(1 + u)-Constacyclic codes over Z4 + uZ4 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-08-11

AUTHORS

Haifeng Yu, Yu Wang, Minjia Shi

ABSTRACT

Constacyclic codes are an important class of linear codes in coding theory. Many optimal linear codes are directly derived from constacyclic codes. In this paper, (1 + u)-constacyclic codes over Z4 + uZ4 of any length are studied. A new Gray map between Z4 + uZ4 and Z44 is defined. By means of this map, it is shown that the Z4 Gray image of a (1 + u)-constacyclic code of length n over Z4 + uZ4 is a cyclic code over Z4 of length 4n. Furthermore, by combining the classical Gray map between Z4 and F22, it is shown that the binary image of a (1 + u)-constacyclic code of length n over Z4 + uZ4 is a distance invariant binary quasi-cyclic code of index 4 and length 8n. Examples of good binary codes are constructed to illustrate the application of this class of codes. More... »

PAGES

1325

References to SciGraph publications

  • 2012-10-18. A family of constacyclic codes over F2 + uF2 + vF2 + uvF2 in JOURNAL OF SYSTEMS SCIENCE AND COMPLEXITY
  • 2012-04-11. Good p-ary quasic-cyclic codes from cyclic codes over in JOURNAL OF SYSTEMS SCIENCE AND COMPLEXITY
  • 2010-05-06. Cyclic codes over in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2011-06-30. Cyclic codes over Rk in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2009-06-17. Linear codes over in DESIGNS, CODES AND CRYPTOGRAPHY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/s40064-016-2717-0

    DOI

    http://dx.doi.org/10.1186/s40064-016-2717-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006705668

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27563520


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Physics, Hefei University, Hefei, China", 
              "id": "http://www.grid.ac/institutes/grid.412053.1", 
              "name": [
                "Department of Mathematics and Physics, Hefei University, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Haifeng", 
            "id": "sg:person.010522727351.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010522727351.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Physics, Hefei University, Hefei, China", 
              "id": "http://www.grid.ac/institutes/grid.412053.1", 
              "name": [
                "Department of Mathematics and Physics, Hefei University, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Yu", 
            "id": "sg:person.015725615413.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015725615413.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mathematical Sciences, Anhui University, Hefei, China", 
              "id": "http://www.grid.ac/institutes/grid.252245.6", 
              "name": [
                "School of Mathematical Sciences, Anhui University, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "Minjia", 
            "id": "sg:person.012012432235.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11424-012-0076-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008814776", 
              "https://doi.org/10.1007/s11424-012-0076-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-009-9309-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006827122", 
              "https://doi.org/10.1007/s10623-009-9309-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11424-012-1001-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038984659", 
              "https://doi.org/10.1007/s11424-012-1001-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-010-9399-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002657258", 
              "https://doi.org/10.1007/s10623-010-9399-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-011-9539-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048150384", 
              "https://doi.org/10.1007/s10623-011-9539-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-08-11", 
        "datePublishedReg": "2016-08-11", 
        "description": "Constacyclic codes are an important class of linear codes in coding theory. Many optimal linear codes are directly derived from constacyclic codes. In this paper, (1\u00a0+\u00a0u)-constacyclic codes over Z4\u00a0+\u00a0uZ4 of any length are studied. A new Gray map between Z4\u00a0+\u00a0uZ4 and Z44 is defined. By means of this map, it is shown that the Z4 Gray image of a (1\u00a0+\u00a0u)-constacyclic code of length n over Z4\u00a0+\u00a0uZ4 is a cyclic code over Z4 of length 4n. Furthermore, by combining the classical Gray map between Z4 and F22, it is shown that the binary image of a (1\u00a0+\u00a0u)-constacyclic code of length n over Z4\u00a0+\u00a0uZ4 is a distance invariant binary quasi-cyclic code of index 4 and length 8n. Examples of good binary codes are constructed to illustrate the application of this class of codes.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/s40064-016-2717-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1047790", 
            "issn": [
              "2193-1801"
            ], 
            "name": "SpringerPlus", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "keywords": [
          "good binary codes", 
          "linear codes", 
          "class of codes", 
          "gray image", 
          "binary image", 
          "binary codes", 
          "constacyclic codes", 
          "optimal linear codes", 
          "code", 
          "length n", 
          "quasi-cyclic codes", 
          "images", 
          "cyclic codes", 
          "Gray map", 
          "maps", 
          "important class", 
          "binary quasi-cyclic codes", 
          "index 4", 
          "length 4n", 
          "class", 
          "applications", 
          "Z4", 
          "theory", 
          "example", 
          "new Gray map", 
          "means", 
          "length", 
          "F22", 
          "paper", 
          "Z44"
        ], 
        "name": "(1 + u)-Constacyclic codes over Z4 + uZ4", 
        "pagination": "1325", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006705668"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/s40064-016-2717-0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27563520"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/s40064-016-2717-0", 
          "https://app.dimensions.ai/details/publication/pub.1006705668"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_693.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/s40064-016-2717-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40064-016-2717-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40064-016-2717-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40064-016-2717-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40064-016-2717-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    128 TRIPLES      22 PREDICATES      61 URIs      48 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/s40064-016-2717-0 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nccc3a3cd9039422599a4a002c6a196a3
    4 schema:citation sg:pub.10.1007/s10623-009-9309-8
    5 sg:pub.10.1007/s10623-010-9399-3
    6 sg:pub.10.1007/s10623-011-9539-4
    7 sg:pub.10.1007/s11424-012-0076-7
    8 sg:pub.10.1007/s11424-012-1001-9
    9 schema:datePublished 2016-08-11
    10 schema:datePublishedReg 2016-08-11
    11 schema:description Constacyclic codes are an important class of linear codes in coding theory. Many optimal linear codes are directly derived from constacyclic codes. In this paper, (1 + u)-constacyclic codes over Z4 + uZ4 of any length are studied. A new Gray map between Z4 + uZ4 and Z44 is defined. By means of this map, it is shown that the Z4 Gray image of a (1 + u)-constacyclic code of length n over Z4 + uZ4 is a cyclic code over Z4 of length 4n. Furthermore, by combining the classical Gray map between Z4 and F22, it is shown that the binary image of a (1 + u)-constacyclic code of length n over Z4 + uZ4 is a distance invariant binary quasi-cyclic code of index 4 and length 8n. Examples of good binary codes are constructed to illustrate the application of this class of codes.
    12 schema:genre article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree true
    15 schema:isPartOf N0ae55112552842518c3597bde24121bb
    16 N263b31644c21408da866435c7119db61
    17 sg:journal.1047790
    18 schema:keywords F22
    19 Gray map
    20 Z4
    21 Z44
    22 applications
    23 binary codes
    24 binary image
    25 binary quasi-cyclic codes
    26 class
    27 class of codes
    28 code
    29 constacyclic codes
    30 cyclic codes
    31 example
    32 good binary codes
    33 gray image
    34 images
    35 important class
    36 index 4
    37 length
    38 length 4n
    39 length n
    40 linear codes
    41 maps
    42 means
    43 new Gray map
    44 optimal linear codes
    45 paper
    46 quasi-cyclic codes
    47 theory
    48 schema:name (1 + u)-Constacyclic codes over Z4 + uZ4
    49 schema:pagination 1325
    50 schema:productId N5b1695069b82408badffd52ff1bf6b42
    51 N892a941d86014d9c9e27d118eb4aa1dc
    52 Na4c44eb8199d43699e7e0b2c12de1592
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006705668
    54 https://doi.org/10.1186/s40064-016-2717-0
    55 schema:sdDatePublished 2022-05-20T07:32
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher Nd7cf4f3a206942bb9fd26fad6b820c18
    58 schema:url https://doi.org/10.1186/s40064-016-2717-0
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N0ae55112552842518c3597bde24121bb schema:volumeNumber 5
    63 rdf:type schema:PublicationVolume
    64 N263b31644c21408da866435c7119db61 schema:issueNumber 1
    65 rdf:type schema:PublicationIssue
    66 N51d1ee5802d245a4b2c27bd1fc5fc8f1 rdf:first sg:person.015725615413.26
    67 rdf:rest Nc9438610629d4e12b347bbe03b880a05
    68 N5b1695069b82408badffd52ff1bf6b42 schema:name pubmed_id
    69 schema:value 27563520
    70 rdf:type schema:PropertyValue
    71 N892a941d86014d9c9e27d118eb4aa1dc schema:name dimensions_id
    72 schema:value pub.1006705668
    73 rdf:type schema:PropertyValue
    74 Na4c44eb8199d43699e7e0b2c12de1592 schema:name doi
    75 schema:value 10.1186/s40064-016-2717-0
    76 rdf:type schema:PropertyValue
    77 Nc9438610629d4e12b347bbe03b880a05 rdf:first sg:person.012012432235.16
    78 rdf:rest rdf:nil
    79 Nccc3a3cd9039422599a4a002c6a196a3 rdf:first sg:person.010522727351.30
    80 rdf:rest N51d1ee5802d245a4b2c27bd1fc5fc8f1
    81 Nd7cf4f3a206942bb9fd26fad6b820c18 schema:name Springer Nature - SN SciGraph project
    82 rdf:type schema:Organization
    83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Mathematical Sciences
    85 rdf:type schema:DefinedTerm
    86 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Pure Mathematics
    88 rdf:type schema:DefinedTerm
    89 sg:journal.1047790 schema:issn 2193-1801
    90 schema:name SpringerPlus
    91 schema:publisher Springer Nature
    92 rdf:type schema:Periodical
    93 sg:person.010522727351.30 schema:affiliation grid-institutes:grid.412053.1
    94 schema:familyName Yu
    95 schema:givenName Haifeng
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010522727351.30
    97 rdf:type schema:Person
    98 sg:person.012012432235.16 schema:affiliation grid-institutes:grid.252245.6
    99 schema:familyName Shi
    100 schema:givenName Minjia
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012012432235.16
    102 rdf:type schema:Person
    103 sg:person.015725615413.26 schema:affiliation grid-institutes:grid.412053.1
    104 schema:familyName Wang
    105 schema:givenName Yu
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015725615413.26
    107 rdf:type schema:Person
    108 sg:pub.10.1007/s10623-009-9309-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006827122
    109 https://doi.org/10.1007/s10623-009-9309-8
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/s10623-010-9399-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002657258
    112 https://doi.org/10.1007/s10623-010-9399-3
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/s10623-011-9539-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048150384
    115 https://doi.org/10.1007/s10623-011-9539-4
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s11424-012-0076-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008814776
    118 https://doi.org/10.1007/s11424-012-0076-7
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s11424-012-1001-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038984659
    121 https://doi.org/10.1007/s11424-012-1001-9
    122 rdf:type schema:CreativeWork
    123 grid-institutes:grid.252245.6 schema:alternateName School of Mathematical Sciences, Anhui University, Hefei, China
    124 schema:name School of Mathematical Sciences, Anhui University, Hefei, China
    125 rdf:type schema:Organization
    126 grid-institutes:grid.412053.1 schema:alternateName Department of Mathematics and Physics, Hefei University, Hefei, China
    127 schema:name Department of Mathematics and Physics, Hefei University, Hefei, China
    128 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...