The preprocessed connectomes project repository of manually corrected skull-stripped T1-weighted anatomical MRI data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Benjamin Puccio, James P. Pooley, John S. Pellman, Elise C. Taverna, R. Cameron Craddock

ABSTRACT

BACKGROUND: Skull-stripping is the procedure of removing non-brain tissue from anatomical MRI data. This procedure can be useful for calculating brain volume and for improving the quality of other image processing steps. Developing new skull-stripping algorithms and evaluating their performance requires gold standard data from a variety of different scanners and acquisition methods. We complement existing repositories with manually corrected brain masks for 125 T1-weighted anatomical scans from the Nathan Kline Institute Enhanced Rockland Sample Neurofeedback Study. FINDINGS: Skull-stripped images were obtained using a semi-automated procedure that involved skull-stripping the data using the brain extraction based on nonlocal segmentation technique (BEaST) software, and manually correcting the worst results. Corrected brain masks were added into the BEaST library and the procedure was repeated until acceptable brain masks were available for all images. In total, 85 of the skull-stripped images were hand-edited and 40 were deemed to not need editing. The results are brain masks for the 125 images along with a BEaST library for automatically skull-stripping other data. CONCLUSION: Skull-stripped anatomical images from the Neurofeedback sample are available for download from the Preprocessed Connectomes Project. The resulting brain masks can be used by researchers to improve preprocessing of the Neurofeedback data, as training and testing data for developing new skull-stripping algorithms, and for evaluating the impact on other aspects of MRI preprocessing. We have illustrated the utility of these data as a reference for comparing various automatic methods and evaluated the performance of the newly created library on independent data. More... »

PAGES

45

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13742-016-0150-5

DOI

http://dx.doi.org/10.1186/s13742-016-0150-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044327364

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27782853


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Connectome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Processing, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Skull", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nathan Kline Institute for Psychiatric Research", 
          "id": "https://www.grid.ac/institutes/grid.250263.0", 
          "name": [
            "Computational Neuroimaging Lab, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, 10962, Orangeburg, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Puccio", 
        "givenName": "Benjamin", 
        "id": "sg:person.010303576015.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010303576015.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Child Mind Institute", 
          "id": "https://www.grid.ac/institutes/grid.428122.f", 
          "name": [
            "Center for the Developing Brain, Child Mind Institute, 445 Park Ave, 10022, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pooley", 
        "givenName": "James P.", 
        "id": "sg:person.011101156415.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011101156415.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Child Mind Institute", 
          "id": "https://www.grid.ac/institutes/grid.428122.f", 
          "name": [
            "Center for the Developing Brain, Child Mind Institute, 445 Park Ave, 10022, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pellman", 
        "givenName": "John S.", 
        "id": "sg:person.011676537015.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011676537015.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nathan Kline Institute for Psychiatric Research", 
          "id": "https://www.grid.ac/institutes/grid.250263.0", 
          "name": [
            "Computational Neuroimaging Lab, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, 10962, Orangeburg, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taverna", 
        "givenName": "Elise C.", 
        "id": "sg:person.01370403357.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370403357.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Child Mind Institute", 
          "id": "https://www.grid.ac/institutes/grid.428122.f", 
          "name": [
            "Computational Neuroimaging Lab, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, 10962, Orangeburg, NY, USA", 
            "Center for the Developing Brain, Child Mind Institute, 445 Park Ave, 10022, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Craddock", 
        "givenName": "R. Cameron", 
        "id": "sg:person.0723572454.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723572454.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pone.0115551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008416404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2013.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012334311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012449961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.08.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012738449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2010.12.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018341363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2005.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021381267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2005.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021381267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2011.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023640242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910150117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028171603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2012.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028951534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.2000.0730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031254051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnins.2012.00152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032893716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/jocn.2007.19.9.1498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033000174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0077810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035400888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2007.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036036208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2011.2163944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038986942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-98141-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041188628", 
          "https://doi.org/10.1007/978-0-387-98141-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-98141-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041188628", 
          "https://doi.org/10.1007/978-0-387-98141-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.10062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041224324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2014.10.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042456347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/cbmr.1996.0014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048518447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/054262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050368728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/054262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050368728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/054262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050368728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2004.03.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053235970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2006.883453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2011.2138152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1176/appi.ajp.2010.09091379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063498926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1932409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069656769"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "BACKGROUND: Skull-stripping is the procedure of removing non-brain tissue from anatomical MRI data. This procedure can be useful for calculating brain volume and for improving the quality of other image processing steps. Developing new skull-stripping algorithms and evaluating their performance requires gold standard data from a variety of different scanners and acquisition methods. We complement existing repositories with manually corrected brain masks for 125 T1-weighted anatomical scans from the Nathan Kline Institute Enhanced Rockland Sample Neurofeedback Study.\nFINDINGS: Skull-stripped images were obtained using a semi-automated procedure that involved skull-stripping the data using the brain extraction based on nonlocal segmentation technique (BEaST) software, and manually correcting the worst results. Corrected brain masks were added into the BEaST library and the procedure was repeated until acceptable brain masks were available for all images. In total, 85 of the skull-stripped images were hand-edited and 40 were deemed to not need editing. The results are brain masks for the 125 images along with a BEaST library for automatically skull-stripping other data.\nCONCLUSION: Skull-stripped anatomical images from the Neurofeedback sample are available for download from the Preprocessed Connectomes Project. The resulting brain masks can be used by researchers to improve preprocessing of the Neurofeedback data, as training and testing data for developing new skull-stripping algorithms, and for evaluating the impact on other aspects of MRI preprocessing. We have illustrated the utility of these data as a reference for comparing various automatic methods and evaluated the performance of the newly created library on independent data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13742-016-0150-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2552937", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1047731", 
        "issn": [
          "2047-217X"
        ], 
        "name": "GigaScience", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "The preprocessed connectomes project repository of manually corrected skull-stripped T1-weighted anatomical MRI data", 
    "pagination": "45", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d325a80c4469e078c5ef11af208c9a79b83607eb271df1277dc0a1c016592f2d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27782853"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101596872"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13742-016-0150-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044327364"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13742-016-0150-5", 
      "https://app.dimensions.ai/details/publication/pub.1044327364"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70028_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13742-016-0150-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13742-016-0150-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13742-016-0150-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13742-016-0150-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13742-016-0150-5'


 

This table displays all metadata directly associated to this object as RDF triples.

230 TRIPLES      21 PREDICATES      67 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13742-016-0150-5 schema:about N04ccbdf64c1b492f9de526b4f95c55cf
2 N18a2b85af79f4d419baa9595dd2aed42
3 N2207f6fa27924e69a5b9f5b5d6bc41d1
4 N39318fa245c043e0b1b43a7274b64dc3
5 N3d0dc7318ef448f49aebe6e60c812328
6 N55369e631b96427d8dfbf1c0ac9c9b47
7 N81cb016711d04419935ec3e568f20b92
8 Nc121758c22ad4e0a960ca84f4e8755ac
9 Nc3ce83707bf54ea095cbb16f2fd7a895
10 Ndf213185616d4595b0f06322f35f707c
11 Ndfa3522a434b4e99a4b4adbed198e946
12 Nf8025a3267c546489bd0655fd6db7f4e
13 Nfc5d2fa10f00487bb85c10ce1e5ee5dd
14 anzsrc-for:08
15 anzsrc-for:0801
16 schema:author N4597c4539b284ac4a27a1990345fa3a2
17 schema:citation sg:pub.10.1007/978-0-387-98141-3
18 https://doi.org/10.1002/hbm.10062
19 https://doi.org/10.1002/mrm.10171
20 https://doi.org/10.1002/mrm.1910150117
21 https://doi.org/10.1006/cbmr.1996.0014
22 https://doi.org/10.1006/nimg.2000.0730
23 https://doi.org/10.1016/j.acra.2013.09.010
24 https://doi.org/10.1016/j.jalz.2005.06.003
25 https://doi.org/10.1016/j.neuroimage.2004.03.032
26 https://doi.org/10.1016/j.neuroimage.2007.09.031
27 https://doi.org/10.1016/j.neuroimage.2009.08.050
28 https://doi.org/10.1016/j.neuroimage.2010.12.067
29 https://doi.org/10.1016/j.neuroimage.2011.09.012
30 https://doi.org/10.1016/j.neuroimage.2012.01.021
31 https://doi.org/10.1016/j.neuron.2014.10.047
32 https://doi.org/10.1101/054262
33 https://doi.org/10.1109/tmi.2006.883453
34 https://doi.org/10.1109/tmi.2011.2138152
35 https://doi.org/10.1109/tmi.2011.2163944
36 https://doi.org/10.1162/jocn.2007.19.9.1498
37 https://doi.org/10.1176/appi.ajp.2010.09091379
38 https://doi.org/10.1371/journal.pone.0077810
39 https://doi.org/10.1371/journal.pone.0115551
40 https://doi.org/10.2307/1932409
41 https://doi.org/10.3389/fnins.2012.00152
42 schema:datePublished 2016-12
43 schema:datePublishedReg 2016-12-01
44 schema:description BACKGROUND: Skull-stripping is the procedure of removing non-brain tissue from anatomical MRI data. This procedure can be useful for calculating brain volume and for improving the quality of other image processing steps. Developing new skull-stripping algorithms and evaluating their performance requires gold standard data from a variety of different scanners and acquisition methods. We complement existing repositories with manually corrected brain masks for 125 T1-weighted anatomical scans from the Nathan Kline Institute Enhanced Rockland Sample Neurofeedback Study. FINDINGS: Skull-stripped images were obtained using a semi-automated procedure that involved skull-stripping the data using the brain extraction based on nonlocal segmentation technique (BEaST) software, and manually correcting the worst results. Corrected brain masks were added into the BEaST library and the procedure was repeated until acceptable brain masks were available for all images. In total, 85 of the skull-stripped images were hand-edited and 40 were deemed to not need editing. The results are brain masks for the 125 images along with a BEaST library for automatically skull-stripping other data. CONCLUSION: Skull-stripped anatomical images from the Neurofeedback sample are available for download from the Preprocessed Connectomes Project. The resulting brain masks can be used by researchers to improve preprocessing of the Neurofeedback data, as training and testing data for developing new skull-stripping algorithms, and for evaluating the impact on other aspects of MRI preprocessing. We have illustrated the utility of these data as a reference for comparing various automatic methods and evaluated the performance of the newly created library on independent data.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N1ed15e807aca4c48b654254422a140ad
49 N4173816ba0a14b22ac0bd6ff1361c50a
50 sg:journal.1047731
51 schema:name The preprocessed connectomes project repository of manually corrected skull-stripped T1-weighted anatomical MRI data
52 schema:pagination 45
53 schema:productId N3a5229b6577f4acabe1b37eab3943de8
54 N5a4846849532423db9d231c6167d04f5
55 N7d90baf33bf54dc98d5d37bc3d8cd25c
56 Nc4dad7025ca54c0794bde0255152140b
57 Nd24ea38d0adb49988f08b16c21e4f38e
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044327364
59 https://doi.org/10.1186/s13742-016-0150-5
60 schema:sdDatePublished 2019-04-11T12:36
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N82e82d8a6c584bbb99ebebaa3b1a6408
63 schema:url https://link.springer.com/10.1186%2Fs13742-016-0150-5
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N04ccbdf64c1b492f9de526b4f95c55cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Adult
69 rdf:type schema:DefinedTerm
70 N102fc71feb46446db82c287a4831561a rdf:first sg:person.01370403357.91
71 rdf:rest N47fcfc074c0e411787e650689ab66239
72 N18a2b85af79f4d419baa9595dd2aed42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Brain
74 rdf:type schema:DefinedTerm
75 N1ed15e807aca4c48b654254422a140ad schema:issueNumber 1
76 rdf:type schema:PublicationIssue
77 N2207f6fa27924e69a5b9f5b5d6bc41d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Humans
79 rdf:type schema:DefinedTerm
80 N39318fa245c043e0b1b43a7274b64dc3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Young Adult
82 rdf:type schema:DefinedTerm
83 N3a5229b6577f4acabe1b37eab3943de8 schema:name nlm_unique_id
84 schema:value 101596872
85 rdf:type schema:PropertyValue
86 N3d0dc7318ef448f49aebe6e60c812328 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Skull
88 rdf:type schema:DefinedTerm
89 N4173816ba0a14b22ac0bd6ff1361c50a schema:volumeNumber 5
90 rdf:type schema:PublicationVolume
91 N4597c4539b284ac4a27a1990345fa3a2 rdf:first sg:person.010303576015.27
92 rdf:rest N8b072219558f4351ac4734c363f66827
93 N47fcfc074c0e411787e650689ab66239 rdf:first sg:person.0723572454.83
94 rdf:rest rdf:nil
95 N55369e631b96427d8dfbf1c0ac9c9b47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Algorithms
97 rdf:type schema:DefinedTerm
98 N5a4846849532423db9d231c6167d04f5 schema:name doi
99 schema:value 10.1186/s13742-016-0150-5
100 rdf:type schema:PropertyValue
101 N7bf37fee837b47b29188eec5f54ebfe9 rdf:first sg:person.011676537015.11
102 rdf:rest N102fc71feb46446db82c287a4831561a
103 N7d90baf33bf54dc98d5d37bc3d8cd25c schema:name readcube_id
104 schema:value d325a80c4469e078c5ef11af208c9a79b83607eb271df1277dc0a1c016592f2d
105 rdf:type schema:PropertyValue
106 N81cb016711d04419935ec3e568f20b92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Imaging, Three-Dimensional
108 rdf:type schema:DefinedTerm
109 N82e82d8a6c584bbb99ebebaa3b1a6408 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 N8b072219558f4351ac4734c363f66827 rdf:first sg:person.011101156415.84
112 rdf:rest N7bf37fee837b47b29188eec5f54ebfe9
113 Nc121758c22ad4e0a960ca84f4e8755ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Male
115 rdf:type schema:DefinedTerm
116 Nc3ce83707bf54ea095cbb16f2fd7a895 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Female
118 rdf:type schema:DefinedTerm
119 Nc4dad7025ca54c0794bde0255152140b schema:name pubmed_id
120 schema:value 27782853
121 rdf:type schema:PropertyValue
122 Nd24ea38d0adb49988f08b16c21e4f38e schema:name dimensions_id
123 schema:value pub.1044327364
124 rdf:type schema:PropertyValue
125 Ndf213185616d4595b0f06322f35f707c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Image Processing, Computer-Assisted
127 rdf:type schema:DefinedTerm
128 Ndfa3522a434b4e99a4b4adbed198e946 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Magnetic Resonance Imaging
130 rdf:type schema:DefinedTerm
131 Nf8025a3267c546489bd0655fd6db7f4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Software
133 rdf:type schema:DefinedTerm
134 Nfc5d2fa10f00487bb85c10ce1e5ee5dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Connectome
136 rdf:type schema:DefinedTerm
137 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
138 schema:name Information and Computing Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
141 schema:name Artificial Intelligence and Image Processing
142 rdf:type schema:DefinedTerm
143 sg:grant.2552937 http://pending.schema.org/fundedItem sg:pub.10.1186/s13742-016-0150-5
144 rdf:type schema:MonetaryGrant
145 sg:journal.1047731 schema:issn 2047-217X
146 schema:name GigaScience
147 rdf:type schema:Periodical
148 sg:person.010303576015.27 schema:affiliation https://www.grid.ac/institutes/grid.250263.0
149 schema:familyName Puccio
150 schema:givenName Benjamin
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010303576015.27
152 rdf:type schema:Person
153 sg:person.011101156415.84 schema:affiliation https://www.grid.ac/institutes/grid.428122.f
154 schema:familyName Pooley
155 schema:givenName James P.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011101156415.84
157 rdf:type schema:Person
158 sg:person.011676537015.11 schema:affiliation https://www.grid.ac/institutes/grid.428122.f
159 schema:familyName Pellman
160 schema:givenName John S.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011676537015.11
162 rdf:type schema:Person
163 sg:person.01370403357.91 schema:affiliation https://www.grid.ac/institutes/grid.250263.0
164 schema:familyName Taverna
165 schema:givenName Elise C.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370403357.91
167 rdf:type schema:Person
168 sg:person.0723572454.83 schema:affiliation https://www.grid.ac/institutes/grid.428122.f
169 schema:familyName Craddock
170 schema:givenName R. Cameron
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723572454.83
172 rdf:type schema:Person
173 sg:pub.10.1007/978-0-387-98141-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041188628
174 https://doi.org/10.1007/978-0-387-98141-3
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/hbm.10062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041224324
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1002/mrm.10171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012449961
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1002/mrm.1910150117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028171603
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1006/cbmr.1996.0014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048518447
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1006/nimg.2000.0730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031254051
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.acra.2013.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012334311
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.jalz.2005.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021381267
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.neuroimage.2004.03.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053235970
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.neuroimage.2007.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036036208
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.neuroimage.2009.08.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012738449
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.neuroimage.2010.12.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018341363
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.neuroimage.2011.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023640242
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.neuroimage.2012.01.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028951534
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.neuron.2014.10.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042456347
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1101/054262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050368728
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1109/tmi.2006.883453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694930
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1109/tmi.2011.2138152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695732
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1109/tmi.2011.2163944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038986942
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1162/jocn.2007.19.9.1498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033000174
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1176/appi.ajp.2010.09091379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063498926
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1371/journal.pone.0077810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035400888
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1371/journal.pone.0115551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008416404
219 rdf:type schema:CreativeWork
220 https://doi.org/10.2307/1932409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069656769
221 rdf:type schema:CreativeWork
222 https://doi.org/10.3389/fnins.2012.00152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032893716
223 rdf:type schema:CreativeWork
224 https://www.grid.ac/institutes/grid.250263.0 schema:alternateName Nathan Kline Institute for Psychiatric Research
225 schema:name Computational Neuroimaging Lab, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, 10962, Orangeburg, NY, USA
226 rdf:type schema:Organization
227 https://www.grid.ac/institutes/grid.428122.f schema:alternateName Child Mind Institute
228 schema:name Center for the Developing Brain, Child Mind Institute, 445 Park Ave, 10022, New York, NY, USA
229 Computational Neuroimaging Lab, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, 10962, Orangeburg, NY, USA
230 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...