(1 + u)-Constacyclic codes over Z4 + uZ4 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-08-11

AUTHORS

Haifeng Yu, Yu Wang, Minjia Shi

ABSTRACT

Constacyclic codes are an important class of linear codes in coding theory. Many optimal linear codes are directly derived from constacyclic codes. In this paper, (1 + u)-constacyclic codes over Z 4 + uZ 4 of any length are studied. A new Gray map between Z 4 + uZ 4 and Z 4 (4) is defined. By means of this map, it is shown that the Z 4 Gray image of a (1 + u)-constacyclic code of length n over Z 4 + uZ 4 is a cyclic code over Z 4 of length 4n. Furthermore, by combining the classical Gray map between Z 4 and F 2 (2), it is shown that the binary image of a (1 + u)-constacyclic code of length n over Z 4 + uZ 4 is a distance invariant binary quasi-cyclic code of index 4 and length 8n. Examples of good binary codes are constructed to illustrate the application of this class of codes. More... »

PAGES

1325

References to SciGraph publications

  • 2012-10-18. A family of constacyclic codes over F2 + uF2 + vF2 + uvF2 in JOURNAL OF SYSTEMS SCIENCE AND COMPLEXITY
  • 2012-04-11. Good p-ary quasic-cyclic codes from cyclic codes over in JOURNAL OF SYSTEMS SCIENCE AND COMPLEXITY
  • 2010-05-06. Cyclic codes over in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2011-06-30. Cyclic codes over Rk in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2009-06-17. Linear codes over in DESIGNS, CODES AND CRYPTOGRAPHY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40064-016-2717-0

    DOI

    http://dx.doi.org/10.1186/s40064-016-2717-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006705668

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27563520


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Physics, Hefei University, Hefei, China", 
              "id": "http://www.grid.ac/institutes/grid.412053.1", 
              "name": [
                "Department of Mathematics and Physics, Hefei University, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Haifeng", 
            "id": "sg:person.010522727351.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010522727351.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Physics, Hefei University, Hefei, China", 
              "id": "http://www.grid.ac/institutes/grid.412053.1", 
              "name": [
                "Department of Mathematics and Physics, Hefei University, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Yu", 
            "id": "sg:person.015725615413.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015725615413.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mathematical Sciences, Anhui University, Hefei, China", 
              "id": "http://www.grid.ac/institutes/grid.252245.6", 
              "name": [
                "School of Mathematical Sciences, Anhui University, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "Minjia", 
            "id": "sg:person.012012432235.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11424-012-1001-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038984659", 
              "https://doi.org/10.1007/s11424-012-1001-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-010-9399-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002657258", 
              "https://doi.org/10.1007/s10623-010-9399-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-009-9309-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006827122", 
              "https://doi.org/10.1007/s10623-009-9309-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-011-9539-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048150384", 
              "https://doi.org/10.1007/s10623-011-9539-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11424-012-0076-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008814776", 
              "https://doi.org/10.1007/s11424-012-0076-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-08-11", 
        "datePublishedReg": "2016-08-11", 
        "description": "Constacyclic codes are an important class of linear codes in coding theory. Many optimal linear codes are directly derived from constacyclic codes. In this paper, (1\u00a0+\u00a0u)-constacyclic codes over Z 4\u00a0+\u00a0uZ 4 of any length are studied. A new Gray map between Z 4\u00a0+\u00a0uZ 4 and Z 4 (4) is defined. By means of this map, it is shown that the Z 4 Gray image of a (1\u00a0+\u00a0u)-constacyclic code of length n over Z 4\u00a0+\u00a0uZ 4 is a cyclic code over Z 4 of length 4n. Furthermore, by combining the classical Gray map between Z 4 and F 2 (2), it is shown that the binary image of a (1\u00a0+\u00a0u)-constacyclic code of length n over Z 4\u00a0+\u00a0uZ 4 is a distance invariant binary quasi-cyclic code of index 4 and length 8n. Examples of good binary codes are constructed to illustrate the application of this class of codes. ", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s40064-016-2717-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1047790", 
            "issn": [
              "2193-1801"
            ], 
            "name": "SpringerPlus", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "keywords": [
          "good binary codes", 
          "linear codes", 
          "class of codes", 
          "binary codes", 
          "gray image", 
          "binary image", 
          "constacyclic codes", 
          "optimal linear codes", 
          "code", 
          "length n", 
          "cyclic codes", 
          "quasi-cyclic codes", 
          "images", 
          "Gray map", 
          "binary quasi-cyclic codes", 
          "maps", 
          "important class", 
          "index 4", 
          "length 4n", 
          "class", 
          "applications", 
          "new Gray map", 
          "theory", 
          "example", 
          "means", 
          "Z4", 
          "length", 
          "paper", 
          "uZ 4", 
          "classical Gray map", 
          "distance invariant binary quasi-cyclic code", 
          "invariant binary quasi-cyclic code", 
          "length 8n", 
          "uZ4"
        ], 
        "name": "(1 + u)-Constacyclic codes over Z4 + uZ4", 
        "pagination": "1325", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006705668"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40064-016-2717-0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27563520"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40064-016-2717-0", 
          "https://app.dimensions.ai/details/publication/pub.1006705668"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_692.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s40064-016-2717-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40064-016-2717-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40064-016-2717-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40064-016-2717-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40064-016-2717-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    132 TRIPLES      22 PREDICATES      65 URIs      52 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40064-016-2717-0 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N3466efdc80dc4bc48968315ee689d284
    4 schema:citation sg:pub.10.1007/s10623-009-9309-8
    5 sg:pub.10.1007/s10623-010-9399-3
    6 sg:pub.10.1007/s10623-011-9539-4
    7 sg:pub.10.1007/s11424-012-0076-7
    8 sg:pub.10.1007/s11424-012-1001-9
    9 schema:datePublished 2016-08-11
    10 schema:datePublishedReg 2016-08-11
    11 schema:description Constacyclic codes are an important class of linear codes in coding theory. Many optimal linear codes are directly derived from constacyclic codes. In this paper, (1 + u)-constacyclic codes over Z 4 + uZ 4 of any length are studied. A new Gray map between Z 4 + uZ 4 and Z 4 (4) is defined. By means of this map, it is shown that the Z 4 Gray image of a (1 + u)-constacyclic code of length n over Z 4 + uZ 4 is a cyclic code over Z 4 of length 4n. Furthermore, by combining the classical Gray map between Z 4 and F 2 (2), it is shown that the binary image of a (1 + u)-constacyclic code of length n over Z 4 + uZ 4 is a distance invariant binary quasi-cyclic code of index 4 and length 8n. Examples of good binary codes are constructed to illustrate the application of this class of codes.
    12 schema:genre article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree true
    15 schema:isPartOf N6bb0300b006d4ab6bbf063e99926cf44
    16 Nd641ae1731db4979bbfb9c031943c9a4
    17 sg:journal.1047790
    18 schema:keywords Gray map
    19 Z4
    20 applications
    21 binary codes
    22 binary image
    23 binary quasi-cyclic codes
    24 class
    25 class of codes
    26 classical Gray map
    27 code
    28 constacyclic codes
    29 cyclic codes
    30 distance invariant binary quasi-cyclic code
    31 example
    32 good binary codes
    33 gray image
    34 images
    35 important class
    36 index 4
    37 invariant binary quasi-cyclic code
    38 length
    39 length 4n
    40 length 8n
    41 length n
    42 linear codes
    43 maps
    44 means
    45 new Gray map
    46 optimal linear codes
    47 paper
    48 quasi-cyclic codes
    49 theory
    50 uZ 4
    51 uZ4
    52 schema:name (1 + u)-Constacyclic codes over Z4 + uZ4
    53 schema:pagination 1325
    54 schema:productId N0806ef29830f4df9b85e48d379418939
    55 N5ca50f31a4254ac8b66e3c9cd81efe38
    56 Ncdca10a381894c25ad7773ec0b1e2e20
    57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006705668
    58 https://doi.org/10.1186/s40064-016-2717-0
    59 schema:sdDatePublished 2022-01-01T18:38
    60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    61 schema:sdPublisher N02de7c1553da4623a3b30d763a3a8a14
    62 schema:url https://doi.org/10.1186/s40064-016-2717-0
    63 sgo:license sg:explorer/license/
    64 sgo:sdDataset articles
    65 rdf:type schema:ScholarlyArticle
    66 N02de7c1553da4623a3b30d763a3a8a14 schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 N0806ef29830f4df9b85e48d379418939 schema:name dimensions_id
    69 schema:value pub.1006705668
    70 rdf:type schema:PropertyValue
    71 N3466efdc80dc4bc48968315ee689d284 rdf:first sg:person.010522727351.30
    72 rdf:rest Nccf16c522f894ac9adb340ee081b6708
    73 N4da4c39933d84bfdb93f0d111cf92fee rdf:first sg:person.012012432235.16
    74 rdf:rest rdf:nil
    75 N5ca50f31a4254ac8b66e3c9cd81efe38 schema:name doi
    76 schema:value 10.1186/s40064-016-2717-0
    77 rdf:type schema:PropertyValue
    78 N6bb0300b006d4ab6bbf063e99926cf44 schema:volumeNumber 5
    79 rdf:type schema:PublicationVolume
    80 Nccf16c522f894ac9adb340ee081b6708 rdf:first sg:person.015725615413.26
    81 rdf:rest N4da4c39933d84bfdb93f0d111cf92fee
    82 Ncdca10a381894c25ad7773ec0b1e2e20 schema:name pubmed_id
    83 schema:value 27563520
    84 rdf:type schema:PropertyValue
    85 Nd641ae1731db4979bbfb9c031943c9a4 schema:issueNumber 1
    86 rdf:type schema:PublicationIssue
    87 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Mathematical Sciences
    89 rdf:type schema:DefinedTerm
    90 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Pure Mathematics
    92 rdf:type schema:DefinedTerm
    93 sg:journal.1047790 schema:issn 2193-1801
    94 schema:name SpringerPlus
    95 schema:publisher Springer Nature
    96 rdf:type schema:Periodical
    97 sg:person.010522727351.30 schema:affiliation grid-institutes:grid.412053.1
    98 schema:familyName Yu
    99 schema:givenName Haifeng
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010522727351.30
    101 rdf:type schema:Person
    102 sg:person.012012432235.16 schema:affiliation grid-institutes:grid.252245.6
    103 schema:familyName Shi
    104 schema:givenName Minjia
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16
    106 rdf:type schema:Person
    107 sg:person.015725615413.26 schema:affiliation grid-institutes:grid.412053.1
    108 schema:familyName Wang
    109 schema:givenName Yu
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015725615413.26
    111 rdf:type schema:Person
    112 sg:pub.10.1007/s10623-009-9309-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006827122
    113 https://doi.org/10.1007/s10623-009-9309-8
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/s10623-010-9399-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002657258
    116 https://doi.org/10.1007/s10623-010-9399-3
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/s10623-011-9539-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048150384
    119 https://doi.org/10.1007/s10623-011-9539-4
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/s11424-012-0076-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008814776
    122 https://doi.org/10.1007/s11424-012-0076-7
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s11424-012-1001-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038984659
    125 https://doi.org/10.1007/s11424-012-1001-9
    126 rdf:type schema:CreativeWork
    127 grid-institutes:grid.252245.6 schema:alternateName School of Mathematical Sciences, Anhui University, Hefei, China
    128 schema:name School of Mathematical Sciences, Anhui University, Hefei, China
    129 rdf:type schema:Organization
    130 grid-institutes:grid.412053.1 schema:alternateName Department of Mathematics and Physics, Hefei University, Hefei, China
    131 schema:name Department of Mathematics and Physics, Hefei University, Hefei, China
    132 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...