Galaxy-M: a Galaxy workflow for processing and analyzing direct infusion and liquid chromatography mass spectrometry-based metabolomics data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Robert L. Davidson, Ralf J. M. Weber, Haoyu Liu, Archana Sharma-Oates, Mark R. Viant

ABSTRACT

BACKGROUND: Metabolomics is increasingly recognized as an invaluable tool in the biological, medical and environmental sciences yet lags behind the methodological maturity of other omics fields. To achieve its full potential, including the integration of multiple omics modalities, the accessibility, standardization and reproducibility of computational metabolomics tools must be improved significantly. RESULTS: Here we present our end-to-end mass spectrometry metabolomics workflow in the widely used platform, Galaxy. Named Galaxy-M, our workflow has been developed for both direct infusion mass spectrometry (DIMS) and liquid chromatography mass spectrometry (LC-MS) metabolomics. The range of tools presented spans from processing of raw data, e.g. peak picking and alignment, through data cleansing, e.g. missing value imputation, to preparation for statistical analysis, e.g. normalization and scaling, and principal components analysis (PCA) with associated statistical evaluation. We demonstrate the ease of using these Galaxy workflows via the analysis of DIMS and LC-MS datasets, and provide PCA scores and associated statistics to help other users to ensure that they can accurately repeat the processing and analysis of these two datasets. Galaxy and data are all provided pre-installed in a virtual machine (VM) that can be downloaded from the GigaDB repository. Additionally, source code, executables and installation instructions are available from GitHub. CONCLUSIONS: The Galaxy platform has enabled us to produce an easily accessible and reproducible computational metabolomics workflow. More tools could be added by the community to expand its functionality. We recommend that Galaxy-M workflow files are included within the supplementary information of publications, enabling metabolomics studies to achieve greater reproducibility. More... »

PAGES

10

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13742-016-0115-8

DOI

http://dx.doi.org/10.1186/s13742-016-0115-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017689491

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26913198


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromatography, Liquid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mass Spectrometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Principal Component Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Workflow", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "GigaScience, BGI-Hong Kong Co. Ltd, Tai Po Industrial Estate, 16 Dai Fu Street, Tai Po, NT, Hong Kong", 
            "School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davidson", 
        "givenName": "Robert L.", 
        "id": "sg:person.01317545237.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317545237.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weber", 
        "givenName": "Ralf J. M.", 
        "id": "sg:person.014671172572.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014671172572.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Haoyu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharma-Oates", 
        "givenName": "Archana", 
        "id": "sg:person.011531773070.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011531773070.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Viant", 
        "givenName": "Mark R.", 
        "id": "sg:person.01140655554.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140655554.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11306-008-0152-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003660520", 
          "https://doi.org/10.1007/s11306-008-0152-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/jeb.058735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003727240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10723-013-9256-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007891806", 
          "https://doi.org/10.1007/s10723-013-9256-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-011-0366-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009770929", 
          "https://doi.org/10.1007/s11306-011-0366-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011523159", 
          "https://doi.org/10.1038/nrg3553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac051632c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014889239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac051632c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014889239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2011.335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015396743", 
          "https://doi.org/10.1038/nprot.2011.335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015659639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024064234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sdata.2014.12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026927871", 
          "https://doi.org/10.1038/sdata.2014.12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030526247", 
          "https://doi.org/10.1038/nrd728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030526247", 
          "https://doi.org/10.1038/nrd728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2010.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033079927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac062446p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033780872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac062446p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033780872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb4161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035438322", 
          "https://doi.org/10.1186/gb4161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037489229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038552263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041570109", 
          "https://doi.org/10.1186/1471-2164-15-703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2011.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043467515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.jasms.2009.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045122736", 
          "https://doi.org/10.1016/j.jasms.2009.02.001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2007.376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045374897", 
          "https://doi.org/10.1038/nprot.2007.376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2010-11-8-r86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046347776", 
          "https://doi.org/10.1186/gb-2010-11-8-r86"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13742-015-0054-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048056255", 
          "https://doi.org/10.1186/s13742-015-0054-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048690521", 
          "https://doi.org/10.1038/ng1589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048690521", 
          "https://doi.org/10.1038/ng1589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048690521", 
          "https://doi.org/10.1038/ng1589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-1-s1-p22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052219274", 
          "https://doi.org/10.1186/1752-0509-1-s1-p22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac051437y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053369488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac051437y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053369488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac2001803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055001389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac2001803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055001389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr401068k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056293718"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "BACKGROUND: Metabolomics is increasingly recognized as an invaluable tool in the biological, medical and environmental sciences yet lags behind the methodological maturity of other omics fields. To achieve its full potential, including the integration of multiple omics modalities, the accessibility, standardization and reproducibility of computational metabolomics tools must be improved significantly.\nRESULTS: Here we present our end-to-end mass spectrometry metabolomics workflow in the widely used platform, Galaxy. Named Galaxy-M, our workflow has been developed for both direct infusion mass spectrometry (DIMS) and liquid chromatography mass spectrometry (LC-MS) metabolomics. The range of tools presented spans from processing of raw data, e.g. peak picking and alignment, through data cleansing, e.g. missing value imputation, to preparation for statistical analysis, e.g. normalization and scaling, and principal components analysis (PCA) with associated statistical evaluation. We demonstrate the ease of using these Galaxy workflows via the analysis of DIMS and LC-MS datasets, and provide PCA scores and associated statistics to help other users to ensure that they can accurately repeat the processing and analysis of these two datasets. Galaxy and data are all provided pre-installed in a virtual machine (VM) that can be downloaded from the GigaDB repository. Additionally, source code, executables and installation instructions are available from GitHub.\nCONCLUSIONS: The Galaxy platform has enabled us to produce an easily accessible and reproducible computational metabolomics workflow. More tools could be added by the community to expand its functionality. We recommend that Galaxy-M workflow files are included within the supplementary information of publications, enabling metabolomics studies to achieve greater reproducibility.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13742-016-0115-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2779751", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3957849", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2785472", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1047731", 
        "issn": [
          "2047-217X"
        ], 
        "name": "GigaScience", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Galaxy-M: a Galaxy workflow for processing and analyzing direct infusion and liquid chromatography mass spectrometry-based metabolomics data", 
    "pagination": "10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5448b0960d0d30f073379fa6a715213485f8868d0ea854833fc4534dadcc8647"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26913198"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101596872"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13742-016-0115-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017689491"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13742-016-0115-8", 
      "https://app.dimensions.ai/details/publication/pub.1017689491"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87079_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13742-016-0115-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13742-016-0115-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13742-016-0115-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13742-016-0115-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13742-016-0115-8'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      21 PREDICATES      65 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13742-016-0115-8 schema:about N142711d9e149462e86445284483379e1
2 N3c79d0fc2b984c86b6a780bba371435f
3 N4cc7339a2bda42b98444dcfaab37bc32
4 N549a9090fbe0470f8a4a81366751bc82
5 N5748c949ec2148b787ac3315cbadc5c5
6 N8a57384f442f42e58cfb097619158db7
7 N9a6d29bdbc8c4fa4a7fdeb18d4301a8b
8 Na1c8d4a0efff4280b5f265790457b7fc
9 Nc71372ae43774e9799db3ff26a6f2c44
10 anzsrc-for:03
11 anzsrc-for:0301
12 schema:author N1476eb1c5020446f8d790eea3592cb27
13 schema:citation sg:pub.10.1007/s10723-013-9256-5
14 sg:pub.10.1007/s11306-008-0152-0
15 sg:pub.10.1007/s11306-011-0366-4
16 sg:pub.10.1016/j.jasms.2009.02.001
17 sg:pub.10.1038/ng1589
18 sg:pub.10.1038/nprot.2007.376
19 sg:pub.10.1038/nprot.2011.335
20 sg:pub.10.1038/nrd728
21 sg:pub.10.1038/nrg3553
22 sg:pub.10.1038/sdata.2014.12
23 sg:pub.10.1186/1471-2164-15-703
24 sg:pub.10.1186/1752-0509-1-s1-p22
25 sg:pub.10.1186/gb-2010-11-8-r86
26 sg:pub.10.1186/gb4161
27 sg:pub.10.1186/s13742-015-0054-9
28 https://doi.org/10.1016/j.chemolab.2010.04.010
29 https://doi.org/10.1016/j.chemolab.2011.03.010
30 https://doi.org/10.1021/ac051437y
31 https://doi.org/10.1021/ac051632c
32 https://doi.org/10.1021/ac062446p
33 https://doi.org/10.1021/ac2001803
34 https://doi.org/10.1021/pr401068k
35 https://doi.org/10.1093/bioinformatics/btq167
36 https://doi.org/10.1093/bioinformatics/btu813
37 https://doi.org/10.1093/nar/gks1004
38 https://doi.org/10.1093/nar/gkt328
39 https://doi.org/10.1242/jeb.058735
40 schema:datePublished 2016-12
41 schema:datePublishedReg 2016-12-01
42 schema:description BACKGROUND: Metabolomics is increasingly recognized as an invaluable tool in the biological, medical and environmental sciences yet lags behind the methodological maturity of other omics fields. To achieve its full potential, including the integration of multiple omics modalities, the accessibility, standardization and reproducibility of computational metabolomics tools must be improved significantly. RESULTS: Here we present our end-to-end mass spectrometry metabolomics workflow in the widely used platform, Galaxy. Named Galaxy-M, our workflow has been developed for both direct infusion mass spectrometry (DIMS) and liquid chromatography mass spectrometry (LC-MS) metabolomics. The range of tools presented spans from processing of raw data, e.g. peak picking and alignment, through data cleansing, e.g. missing value imputation, to preparation for statistical analysis, e.g. normalization and scaling, and principal components analysis (PCA) with associated statistical evaluation. We demonstrate the ease of using these Galaxy workflows via the analysis of DIMS and LC-MS datasets, and provide PCA scores and associated statistics to help other users to ensure that they can accurately repeat the processing and analysis of these two datasets. Galaxy and data are all provided pre-installed in a virtual machine (VM) that can be downloaded from the GigaDB repository. Additionally, source code, executables and installation instructions are available from GitHub. CONCLUSIONS: The Galaxy platform has enabled us to produce an easily accessible and reproducible computational metabolomics workflow. More tools could be added by the community to expand its functionality. We recommend that Galaxy-M workflow files are included within the supplementary information of publications, enabling metabolomics studies to achieve greater reproducibility.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf N0a65fa7ce2e74a0889c255096fce40e7
47 N48e42d60efbf4405ae32097825e8207b
48 sg:journal.1047731
49 schema:name Galaxy-M: a Galaxy workflow for processing and analyzing direct infusion and liquid chromatography mass spectrometry-based metabolomics data
50 schema:pagination 10
51 schema:productId N0b9eb230ae8f412dae38f340096ff438
52 N304aeeb900474ab7a1b2602133fbfc49
53 N40bbdbfaa812481fa60a2342564ec273
54 N5cba91b19ed74498830c92ed8c8bdc13
55 Nc5f21d50e40946e3962894f5a7917152
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017689491
57 https://doi.org/10.1186/s13742-016-0115-8
58 schema:sdDatePublished 2019-04-11T12:21
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N4988f606e780457fa68c5993f8cc2cbf
61 schema:url https://link.springer.com/10.1186%2Fs13742-016-0115-8
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N07b24b56cb604a118d36f02ed3ebc1c4 rdf:first sg:person.014671172572.86
66 rdf:rest N6b345c7b4b8c480ba7672696bf68ddff
67 N0a65fa7ce2e74a0889c255096fce40e7 schema:volumeNumber 5
68 rdf:type schema:PublicationVolume
69 N0b9eb230ae8f412dae38f340096ff438 schema:name pubmed_id
70 schema:value 26913198
71 rdf:type schema:PropertyValue
72 N142711d9e149462e86445284483379e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Computational Biology
74 rdf:type schema:DefinedTerm
75 N1476eb1c5020446f8d790eea3592cb27 rdf:first sg:person.01317545237.40
76 rdf:rest N07b24b56cb604a118d36f02ed3ebc1c4
77 N1885ab35a57e467ca19fff120c7b4adf rdf:first sg:person.01140655554.38
78 rdf:rest rdf:nil
79 N304aeeb900474ab7a1b2602133fbfc49 schema:name dimensions_id
80 schema:value pub.1017689491
81 rdf:type schema:PropertyValue
82 N3c79d0fc2b984c86b6a780bba371435f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Chromatography, Liquid
84 rdf:type schema:DefinedTerm
85 N40bbdbfaa812481fa60a2342564ec273 schema:name nlm_unique_id
86 schema:value 101596872
87 rdf:type schema:PropertyValue
88 N48e42d60efbf4405ae32097825e8207b schema:issueNumber 1
89 rdf:type schema:PublicationIssue
90 N4988f606e780457fa68c5993f8cc2cbf schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N4cc7339a2bda42b98444dcfaab37bc32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Metabolome
94 rdf:type schema:DefinedTerm
95 N549a9090fbe0470f8a4a81366751bc82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Principal Component Analysis
97 rdf:type schema:DefinedTerm
98 N5748c949ec2148b787ac3315cbadc5c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Reproducibility of Results
100 rdf:type schema:DefinedTerm
101 N5cba91b19ed74498830c92ed8c8bdc13 schema:name doi
102 schema:value 10.1186/s13742-016-0115-8
103 rdf:type schema:PropertyValue
104 N6301d281e8ab47b29d5b916b9e0283cb rdf:first sg:person.011531773070.14
105 rdf:rest N1885ab35a57e467ca19fff120c7b4adf
106 N6b345c7b4b8c480ba7672696bf68ddff rdf:first Nac83f8140bef4aa4a81d82420631fbb6
107 rdf:rest N6301d281e8ab47b29d5b916b9e0283cb
108 N8a57384f442f42e58cfb097619158db7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Workflow
110 rdf:type schema:DefinedTerm
111 N9a6d29bdbc8c4fa4a7fdeb18d4301a8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Metabolomics
113 rdf:type schema:DefinedTerm
114 Na1c8d4a0efff4280b5f265790457b7fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Mass Spectrometry
116 rdf:type schema:DefinedTerm
117 Nac83f8140bef4aa4a81d82420631fbb6 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
118 schema:familyName Liu
119 schema:givenName Haoyu
120 rdf:type schema:Person
121 Nc5f21d50e40946e3962894f5a7917152 schema:name readcube_id
122 schema:value 5448b0960d0d30f073379fa6a715213485f8868d0ea854833fc4534dadcc8647
123 rdf:type schema:PropertyValue
124 Nc71372ae43774e9799db3ff26a6f2c44 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Software
126 rdf:type schema:DefinedTerm
127 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
128 schema:name Chemical Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
131 schema:name Analytical Chemistry
132 rdf:type schema:DefinedTerm
133 sg:grant.2779751 http://pending.schema.org/fundedItem sg:pub.10.1186/s13742-016-0115-8
134 rdf:type schema:MonetaryGrant
135 sg:grant.2785472 http://pending.schema.org/fundedItem sg:pub.10.1186/s13742-016-0115-8
136 rdf:type schema:MonetaryGrant
137 sg:grant.3957849 http://pending.schema.org/fundedItem sg:pub.10.1186/s13742-016-0115-8
138 rdf:type schema:MonetaryGrant
139 sg:journal.1047731 schema:issn 2047-217X
140 schema:name GigaScience
141 rdf:type schema:Periodical
142 sg:person.01140655554.38 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
143 schema:familyName Viant
144 schema:givenName Mark R.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140655554.38
146 rdf:type schema:Person
147 sg:person.011531773070.14 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
148 schema:familyName Sharma-Oates
149 schema:givenName Archana
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011531773070.14
151 rdf:type schema:Person
152 sg:person.01317545237.40 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
153 schema:familyName Davidson
154 schema:givenName Robert L.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317545237.40
156 rdf:type schema:Person
157 sg:person.014671172572.86 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
158 schema:familyName Weber
159 schema:givenName Ralf J. M.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014671172572.86
161 rdf:type schema:Person
162 sg:pub.10.1007/s10723-013-9256-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007891806
163 https://doi.org/10.1007/s10723-013-9256-5
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s11306-008-0152-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003660520
166 https://doi.org/10.1007/s11306-008-0152-0
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s11306-011-0366-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009770929
169 https://doi.org/10.1007/s11306-011-0366-4
170 rdf:type schema:CreativeWork
171 sg:pub.10.1016/j.jasms.2009.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045122736
172 https://doi.org/10.1016/j.jasms.2009.02.001
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/ng1589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048690521
175 https://doi.org/10.1038/ng1589
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nprot.2007.376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045374897
178 https://doi.org/10.1038/nprot.2007.376
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nprot.2011.335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015396743
181 https://doi.org/10.1038/nprot.2011.335
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nrd728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030526247
184 https://doi.org/10.1038/nrd728
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nrg3553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011523159
187 https://doi.org/10.1038/nrg3553
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/sdata.2014.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026927871
190 https://doi.org/10.1038/sdata.2014.12
191 rdf:type schema:CreativeWork
192 sg:pub.10.1186/1471-2164-15-703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041570109
193 https://doi.org/10.1186/1471-2164-15-703
194 rdf:type schema:CreativeWork
195 sg:pub.10.1186/1752-0509-1-s1-p22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052219274
196 https://doi.org/10.1186/1752-0509-1-s1-p22
197 rdf:type schema:CreativeWork
198 sg:pub.10.1186/gb-2010-11-8-r86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046347776
199 https://doi.org/10.1186/gb-2010-11-8-r86
200 rdf:type schema:CreativeWork
201 sg:pub.10.1186/gb4161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035438322
202 https://doi.org/10.1186/gb4161
203 rdf:type schema:CreativeWork
204 sg:pub.10.1186/s13742-015-0054-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048056255
205 https://doi.org/10.1186/s13742-015-0054-9
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.chemolab.2010.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033079927
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.chemolab.2011.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043467515
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1021/ac051437y schema:sameAs https://app.dimensions.ai/details/publication/pub.1053369488
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1021/ac051632c schema:sameAs https://app.dimensions.ai/details/publication/pub.1014889239
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1021/ac062446p schema:sameAs https://app.dimensions.ai/details/publication/pub.1033780872
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1021/ac2001803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055001389
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1021/pr401068k schema:sameAs https://app.dimensions.ai/details/publication/pub.1056293718
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/bioinformatics/btq167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015659639
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/bioinformatics/btu813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038552263
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/nar/gks1004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037489229
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/nar/gkt328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024064234
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1242/jeb.058735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003727240
230 rdf:type schema:CreativeWork
231 https://www.grid.ac/institutes/grid.6572.6 schema:alternateName University of Birmingham
232 schema:name GigaScience, BGI-Hong Kong Co. Ltd, Tai Po Industrial Estate, 16 Dai Fu Street, Tai Po, NT, Hong Kong
233 School of Biosciences, University of Birmingham, B15 2TT, Birmingham, UK
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...