The spatial variability of actual evapotranspiration across the Amazon River Basin based on remote sensing products validated with flux towers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Victor Hugo da Motta Paca, Gonzalo E. Espinoza-Dávalos, Tim M. Hessels, Daniel Medeiros Moreira, Georges F. Comair, Wim G. M. Bastiaanssen

ABSTRACT

Actual evapotranspiration (ET) is a major component of the water balance. While several international flux measurement programs have been executed in the tropical rain forest of the Amazon, those measurements represent the evaporative process at a few selected sites only. The aim of this study is to obtain the spatial distribution of ET, using remote sensing techniques, across the entire Amazon River Basin. Results from six global ET products based on remote sensing techniques (GLEAM, SEBS, ALEXI, CMRSET, MOD16, and SSEBop) were merged to obtain an ensemble prediction of the ET rates for the complex and in-accessible environment of the Amazon at a spatial resolution of 250 m. The study shows that the basin-wide average ET is 1316 mm/year with a standard deviation of 192 mm/year. This new ET-Amazon product was validated against seven different historic flux tower measurements. The energy balance closure of the in situ measurements varied between 86 and 116%. Only months with more than 70% completeness of in situ measurements were considered for validation. Different procedures for closure correction were included in the analyses. The correlation between measured and remotely sensed ET is good (R2 > 0.97 for consecutive periods of 2 to 12 months), and the bias correction is negligible for the energy balance residual method, which seemed most favorable. Monthly ET values have more uncertainty. The monthly RMSE values vary between 7.4 and 27.8 mm/month (the average RMSE is 22.2 mm/month), and the coefficient of determination (R2) varies between 0.48 and 0.87 (the average R2 is 0.53). The ET from the water balance is 1380 mm/year, being − 64 mm/year difference and 4.6% less than ET derived from the water balance. The evaporation from the Amazon basin inside Brazil is 5063 km3/year, followed by Peru with 1165 km3/year. ET-Amazon shows more spatial details and accuracy than alternative global ET products such as LandFlux-EVAL, Model Tree Ensemble (MTE), and WACMOS-ET. This justifies the development of new regional ET products. More... »

PAGES

6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/s13717-019-0158-8

DOI

http://dx.doi.org/10.1186/s13717-019-0158-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112146589


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Geological Survey of Brazil", 
          "id": "https://www.grid.ac/institutes/grid.452625.2", 
          "name": [
            "IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, Netherlands", 
            "TU Delft, Delft, Netherlands", 
            "CPRM - Geological Survey of Brazil, Rio de Janeiro, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paca", 
        "givenName": "Victor Hugo da Motta", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Espinoza-D\u00e1valos", 
        "givenName": "Gonzalo E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, Netherlands", 
            "TU Delft, Delft, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hessels", 
        "givenName": "Tim M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Geological Survey of Brazil", 
          "id": "https://www.grid.ac/institutes/grid.452625.2", 
          "name": [
            "CPRM - Geological Survey of Brazil, Rio de Janeiro, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moreira", 
        "givenName": "Daniel Medeiros", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "World Bank", 
          "id": "https://www.grid.ac/institutes/grid.431778.e", 
          "name": [
            "World Bank, Washington, D.C., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comair", 
        "givenName": "Georges F.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, Netherlands", 
            "TU Delft, Delft, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bastiaanssen", 
        "givenName": "Wim G. M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3390/rs6087406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000002979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2009.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002120990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1605516113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002298503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2011.02.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002972096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2012.02.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003088836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr015i005p01250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005100447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature.2016.21083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005964583", 
          "https://doi.org/10.1038/nature.2016.21083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1923(00)00123-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005989341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/91wr02985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007091776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-004-0041-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008372469", 
          "https://doi.org/10.1007/s00704-004-0041-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006jd007506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009115756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431160802226026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009245581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs9010086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012975496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-19-507-2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013237106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-9-263-2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017280601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-9-263-2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017280601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8809(02)00034-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017738840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8809(02)00034-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017738840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2016.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017744778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/jawr.12057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018202792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-15-453-2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018503207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.1791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019960683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14358/pers.69.6.631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020594070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-6-85-2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023834021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-6-85-2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023834021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016gl067738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025345025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016gl067738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025345025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1923(02)00109-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026442857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1923(02)00109-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026442857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030416519", 
          "https://doi.org/10.1038/nature10717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00271-007-0064-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032965595", 
          "https://doi.org/10.1007/s00271-007-0064-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00271-007-0064-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032965595", 
          "https://doi.org/10.1007/s00271-007-0064-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.4420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032995892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/grl.50377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033001896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00271-010-0256-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034730272", 
          "https://doi.org/10.1007/s00271-010-0256-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-17-3707-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035231021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.1988.0024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040175498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041023521", 
          "https://doi.org/10.1038/nature09396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041023521", 
          "https://doi.org/10.1038/nature09396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/96wr01396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042181214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/540182a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042516224", 
          "https://doi.org/10.1038/540182a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2013.04.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044076674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hessd-7-4177-2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048124252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7202/044688ar", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049447668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7202/044688ar", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049447668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/bgd-6-5271-2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049734994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-17-2473-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050581117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-3774(02)00128-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050879988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-3774(02)00128-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050879988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1146961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051267718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs8040279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053234068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/1998jd200126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053335032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-20-1459-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072671378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-20-803-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072671568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/1809-43921980102357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084353708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/1809-43921979092305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086032131"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Actual evapotranspiration (ET) is a major component of the water balance. While several international flux measurement programs have been executed in the tropical rain forest of the Amazon, those measurements represent the evaporative process at a few selected sites only. The aim of this study is to obtain the spatial distribution of ET, using remote sensing techniques, across the entire Amazon River Basin. Results from six global ET products based on remote sensing techniques (GLEAM, SEBS, ALEXI, CMRSET, MOD16, and SSEBop) were merged to obtain an ensemble prediction of the ET rates for the complex and in-accessible environment of the Amazon at a spatial resolution of 250 m. The study shows that the basin-wide average ET is 1316 mm/year with a standard deviation of 192 mm/year. This new ET-Amazon product was validated against seven different historic flux tower measurements. The energy balance closure of the in situ measurements varied between 86 and 116%. Only months with more than 70% completeness of in situ measurements were considered for validation. Different procedures for closure correction were included in the analyses. The correlation between measured and remotely sensed ET is good (R2 > 0.97 for consecutive periods of 2 to 12 months), and the bias correction is negligible for the energy balance residual method, which seemed most favorable. Monthly ET values have more uncertainty. The monthly RMSE values vary between 7.4 and 27.8 mm/month (the average RMSE is 22.2 mm/month), and the coefficient of determination (R2) varies between 0.48 and 0.87 (the average R2 is 0.53). The ET from the water balance is 1380 mm/year, being \u2212 64 mm/year difference and 4.6% less than ET derived from the water balance. The evaporation from the Amazon basin inside Brazil is 5063 km3/year, followed by Peru with 1165 km3/year. ET-Amazon shows more spatial details and accuracy than alternative global ET products such as LandFlux-EVAL, Model Tree Ensemble (MTE), and WACMOS-ET. This justifies the development of new regional ET products.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/s13717-019-0158-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049739", 
        "issn": [
          "2192-1709"
        ], 
        "name": "Ecological Processes", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "The spatial variability of actual evapotranspiration across the Amazon River Basin based on remote sensing products validated with flux towers", 
    "pagination": "6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8e5ca53c86b684492d6b4dc691591f1c55294816b760778c87fac1098b500ff3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/s13717-019-0158-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112146589"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/s13717-019-0158-8", 
      "https://app.dimensions.ai/details/publication/pub.1112146589"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000337_0000000337/records_37588_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fs13717-019-0158-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13717-019-0158-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13717-019-0158-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13717-019-0158-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13717-019-0158-8'


 

This table displays all metadata directly associated to this object as RDF triples.

248 TRIPLES      21 PREDICATES      74 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/s13717-019-0158-8 schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author Nf779ed96345d4902b17d8c4143c336b3
4 schema:citation sg:pub.10.1007/s00271-007-0064-1
5 sg:pub.10.1007/s00271-010-0256-y
6 sg:pub.10.1007/s00704-004-0041-z
7 sg:pub.10.1038/540182a
8 sg:pub.10.1038/nature.2016.21083
9 sg:pub.10.1038/nature09396
10 sg:pub.10.1038/nature10717
11 https://doi.org/10.1002/2016gl067738
12 https://doi.org/10.1002/grl.50377
13 https://doi.org/10.1002/joc.1791
14 https://doi.org/10.1002/joc.4420
15 https://doi.org/10.1016/j.agrformet.2013.04.031
16 https://doi.org/10.1016/j.jhydrol.2009.02.013
17 https://doi.org/10.1016/j.jhydrol.2012.02.043
18 https://doi.org/10.1016/j.jhydrol.2016.04.006
19 https://doi.org/10.1016/j.rse.2011.02.019
20 https://doi.org/10.1016/s0167-8809(02)00034-8
21 https://doi.org/10.1016/s0168-1923(00)00123-4
22 https://doi.org/10.1016/s0168-1923(02)00109-0
23 https://doi.org/10.1016/s0378-3774(02)00128-2
24 https://doi.org/10.1029/1998jd200126
25 https://doi.org/10.1029/2006jd007506
26 https://doi.org/10.1029/91wr02985
27 https://doi.org/10.1029/96wr01396
28 https://doi.org/10.1029/wr015i005p01250
29 https://doi.org/10.1073/pnas.1605516113
30 https://doi.org/10.1080/01431160802226026
31 https://doi.org/10.1098/rspb.1988.0024
32 https://doi.org/10.1111/jawr.12057
33 https://doi.org/10.1126/science.1146961
34 https://doi.org/10.14358/pers.69.6.631
35 https://doi.org/10.1590/1809-43921979092305
36 https://doi.org/10.1590/1809-43921980102357
37 https://doi.org/10.3390/rs6087406
38 https://doi.org/10.3390/rs8040279
39 https://doi.org/10.3390/rs9010086
40 https://doi.org/10.5194/bgd-6-5271-2009
41 https://doi.org/10.5194/hess-15-453-2011
42 https://doi.org/10.5194/hess-17-2473-2013
43 https://doi.org/10.5194/hess-17-3707-2013
44 https://doi.org/10.5194/hess-19-507-2015
45 https://doi.org/10.5194/hess-20-1459-2016
46 https://doi.org/10.5194/hess-20-803-2016
47 https://doi.org/10.5194/hess-6-85-2002
48 https://doi.org/10.5194/hess-9-263-2005
49 https://doi.org/10.5194/hessd-7-4177-2010
50 https://doi.org/10.7202/044688ar
51 schema:datePublished 2019-12
52 schema:datePublishedReg 2019-12-01
53 schema:description Actual evapotranspiration (ET) is a major component of the water balance. While several international flux measurement programs have been executed in the tropical rain forest of the Amazon, those measurements represent the evaporative process at a few selected sites only. The aim of this study is to obtain the spatial distribution of ET, using remote sensing techniques, across the entire Amazon River Basin. Results from six global ET products based on remote sensing techniques (GLEAM, SEBS, ALEXI, CMRSET, MOD16, and SSEBop) were merged to obtain an ensemble prediction of the ET rates for the complex and in-accessible environment of the Amazon at a spatial resolution of 250 m. The study shows that the basin-wide average ET is 1316 mm/year with a standard deviation of 192 mm/year. This new ET-Amazon product was validated against seven different historic flux tower measurements. The energy balance closure of the in situ measurements varied between 86 and 116%. Only months with more than 70% completeness of in situ measurements were considered for validation. Different procedures for closure correction were included in the analyses. The correlation between measured and remotely sensed ET is good (R2 > 0.97 for consecutive periods of 2 to 12 months), and the bias correction is negligible for the energy balance residual method, which seemed most favorable. Monthly ET values have more uncertainty. The monthly RMSE values vary between 7.4 and 27.8 mm/month (the average RMSE is 22.2 mm/month), and the coefficient of determination (R2) varies between 0.48 and 0.87 (the average R2 is 0.53). The ET from the water balance is 1380 mm/year, being − 64 mm/year difference and 4.6% less than ET derived from the water balance. The evaporation from the Amazon basin inside Brazil is 5063 km3/year, followed by Peru with 1165 km3/year. ET-Amazon shows more spatial details and accuracy than alternative global ET products such as LandFlux-EVAL, Model Tree Ensemble (MTE), and WACMOS-ET. This justifies the development of new regional ET products.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree false
57 schema:isPartOf N09fb5fb4b9ca473f8fbd3b0641e7e8fc
58 N9023545f01c8408b8ff03592ab5b0bd1
59 sg:journal.1049739
60 schema:name The spatial variability of actual evapotranspiration across the Amazon River Basin based on remote sensing products validated with flux towers
61 schema:pagination 6
62 schema:productId N490a806314f7487a9ef41ec920da6167
63 N9f1f0d87b37040cd822404b00b5ef144
64 Na76e1f9ebe8d4847a6936e83314f4f2e
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112146589
66 https://doi.org/10.1186/s13717-019-0158-8
67 schema:sdDatePublished 2019-04-11T09:07
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N8731237569f2487c835f5e050828e766
70 schema:url https://link.springer.com/10.1186%2Fs13717-019-0158-8
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N08d958dc1da54a92a2e6a093ace43f64 schema:affiliation Nd62d7d8842f14c77b0c26e155cfe46c1
75 schema:familyName Espinoza-Dávalos
76 schema:givenName Gonzalo E.
77 rdf:type schema:Person
78 N09fb5fb4b9ca473f8fbd3b0641e7e8fc schema:issueNumber 1
79 rdf:type schema:PublicationIssue
80 N2a757bff54334497bf3631371239ff27 rdf:first N08d958dc1da54a92a2e6a093ace43f64
81 rdf:rest N8c156880c6624b528a3c32d699e47c61
82 N38553f26ab2648fb8715e3c55ec29a5a rdf:first N7bdbaaccef8d4702b591a0f6ed35f8b1
83 rdf:rest Nd2fcecdfd5b84ca7b099a858491988db
84 N490a806314f7487a9ef41ec920da6167 schema:name readcube_id
85 schema:value 8e5ca53c86b684492d6b4dc691591f1c55294816b760778c87fac1098b500ff3
86 rdf:type schema:PropertyValue
87 N57a88e31d250449395cb4aeb19e8aee8 schema:affiliation https://www.grid.ac/institutes/grid.452625.2
88 schema:familyName Paca
89 schema:givenName Victor Hugo da Motta
90 rdf:type schema:Person
91 N5a2351830f494f88886405a88346ee7b schema:affiliation https://www.grid.ac/institutes/grid.5292.c
92 schema:familyName Hessels
93 schema:givenName Tim M.
94 rdf:type schema:Person
95 N5e3252befaac4763918baf2519c8d8d0 rdf:first N6d035f2a004146a6b984e384b624106d
96 rdf:rest rdf:nil
97 N6b996af894e745c7a76704ed66383b53 schema:affiliation https://www.grid.ac/institutes/grid.431778.e
98 schema:familyName Comair
99 schema:givenName Georges F.
100 rdf:type schema:Person
101 N6d035f2a004146a6b984e384b624106d schema:affiliation https://www.grid.ac/institutes/grid.5292.c
102 schema:familyName Bastiaanssen
103 schema:givenName Wim G. M.
104 rdf:type schema:Person
105 N7bdbaaccef8d4702b591a0f6ed35f8b1 schema:affiliation https://www.grid.ac/institutes/grid.452625.2
106 schema:familyName Moreira
107 schema:givenName Daniel Medeiros
108 rdf:type schema:Person
109 N8731237569f2487c835f5e050828e766 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 N8c156880c6624b528a3c32d699e47c61 rdf:first N5a2351830f494f88886405a88346ee7b
112 rdf:rest N38553f26ab2648fb8715e3c55ec29a5a
113 N9023545f01c8408b8ff03592ab5b0bd1 schema:volumeNumber 8
114 rdf:type schema:PublicationVolume
115 N9f1f0d87b37040cd822404b00b5ef144 schema:name doi
116 schema:value 10.1186/s13717-019-0158-8
117 rdf:type schema:PropertyValue
118 Na76e1f9ebe8d4847a6936e83314f4f2e schema:name dimensions_id
119 schema:value pub.1112146589
120 rdf:type schema:PropertyValue
121 Nd2fcecdfd5b84ca7b099a858491988db rdf:first N6b996af894e745c7a76704ed66383b53
122 rdf:rest N5e3252befaac4763918baf2519c8d8d0
123 Nd62d7d8842f14c77b0c26e155cfe46c1 schema:name IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, Netherlands
124 rdf:type schema:Organization
125 Nf779ed96345d4902b17d8c4143c336b3 rdf:first N57a88e31d250449395cb4aeb19e8aee8
126 rdf:rest N2a757bff54334497bf3631371239ff27
127 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
128 schema:name Engineering
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
131 schema:name Geomatic Engineering
132 rdf:type schema:DefinedTerm
133 sg:journal.1049739 schema:issn 2192-1709
134 schema:name Ecological Processes
135 rdf:type schema:Periodical
136 sg:pub.10.1007/s00271-007-0064-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032965595
137 https://doi.org/10.1007/s00271-007-0064-1
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s00271-010-0256-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1034730272
140 https://doi.org/10.1007/s00271-010-0256-y
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s00704-004-0041-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1008372469
143 https://doi.org/10.1007/s00704-004-0041-z
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/540182a schema:sameAs https://app.dimensions.ai/details/publication/pub.1042516224
146 https://doi.org/10.1038/540182a
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nature.2016.21083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005964583
149 https://doi.org/10.1038/nature.2016.21083
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nature09396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041023521
152 https://doi.org/10.1038/nature09396
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nature10717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030416519
155 https://doi.org/10.1038/nature10717
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/2016gl067738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025345025
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/grl.50377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033001896
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/joc.1791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019960683
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/joc.4420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032995892
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.agrformet.2013.04.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044076674
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.jhydrol.2009.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002120990
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.jhydrol.2012.02.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003088836
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.jhydrol.2016.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017744778
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.rse.2011.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002972096
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0167-8809(02)00034-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017738840
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s0168-1923(00)00123-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005989341
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0168-1923(02)00109-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026442857
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s0378-3774(02)00128-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050879988
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1029/1998jd200126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053335032
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1029/2006jd007506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009115756
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1029/91wr02985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007091776
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1029/96wr01396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042181214
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1029/wr015i005p01250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005100447
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1073/pnas.1605516113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002298503
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1080/01431160802226026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009245581
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1098/rspb.1988.0024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040175498
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1111/jawr.12057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018202792
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1126/science.1146961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051267718
202 rdf:type schema:CreativeWork
203 https://doi.org/10.14358/pers.69.6.631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020594070
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1590/1809-43921979092305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086032131
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1590/1809-43921980102357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084353708
208 rdf:type schema:CreativeWork
209 https://doi.org/10.3390/rs6087406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000002979
210 rdf:type schema:CreativeWork
211 https://doi.org/10.3390/rs8040279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053234068
212 rdf:type schema:CreativeWork
213 https://doi.org/10.3390/rs9010086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012975496
214 rdf:type schema:CreativeWork
215 https://doi.org/10.5194/bgd-6-5271-2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049734994
216 rdf:type schema:CreativeWork
217 https://doi.org/10.5194/hess-15-453-2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018503207
218 rdf:type schema:CreativeWork
219 https://doi.org/10.5194/hess-17-2473-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050581117
220 rdf:type schema:CreativeWork
221 https://doi.org/10.5194/hess-17-3707-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035231021
222 rdf:type schema:CreativeWork
223 https://doi.org/10.5194/hess-19-507-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013237106
224 rdf:type schema:CreativeWork
225 https://doi.org/10.5194/hess-20-1459-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072671378
226 rdf:type schema:CreativeWork
227 https://doi.org/10.5194/hess-20-803-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072671568
228 rdf:type schema:CreativeWork
229 https://doi.org/10.5194/hess-6-85-2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023834021
230 rdf:type schema:CreativeWork
231 https://doi.org/10.5194/hess-9-263-2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017280601
232 rdf:type schema:CreativeWork
233 https://doi.org/10.5194/hessd-7-4177-2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048124252
234 rdf:type schema:CreativeWork
235 https://doi.org/10.7202/044688ar schema:sameAs https://app.dimensions.ai/details/publication/pub.1049447668
236 rdf:type schema:CreativeWork
237 https://www.grid.ac/institutes/grid.431778.e schema:alternateName World Bank
238 schema:name World Bank, Washington, D.C., USA
239 rdf:type schema:Organization
240 https://www.grid.ac/institutes/grid.452625.2 schema:alternateName Geological Survey of Brazil
241 schema:name CPRM - Geological Survey of Brazil, Rio de Janeiro, Brazil
242 IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, Netherlands
243 TU Delft, Delft, Netherlands
244 rdf:type schema:Organization
245 https://www.grid.ac/institutes/grid.5292.c schema:alternateName Delft University of Technology
246 schema:name IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, Netherlands
247 TU Delft, Delft, Netherlands
248 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...