Note on fractional Mellin transform and applications View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-02-01

AUTHORS

Adem Kılıçman, Maryam Omran

ABSTRACT

In this article, we define the fractional Mellin transform by using Riemann–Liouville fractional integral operator and Caputo fractional derivative of order α≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ge 0$$\end{document} and study some of their properties. Further, some properties are extended to fractional way for Mellin transform.

PAGES

100

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s40064-016-1711-x

DOI

http://dx.doi.org/10.1186/s40064-016-1711-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040455607

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26877898


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Institute for Mathematical Research, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia", 
          "id": "http://www.grid.ac/institutes/grid.11142.37", 
          "name": [
            "Department of Mathematics, Institute for Mathematical Research, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K\u0131l\u0131\u00e7man", 
        "givenName": "Adem", 
        "id": "sg:person.014231676063.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014231676063.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Mathematical Research (INSPEM), University Putra Malaysia, 43400, Serdang, Malaysia", 
          "id": "http://www.grid.ac/institutes/grid.11142.37", 
          "name": [
            "Institute for Mathematical Research (INSPEM), University Putra Malaysia, 43400, Serdang, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Omran", 
        "givenName": "Maryam", 
        "id": "sg:person.01144640237.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144640237.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-82456-2_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014973272", 
          "https://doi.org/10.1007/978-3-642-82456-2_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0346-0408-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031534627", 
          "https://doi.org/10.1007/978-3-0346-0408-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65975-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030405450", 
          "https://doi.org/10.1007/978-3-642-65975-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02649101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016440527", 
          "https://doi.org/10.1007/bf02649101"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02-01", 
    "datePublishedReg": "2016-02-01", 
    "description": "In this article, we define the fractional Mellin transform by using Riemann\u2013Liouville fractional integral operator and Caputo fractional derivative of order \u03b1\u22650\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha \\ge 0$$\\end{document} and study some of their properties. Further, some properties are extended to fractional way for Mellin transform.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/s40064-016-1711-x", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1047790", 
        "issn": [
          "2193-1801"
        ], 
        "name": "SpringerPlus", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "fractional way", 
      "article", 
      "derivatives", 
      "order", 
      "properties", 
      "way", 
      "applications", 
      "fractional integral operators", 
      "transform", 
      "operators", 
      "Mellin transform", 
      "Riemann\u2013Liouville fractional integral operator", 
      "integral operators", 
      "Caputo fractional derivative", 
      "fractional derivative", 
      "fractional Mellin transform"
    ], 
    "name": "Note on fractional Mellin transform and applications", 
    "pagination": "100", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040455607"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s40064-016-1711-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26877898"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s40064-016-1711-x", 
      "https://app.dimensions.ai/details/publication/pub.1040455607"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_699.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/s40064-016-1711-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s40064-016-1711-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s40064-016-1711-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s40064-016-1711-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s40064-016-1711-x'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      21 PREDICATES      44 URIs      32 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s40064-016-1711-x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N9bbf0f30f6fb433cb928994e410200eb
4 schema:citation sg:pub.10.1007/978-3-0346-0408-6
5 sg:pub.10.1007/978-3-642-65975-1
6 sg:pub.10.1007/978-3-642-82456-2_16
7 sg:pub.10.1007/bf02649101
8 schema:datePublished 2016-02-01
9 schema:datePublishedReg 2016-02-01
10 schema:description In this article, we define the fractional Mellin transform by using Riemann–Liouville fractional integral operator and Caputo fractional derivative of order α≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \ge 0$$\end{document} and study some of their properties. Further, some properties are extended to fractional way for Mellin transform.
11 schema:genre article
12 schema:isAccessibleForFree true
13 schema:isPartOf N4394ac4547f44611b623256f8dc603ee
14 Nfcc8c7355db54458b7bd2c55a73d3e6a
15 sg:journal.1047790
16 schema:keywords Caputo fractional derivative
17 Mellin transform
18 Riemann–Liouville fractional integral operator
19 applications
20 article
21 derivatives
22 fractional Mellin transform
23 fractional derivative
24 fractional integral operators
25 fractional way
26 integral operators
27 operators
28 order
29 properties
30 transform
31 way
32 schema:name Note on fractional Mellin transform and applications
33 schema:pagination 100
34 schema:productId N199e0525e8c1408bb02f803e68822f41
35 N4aa2be0a9f914184b352a2c12e956a30
36 Nede5c988cb5a4321934c6789b0d07d2a
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040455607
38 https://doi.org/10.1186/s40064-016-1711-x
39 schema:sdDatePublished 2022-12-01T06:34
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N585e6773156e49888e7fe9ce354a253f
42 schema:url https://doi.org/10.1186/s40064-016-1711-x
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N199e0525e8c1408bb02f803e68822f41 schema:name doi
47 schema:value 10.1186/s40064-016-1711-x
48 rdf:type schema:PropertyValue
49 N4394ac4547f44611b623256f8dc603ee schema:issueNumber 1
50 rdf:type schema:PublicationIssue
51 N4aa2be0a9f914184b352a2c12e956a30 schema:name pubmed_id
52 schema:value 26877898
53 rdf:type schema:PropertyValue
54 N585e6773156e49888e7fe9ce354a253f schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N7da85190bf5f4548afad84caecff6fdf rdf:first sg:person.01144640237.64
57 rdf:rest rdf:nil
58 N9bbf0f30f6fb433cb928994e410200eb rdf:first sg:person.014231676063.05
59 rdf:rest N7da85190bf5f4548afad84caecff6fdf
60 Nede5c988cb5a4321934c6789b0d07d2a schema:name dimensions_id
61 schema:value pub.1040455607
62 rdf:type schema:PropertyValue
63 Nfcc8c7355db54458b7bd2c55a73d3e6a schema:volumeNumber 5
64 rdf:type schema:PublicationVolume
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
69 schema:name Pure Mathematics
70 rdf:type schema:DefinedTerm
71 sg:journal.1047790 schema:issn 2193-1801
72 schema:name SpringerPlus
73 schema:publisher Springer Nature
74 rdf:type schema:Periodical
75 sg:person.01144640237.64 schema:affiliation grid-institutes:grid.11142.37
76 schema:familyName Omran
77 schema:givenName Maryam
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144640237.64
79 rdf:type schema:Person
80 sg:person.014231676063.05 schema:affiliation grid-institutes:grid.11142.37
81 schema:familyName Kılıçman
82 schema:givenName Adem
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014231676063.05
84 rdf:type schema:Person
85 sg:pub.10.1007/978-3-0346-0408-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031534627
86 https://doi.org/10.1007/978-3-0346-0408-6
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/978-3-642-65975-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030405450
89 https://doi.org/10.1007/978-3-642-65975-1
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/978-3-642-82456-2_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014973272
92 https://doi.org/10.1007/978-3-642-82456-2_16
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf02649101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016440527
95 https://doi.org/10.1007/bf02649101
96 rdf:type schema:CreativeWork
97 grid-institutes:grid.11142.37 schema:alternateName Department of Mathematics, Institute for Mathematical Research, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
98 Institute for Mathematical Research (INSPEM), University Putra Malaysia, 43400, Serdang, Malaysia
99 schema:name Department of Mathematics, Institute for Mathematical Research, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
100 Institute for Mathematical Research (INSPEM), University Putra Malaysia, 43400, Serdang, Malaysia
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...