing and explaining spatio-temporal variation of water quality in a highly disturbed river by multi-statistical techniques", 
    "pagination": "1171", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fc9e6b5dbae5ef3ea3463efb2e817b26ab79f0be21d03b141f8fa484421df0b5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27512630"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101597967"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40064-016-2815-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053034518"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40064-016-2815-z", 
      "https://app.dimensions.ai/details/publication/pub.1053034518"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70040_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs40064-016-2815-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40064-016-2815-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40064-016-2815-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40064-016-2815-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40064-016-2815-z'


 

This table displays all metadata directly associated to this object as RDF triples.

250 TRIPLES      21 PREDICATES      73 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40064-016-2815-z schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N16ffd12e3a934b8a860f066c0df54e89
4 schema:citation sg:pub.10.1007/s00267-008-9119-1
5 sg:pub.10.1007/s00267-014-0238-6
6 sg:pub.10.1007/s10661-006-9505-1
7 sg:pub.10.1007/s10661-015-4354-4
8 sg:pub.10.1007/s10661-015-4474-x
9 sg:pub.10.1007/s10750-011-0734-0
10 sg:pub.10.1007/s11135-006-9018-6
11 sg:pub.10.1007/s11269-009-9477-3
12 sg:pub.10.1007/s11269-013-0284-5
13 sg:pub.10.1007/s11356-013-1996-z
14 sg:pub.10.1007/s11356-013-2461-8
15 sg:pub.10.1007/s12665-013-2378-z
16 https://doi.org/10.1002/hyp.9603
17 https://doi.org/10.1002/lno.10129
18 https://doi.org/10.1002/rra.1533
19 https://doi.org/10.1016/j.apgeochem.2009.12.013
20 https://doi.org/10.1016/j.ecoleng.2004.09.001
21 https://doi.org/10.1016/j.ecoleng.2014.11.027
22 https://doi.org/10.1016/j.ecolind.2009.12.002
23 https://doi.org/10.1016/j.jenvman.2004.12.007
24 https://doi.org/10.1016/j.jhazmat.2014.01.044
25 https://doi.org/10.1016/j.jhydrol.2003.11.006
26 https://doi.org/10.1016/j.jhydrol.2008.07.048
27 https://doi.org/10.1016/j.jhydrol.2011.01.050
28 https://doi.org/10.1016/j.procbio.2008.02.016
29 https://doi.org/10.1016/j.scitotenv.2008.09.031
30 https://doi.org/10.1016/j.scitotenv.2009.10.020
31 https://doi.org/10.1016/j.scitotenv.2010.05.031
32 https://doi.org/10.1016/j.scitotenv.2014.06.101
33 https://doi.org/10.1016/j.watres.2004.06.011
34 https://doi.org/10.1016/j.watres.2006.08.030
35 https://doi.org/10.1016/j.watres.2008.04.006
36 https://doi.org/10.1016/s0043-1354(01)00062-8
37 https://doi.org/10.1016/s0043-1354(98)00138-9
38 https://doi.org/10.1021/es051650b
39 https://doi.org/10.1039/b907306j
40 https://doi.org/10.1086/684005
41 https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
42 https://doi.org/10.1111/j.1752-1688.2010.00419.x
43 https://doi.org/10.1191/0309133302pp324ra
44 https://doi.org/10.2134/jeq2008.0250
45 https://doi.org/10.3390/su7010782
46 https://doi.org/10.3390/w6072144
47 https://doi.org/10.5194/hess-10-913-2006
48 schema:datePublished 2016-12
49 schema:datePublishedReg 2016-12-01
50 schema:description Assessing the spatio-temporal variations of surface water quality is important for water environment management. In this study, surface water samples are collected from 2008 to 2015 at 17 stations in the Ying River basin in China. The two pollutants i.e. chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) are analyzed to characterize the river water quality. Cluster analysis and the seasonal Kendall test are used to detect the seasonal and inter-annual variations in the dataset, while the Moran's index is utilized to understand the spatial autocorrelation of the variables. The influence of natural factors such as hydrological regime, water temperature and etc., and anthropogenic activities with respect to land use and pollutant load are considered as driving factors to understand the water quality evolution. The results of cluster analysis present three groups according to the similarity in seasonal pattern of water quality. The trend analysis indicates an improvement in water quality during the dry seasons at most of the stations. Further, the spatial autocorrelation of water quality shows great difference between the dry and wet seasons due to sluices and dams regulation and local nonpoint source pollution. The seasonal variation in water quality is found associated with the climatic factors (hydrological and biochemical processes) and flow regulation. The analysis of land use indicates a good explanation for spatial distribution and seasonality of COD at the sub-catchment scale. Our results suggest that an integrated water quality measures including city sewage treatment, agricultural diffuse pollution control as well as joint scientific operations of river projects is needed for an effective water quality management in the Ying River basin.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N2a8a188f3c234f92b4fa584a2e3baaad
55 Na8c854d90c2349f9b70742e602ef67a6
56 sg:journal.1047790
57 schema:name Characterizing and explaining spatio-temporal variation of water quality in a highly disturbed river by multi-statistical techniques
58 schema:pagination 1171
59 schema:productId N11ac96b882534d48b5cfc3ed2387f20e
60 N833f1fe052b34696bb6cc871062716d9
61 N9debf5ff83b24f6fbc68631987c9127d
62 Nc41a71dab4c94191b3156e3ee09f3b2c
63 Nc7f96ffc6716405f8d06ee0253c222d8
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053034518
65 https://doi.org/10.1186/s40064-016-2815-z
66 schema:sdDatePublished 2019-04-11T12:38
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Nbed7969849db43489ea117ef26911fae
69 schema:url https://link.springer.com/10.1186%2Fs40064-016-2815-z
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N00247565f8f34c4a8db3317fbb9505ae rdf:first sg:person.010503745675.38
74 rdf:rest N4a11dfcdb3ab40cc82e0a97c4060292d
75 N11ac96b882534d48b5cfc3ed2387f20e schema:name doi
76 schema:value 10.1186/s40064-016-2815-z
77 rdf:type schema:PropertyValue
78 N16ffd12e3a934b8a860f066c0df54e89 rdf:first sg:person.07706365275.01
79 rdf:rest N00247565f8f34c4a8db3317fbb9505ae
80 N2a8a188f3c234f92b4fa584a2e3baaad schema:volumeNumber 5
81 rdf:type schema:PublicationVolume
82 N4a11dfcdb3ab40cc82e0a97c4060292d rdf:first sg:person.015112000633.94
83 rdf:rest Nc7ed49ba5ad346ada9cd5e4e67a26fd3
84 N5d7c33b8445c421e8af388b20937beb5 rdf:first sg:person.012674267275.41
85 rdf:rest Ne218fca5974040bbbefbb85aaf3d53fe
86 N833f1fe052b34696bb6cc871062716d9 schema:name nlm_unique_id
87 schema:value 101597967
88 rdf:type schema:PropertyValue
89 N9debf5ff83b24f6fbc68631987c9127d schema:name dimensions_id
90 schema:value pub.1053034518
91 rdf:type schema:PropertyValue
92 Na8c854d90c2349f9b70742e602ef67a6 schema:issueNumber 1
93 rdf:type schema:PublicationIssue
94 Nbed7969849db43489ea117ef26911fae schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 Nc41a71dab4c94191b3156e3ee09f3b2c schema:name pubmed_id
97 schema:value 27512630
98 rdf:type schema:PropertyValue
99 Nc7ed49ba5ad346ada9cd5e4e67a26fd3 rdf:first sg:person.012076706675.20
100 rdf:rest N5d7c33b8445c421e8af388b20937beb5
101 Nc7f96ffc6716405f8d06ee0253c222d8 schema:name readcube_id
102 schema:value fc9e6b5dbae5ef3ea3463efb2e817b26ab79f0be21d03b141f8fa484421df0b5
103 rdf:type schema:PropertyValue
104 Ne218fca5974040bbbefbb85aaf3d53fe rdf:first sg:person.010472043727.78
105 rdf:rest rdf:nil
106 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
107 schema:name Earth Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
110 schema:name Physical Geography and Environmental Geoscience
111 rdf:type schema:DefinedTerm
112 sg:grant.7185705 http://pending.schema.org/fundedItem sg:pub.10.1186/s40064-016-2815-z
113 rdf:type schema:MonetaryGrant
114 sg:journal.1047790 schema:issn 2193-1801
115 schema:name SpringerPlus
116 rdf:type schema:Periodical
117 sg:person.010472043727.78 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
118 schema:familyName Zou
119 schema:givenName Lei
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010472043727.78
121 rdf:type schema:Person
122 sg:person.010503745675.38 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
123 schema:familyName Zhang
124 schema:givenName Xiang
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010503745675.38
126 rdf:type schema:Person
127 sg:person.012076706675.20 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
128 schema:familyName Wu
129 schema:givenName Shaofei
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012076706675.20
131 rdf:type schema:Person
132 sg:person.012674267275.41 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
133 schema:familyName She
134 schema:givenName Dunxian
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012674267275.41
136 rdf:type schema:Person
137 sg:person.015112000633.94 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
138 schema:familyName Xia
139 schema:givenName Jun
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112000633.94
141 rdf:type schema:Person
142 sg:person.07706365275.01 schema:affiliation https://www.grid.ac/institutes/grid.49470.3e
143 schema:familyName Liu
144 schema:givenName Jianfeng
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706365275.01
146 rdf:type schema:Person
147 sg:pub.10.1007/s00267-008-9119-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000470001
148 https://doi.org/10.1007/s00267-008-9119-1
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s00267-014-0238-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053472782
151 https://doi.org/10.1007/s00267-014-0238-6
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s10661-006-9505-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046914546
154 https://doi.org/10.1007/s10661-006-9505-1
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s10661-015-4354-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023006211
157 https://doi.org/10.1007/s10661-015-4354-4
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s10661-015-4474-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035221513
160 https://doi.org/10.1007/s10661-015-4474-x
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s10750-011-0734-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022610342
163 https://doi.org/10.1007/s10750-011-0734-0
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s11135-006-9018-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005771510
166 https://doi.org/10.1007/s11135-006-9018-6
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s11269-009-9477-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021424753
169 https://doi.org/10.1007/s11269-009-9477-3
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s11269-013-0284-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003860467
172 https://doi.org/10.1007/s11269-013-0284-5
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s11356-013-1996-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1018156027
175 https://doi.org/10.1007/s11356-013-1996-z
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s11356-013-2461-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029098311
178 https://doi.org/10.1007/s11356-013-2461-8
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s12665-013-2378-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1035646037
181 https://doi.org/10.1007/s12665-013-2378-z
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1002/hyp.9603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023876266
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1002/lno.10129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040980027
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1002/rra.1533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052781289
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.apgeochem.2009.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050519868
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.ecoleng.2004.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029274438
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.ecoleng.2014.11.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025504132
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.ecolind.2009.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051071057
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.jenvman.2004.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010913819
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.jhazmat.2014.01.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048109558
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.jhydrol.2003.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049106220
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.jhydrol.2008.07.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009590892
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.jhydrol.2011.01.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033255074
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.procbio.2008.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027773875
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.scitotenv.2008.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013036251
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.scitotenv.2009.10.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020826254
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.scitotenv.2010.05.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041338045
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.scitotenv.2014.06.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031854124
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.watres.2004.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048418466
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.watres.2006.08.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027683241
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.watres.2008.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006860903
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/s0043-1354(01)00062-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042871732
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/s0043-1354(98)00138-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028806455
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1021/es051650b schema:sameAs https://app.dimensions.ai/details/publication/pub.1055498543
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1039/b907306j schema:sameAs https://app.dimensions.ai/details/publication/pub.1006219910
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1086/684005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058865399
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1111/j.1538-4632.1995.tb00338.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005958961
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1111/j.1752-1688.2010.00419.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040264691
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1191/0309133302pp324ra schema:sameAs https://app.dimensions.ai/details/publication/pub.1064151935
238 rdf:type schema:CreativeWork
239 https://doi.org/10.2134/jeq2008.0250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069009961
240 rdf:type schema:CreativeWork
241 https://doi.org/10.3390/su7010782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030984573
242 rdf:type schema:CreativeWork
243 https://doi.org/10.3390/w6072144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019138474
244 rdf:type schema:CreativeWork
245 https://doi.org/10.5194/hess-10-913-2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030078704
246 rdf:type schema:CreativeWork
247 https://www.grid.ac/institutes/grid.49470.3e schema:alternateName Wuhan University
248 schema:name Hubei Provincial Collaborative Innovation Center for Water Resources Security, Wuhan University, 430072, Wuhan, China
249 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, China
250 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...