Ontology type: schema:ScholarlyArticle Open Access: True
2017-03-02
AUTHORSM. Bala Krishna Prasad, Alok Kumar, A.L. Ramanathan, Dilip Kumar Datta
ABSTRACTIntroductionMangrove forests are highly productive ecosystems distributed along the tropical coast line. Nutrient biogeochemistry of mangroves are primarly driven by both allochthonous and autochthonous sources. Characterization of organic matter in coastal ecosystems enables to understand the biogeochemical transformation of organic matter and its influence on ecosystem productivity in response to various changing environmental conditions. Therefore, the elemental and stable carbon and nitrogen levels were employed to understand the organic matter (OM) dynamics in the Sundarban mangrove ecosystem (India-Bangladesh).ResultsDifferences in stable isotope values indicate that variable sources influence the OM dynamics in Sundarban sediments. The progressive enrichment in δ 13C levels along the land-coastal continuum indicates that the terrestrial and marine inputs are dominant at the landward and seaward ends, respectively. The CuO oxidation-derived lignin phenol monomers describe significant levels of total lignin are preserved in Sundarban mangrove sediments during diagenesis. The phenol monomer ratios are lower than the plant litter explaining that aromatic ring cleavage is the dominant mechanism for the lignin degradation. Furthermore, the Ad/Al ratios were higher than the plant litter explaining the oxidation of propyl side chain of vascular OM influencing the carbon cycling in Sundarban sediments. Largely, the Ad/Al ratios describe the vascular OM degradation is through the oxidation of propyl side chain.ConclusionsThe regional variability in land-use regulates the spatial variability in C, N, OC/TN ratio, δ 13C and δ 15N between the Indian and the Bangladesh Sundarban mangroves and indicates that in the upstream terrestrial organic matter and/or mangrove plant litter contribute significant amount of organic matter, whereas the marine POC influences the organic matter dynamics in downstream. The three end-member mixing model applying terrestrial plant litter, seston, and marine POC as end-members explains the relative contribution of OM from various sources, and marine inputs were dominant in Sundarban sediments. More... »
PAGES8
http://scigraph.springernature.com/pub.10.1186/s13717-017-0076-6
DOIhttp://dx.doi.org/10.1186/s13717-017-0076-6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1083941630
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Environmental Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Environmental Science and Management",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "22616 Shining Harness Street, 20871, Clarksburg, MD, USA",
"id": "http://www.grid.ac/institutes/None",
"name": [
"22616 Shining Harness Street, 20871, Clarksburg, MD, USA"
],
"type": "Organization"
},
"familyName": "Prasad",
"givenName": "M. Bala Krishna",
"id": "sg:person.013067703323.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013067703323.36"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Environmental Sciences, Jawaharlal Nehru University, 110067, New Delhi, India",
"id": "http://www.grid.ac/institutes/grid.10706.30",
"name": [
"School of Environmental Sciences, Jawaharlal Nehru University, 110067, New Delhi, India"
],
"type": "Organization"
},
"familyName": "Kumar",
"givenName": "Alok",
"id": "sg:person.016465774545.40",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016465774545.40"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Environmental Sciences, Jawaharlal Nehru University, 110067, New Delhi, India",
"id": "http://www.grid.ac/institutes/grid.10706.30",
"name": [
"School of Environmental Sciences, Jawaharlal Nehru University, 110067, New Delhi, India"
],
"type": "Organization"
},
"familyName": "Ramanathan",
"givenName": "A.L.",
"id": "sg:person.016335206007.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016335206007.08"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Environmental Science Discipline, Khulna University, 9208, Khulna, Bangladesh",
"id": "http://www.grid.ac/institutes/grid.412118.f",
"name": [
"Environmental Science Discipline, Khulna University, 9208, Khulna, Bangladesh"
],
"type": "Organization"
},
"familyName": "Datta",
"givenName": "Dilip Kumar",
"id": "sg:person.0754474061.67",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754474061.67"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1672/0277-5212(2003)023[0729:safoom]2.0.co;2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025808682",
"https://doi.org/10.1672/0277-5212(2003)023[0729:safoom]2.0.co;2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1026339517242",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007178648",
"https://doi.org/10.1023/a:1026339517242"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10653-011-9388-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052849484",
"https://doi.org/10.1007/s10653-011-9388-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1025411506526",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023749720",
"https://doi.org/10.1023/a:1025411506526"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00027-006-0868-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034405211",
"https://doi.org/10.1007/s00027-006-0868-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-90-481-3068-9_12",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039776126",
"https://doi.org/10.1007/978-90-481-3068-9_12"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11273-008-9119-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020354904",
"https://doi.org/10.1007/s11273-008-9119-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10661-006-9457-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045790557",
"https://doi.org/10.1007/s10661-006-9457-5"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-03-02",
"datePublishedReg": "2017-03-02",
"description": "IntroductionMangrove forests are highly productive ecosystems distributed along the tropical coast line. Nutrient biogeochemistry of mangroves are primarly driven by both allochthonous and autochthonous sources. Characterization of organic matter in coastal ecosystems enables to understand the biogeochemical transformation of organic matter and its influence on ecosystem productivity in response to various changing environmental conditions. Therefore, the elemental and stable carbon and nitrogen levels were employed to understand the organic matter (OM) dynamics in the Sundarban mangrove ecosystem (India-Bangladesh).ResultsDifferences in stable isotope values indicate that variable sources influence the OM dynamics in Sundarban sediments. The progressive enrichment in \u03b4 13C levels along the land-coastal continuum indicates that the terrestrial and marine inputs are dominant at the landward and seaward ends, respectively. The CuO oxidation-derived lignin phenol monomers describe significant levels of total lignin are preserved in Sundarban mangrove sediments during diagenesis. The phenol monomer ratios are lower than the plant litter explaining that aromatic ring cleavage is the dominant mechanism for the lignin degradation. Furthermore, the Ad/Al ratios were higher than the plant litter explaining the oxidation of propyl side chain of vascular OM influencing the carbon cycling in Sundarban sediments. Largely, the Ad/Al ratios describe the vascular OM degradation is through the oxidation of propyl side chain.ConclusionsThe regional variability in land-use regulates the spatial variability in C, N, OC/TN ratio, \u03b4 13C and \u03b4 15N between the Indian and the Bangladesh Sundarban mangroves and indicates that in the upstream terrestrial organic matter and/or mangrove plant litter contribute significant amount of organic matter, whereas the marine POC influences the organic matter dynamics in downstream. The three end-member mixing model applying terrestrial plant litter, seston, and marine POC as end-members explains the relative contribution of OM from various sources, and marine inputs were dominant in Sundarban sediments.",
"genre": "article",
"id": "sg:pub.10.1186/s13717-017-0076-6",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1049739",
"issn": [
"2192-1709"
],
"name": "Ecological Processes",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "6"
}
],
"keywords": [
"organic matter dynamics",
"plant litter",
"organic matter",
"matter dynamics",
"marine inputs",
"OC/TN ratios",
"Sundarban mangrove ecosystem",
"terrestrial plant litter",
"mangrove plant litter",
"stable isotope values",
"terrestrial organic matter",
"sedimentary organic matter",
"productive ecosystems",
"ecosystem productivity",
"mangrove ecosystem",
"coastal ecosystems",
"nutrient biogeochemistry",
"Al ratio",
"OM dynamics",
"Sundarban mangroves",
"carbon cycling",
"mangrove estuary",
"autochthonous sources",
"biogeochemical transformations",
"stable carbon",
"OM degradation",
"mangrove sediments",
"isotope values",
"seaward end",
"spatial variability",
"TN ratio",
"coast line",
"progressive enrichment",
"regional variability",
"ecosystems",
"sediments",
"litter",
"environmental conditions",
"mangroves",
"propyl side chain",
"variable sources",
"nitrogen levels",
"relative contribution",
"POC",
"matter",
"side chains",
"OM",
"variability",
"dominant mechanism",
"forest",
"biogeochemistry",
"dynamics",
"diagenesis",
"significant amount",
"aromatic ring cleavage",
"lignin degradation",
"source",
"estuary",
"seston",
"degradation",
"cycling",
"total lignin",
"carbon",
"input",
"productivity",
"delta",
"enrichment",
"phenol monomers",
"significant levels",
"downstream",
"ratio",
"cleavage",
"ResultsDifferences",
"ring cleavage",
"levels",
"chain",
"mechanism",
"contribution",
"oxidation",
"lines",
"characterization",
"continuum",
"lignin",
"influence",
"Indians",
"amount",
"conditions",
"model",
"response",
"monomers",
"values",
"end",
"transformation",
"monomer ratio"
],
"name": "Sources and dynamics of sedimentary organic matter in Sundarban mangrove estuary from Indo-Gangetic delta",
"pagination": "8",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1083941630"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/s13717-017-0076-6"
]
}
],
"sameAs": [
"https://doi.org/10.1186/s13717-017-0076-6",
"https://app.dimensions.ai/details/publication/pub.1083941630"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:06",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_744.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/s13717-017-0076-6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/s13717-017-0076-6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/s13717-017-0076-6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/s13717-017-0076-6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/s13717-017-0076-6'
This table displays all metadata directly associated to this object as RDF triples.
209 TRIPLES
21 PREDICATES
126 URIs
110 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1186/s13717-017-0076-6 | schema:about | anzsrc-for:05 |
2 | ″ | ″ | anzsrc-for:0502 |
3 | ″ | schema:author | N09c4e327c8bc4a2898cac44cef6ed4fe |
4 | ″ | schema:citation | sg:pub.10.1007/978-90-481-3068-9_12 |
5 | ″ | ″ | sg:pub.10.1007/s00027-006-0868-8 |
6 | ″ | ″ | sg:pub.10.1007/s10653-011-9388-0 |
7 | ″ | ″ | sg:pub.10.1007/s10661-006-9457-5 |
8 | ″ | ″ | sg:pub.10.1007/s11273-008-9119-1 |
9 | ″ | ″ | sg:pub.10.1023/a:1025411506526 |
10 | ″ | ″ | sg:pub.10.1023/a:1026339517242 |
11 | ″ | ″ | sg:pub.10.1672/0277-5212(2003)023[0729:safoom]2.0.co;2 |
12 | ″ | schema:datePublished | 2017-03-02 |
13 | ″ | schema:datePublishedReg | 2017-03-02 |
14 | ″ | schema:description | IntroductionMangrove forests are highly productive ecosystems distributed along the tropical coast line. Nutrient biogeochemistry of mangroves are primarly driven by both allochthonous and autochthonous sources. Characterization of organic matter in coastal ecosystems enables to understand the biogeochemical transformation of organic matter and its influence on ecosystem productivity in response to various changing environmental conditions. Therefore, the elemental and stable carbon and nitrogen levels were employed to understand the organic matter (OM) dynamics in the Sundarban mangrove ecosystem (India-Bangladesh).ResultsDifferences in stable isotope values indicate that variable sources influence the OM dynamics in Sundarban sediments. The progressive enrichment in δ 13C levels along the land-coastal continuum indicates that the terrestrial and marine inputs are dominant at the landward and seaward ends, respectively. The CuO oxidation-derived lignin phenol monomers describe significant levels of total lignin are preserved in Sundarban mangrove sediments during diagenesis. The phenol monomer ratios are lower than the plant litter explaining that aromatic ring cleavage is the dominant mechanism for the lignin degradation. Furthermore, the Ad/Al ratios were higher than the plant litter explaining the oxidation of propyl side chain of vascular OM influencing the carbon cycling in Sundarban sediments. Largely, the Ad/Al ratios describe the vascular OM degradation is through the oxidation of propyl side chain.ConclusionsThe regional variability in land-use regulates the spatial variability in C, N, OC/TN ratio, δ 13C and δ 15N between the Indian and the Bangladesh Sundarban mangroves and indicates that in the upstream terrestrial organic matter and/or mangrove plant litter contribute significant amount of organic matter, whereas the marine POC influences the organic matter dynamics in downstream. The three end-member mixing model applying terrestrial plant litter, seston, and marine POC as end-members explains the relative contribution of OM from various sources, and marine inputs were dominant in Sundarban sediments. |
15 | ″ | schema:genre | article |
16 | ″ | schema:isAccessibleForFree | true |
17 | ″ | schema:isPartOf | N5a95e6adc04040a7b1dd49c6189cd3f0 |
18 | ″ | ″ | Nb89848b637544e4faadd55f9b8975fe1 |
19 | ″ | ″ | sg:journal.1049739 |
20 | ″ | schema:keywords | Al ratio |
21 | ″ | ″ | Indians |
22 | ″ | ″ | OC/TN ratios |
23 | ″ | ″ | OM |
24 | ″ | ″ | OM degradation |
25 | ″ | ″ | OM dynamics |
26 | ″ | ″ | POC |
27 | ″ | ″ | ResultsDifferences |
28 | ″ | ″ | Sundarban mangrove ecosystem |
29 | ″ | ″ | Sundarban mangroves |
30 | ″ | ″ | TN ratio |
31 | ″ | ″ | amount |
32 | ″ | ″ | aromatic ring cleavage |
33 | ″ | ″ | autochthonous sources |
34 | ″ | ″ | biogeochemical transformations |
35 | ″ | ″ | biogeochemistry |
36 | ″ | ″ | carbon |
37 | ″ | ″ | carbon cycling |
38 | ″ | ″ | chain |
39 | ″ | ″ | characterization |
40 | ″ | ″ | cleavage |
41 | ″ | ″ | coast line |
42 | ″ | ″ | coastal ecosystems |
43 | ″ | ″ | conditions |
44 | ″ | ″ | continuum |
45 | ″ | ″ | contribution |
46 | ″ | ″ | cycling |
47 | ″ | ″ | degradation |
48 | ″ | ″ | delta |
49 | ″ | ″ | diagenesis |
50 | ″ | ″ | dominant mechanism |
51 | ″ | ″ | downstream |
52 | ″ | ″ | dynamics |
53 | ″ | ″ | ecosystem productivity |
54 | ″ | ″ | ecosystems |
55 | ″ | ″ | end |
56 | ″ | ″ | enrichment |
57 | ″ | ″ | environmental conditions |
58 | ″ | ″ | estuary |
59 | ″ | ″ | forest |
60 | ″ | ″ | influence |
61 | ″ | ″ | input |
62 | ″ | ″ | isotope values |
63 | ″ | ″ | levels |
64 | ″ | ″ | lignin |
65 | ″ | ″ | lignin degradation |
66 | ″ | ″ | lines |
67 | ″ | ″ | litter |
68 | ″ | ″ | mangrove ecosystem |
69 | ″ | ″ | mangrove estuary |
70 | ″ | ″ | mangrove plant litter |
71 | ″ | ″ | mangrove sediments |
72 | ″ | ″ | mangroves |
73 | ″ | ″ | marine inputs |
74 | ″ | ″ | matter |
75 | ″ | ″ | matter dynamics |
76 | ″ | ″ | mechanism |
77 | ″ | ″ | model |
78 | ″ | ″ | monomer ratio |
79 | ″ | ″ | monomers |
80 | ″ | ″ | nitrogen levels |
81 | ″ | ″ | nutrient biogeochemistry |
82 | ″ | ″ | organic matter |
83 | ″ | ″ | organic matter dynamics |
84 | ″ | ″ | oxidation |
85 | ″ | ″ | phenol monomers |
86 | ″ | ″ | plant litter |
87 | ″ | ″ | productive ecosystems |
88 | ″ | ″ | productivity |
89 | ″ | ″ | progressive enrichment |
90 | ″ | ″ | propyl side chain |
91 | ″ | ″ | ratio |
92 | ″ | ″ | regional variability |
93 | ″ | ″ | relative contribution |
94 | ″ | ″ | response |
95 | ″ | ″ | ring cleavage |
96 | ″ | ″ | seaward end |
97 | ″ | ″ | sedimentary organic matter |
98 | ″ | ″ | sediments |
99 | ″ | ″ | seston |
100 | ″ | ″ | side chains |
101 | ″ | ″ | significant amount |
102 | ″ | ″ | significant levels |
103 | ″ | ″ | source |
104 | ″ | ″ | spatial variability |
105 | ″ | ″ | stable carbon |
106 | ″ | ″ | stable isotope values |
107 | ″ | ″ | terrestrial organic matter |
108 | ″ | ″ | terrestrial plant litter |
109 | ″ | ″ | total lignin |
110 | ″ | ″ | transformation |
111 | ″ | ″ | values |
112 | ″ | ″ | variability |
113 | ″ | ″ | variable sources |
114 | ″ | schema:name | Sources and dynamics of sedimentary organic matter in Sundarban mangrove estuary from Indo-Gangetic delta |
115 | ″ | schema:pagination | 8 |
116 | ″ | schema:productId | N20fa7b00ce1d469288e5d7ec71665d90 |
117 | ″ | ″ | N3caa2f155999443a948b9f71cbd3b651 |
118 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1083941630 |
119 | ″ | ″ | https://doi.org/10.1186/s13717-017-0076-6 |
120 | ″ | schema:sdDatePublished | 2022-08-04T17:06 |
121 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
122 | ″ | schema:sdPublisher | N19d5e66914a5451c8220b341f64dcc78 |
123 | ″ | schema:url | https://doi.org/10.1186/s13717-017-0076-6 |
124 | ″ | sgo:license | sg:explorer/license/ |
125 | ″ | sgo:sdDataset | articles |
126 | ″ | rdf:type | schema:ScholarlyArticle |
127 | N09c4e327c8bc4a2898cac44cef6ed4fe | rdf:first | sg:person.013067703323.36 |
128 | ″ | rdf:rest | N41c5514be7094f1c90e2617c96639c84 |
129 | N19d5e66914a5451c8220b341f64dcc78 | schema:name | Springer Nature - SN SciGraph project |
130 | ″ | rdf:type | schema:Organization |
131 | N20fa7b00ce1d469288e5d7ec71665d90 | schema:name | doi |
132 | ″ | schema:value | 10.1186/s13717-017-0076-6 |
133 | ″ | rdf:type | schema:PropertyValue |
134 | N3caa2f155999443a948b9f71cbd3b651 | schema:name | dimensions_id |
135 | ″ | schema:value | pub.1083941630 |
136 | ″ | rdf:type | schema:PropertyValue |
137 | N41c5514be7094f1c90e2617c96639c84 | rdf:first | sg:person.016465774545.40 |
138 | ″ | rdf:rest | Nfb588f8162184602afe0c8cd74020d78 |
139 | N5a95e6adc04040a7b1dd49c6189cd3f0 | schema:volumeNumber | 6 |
140 | ″ | rdf:type | schema:PublicationVolume |
141 | Nb89848b637544e4faadd55f9b8975fe1 | schema:issueNumber | 1 |
142 | ″ | rdf:type | schema:PublicationIssue |
143 | Nc342c5491dd9434c81d0d1712fed3628 | rdf:first | sg:person.0754474061.67 |
144 | ″ | rdf:rest | rdf:nil |
145 | Nfb588f8162184602afe0c8cd74020d78 | rdf:first | sg:person.016335206007.08 |
146 | ″ | rdf:rest | Nc342c5491dd9434c81d0d1712fed3628 |
147 | anzsrc-for:05 | schema:inDefinedTermSet | anzsrc-for: |
148 | ″ | schema:name | Environmental Sciences |
149 | ″ | rdf:type | schema:DefinedTerm |
150 | anzsrc-for:0502 | schema:inDefinedTermSet | anzsrc-for: |
151 | ″ | schema:name | Environmental Science and Management |
152 | ″ | rdf:type | schema:DefinedTerm |
153 | sg:journal.1049739 | schema:issn | 2192-1709 |
154 | ″ | schema:name | Ecological Processes |
155 | ″ | schema:publisher | Springer Nature |
156 | ″ | rdf:type | schema:Periodical |
157 | sg:person.013067703323.36 | schema:affiliation | grid-institutes:None |
158 | ″ | schema:familyName | Prasad |
159 | ″ | schema:givenName | M. Bala Krishna |
160 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013067703323.36 |
161 | ″ | rdf:type | schema:Person |
162 | sg:person.016335206007.08 | schema:affiliation | grid-institutes:grid.10706.30 |
163 | ″ | schema:familyName | Ramanathan |
164 | ″ | schema:givenName | A.L. |
165 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016335206007.08 |
166 | ″ | rdf:type | schema:Person |
167 | sg:person.016465774545.40 | schema:affiliation | grid-institutes:grid.10706.30 |
168 | ″ | schema:familyName | Kumar |
169 | ″ | schema:givenName | Alok |
170 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016465774545.40 |
171 | ″ | rdf:type | schema:Person |
172 | sg:person.0754474061.67 | schema:affiliation | grid-institutes:grid.412118.f |
173 | ″ | schema:familyName | Datta |
174 | ″ | schema:givenName | Dilip Kumar |
175 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754474061.67 |
176 | ″ | rdf:type | schema:Person |
177 | sg:pub.10.1007/978-90-481-3068-9_12 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1039776126 |
178 | ″ | ″ | https://doi.org/10.1007/978-90-481-3068-9_12 |
179 | ″ | rdf:type | schema:CreativeWork |
180 | sg:pub.10.1007/s00027-006-0868-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1034405211 |
181 | ″ | ″ | https://doi.org/10.1007/s00027-006-0868-8 |
182 | ″ | rdf:type | schema:CreativeWork |
183 | sg:pub.10.1007/s10653-011-9388-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1052849484 |
184 | ″ | ″ | https://doi.org/10.1007/s10653-011-9388-0 |
185 | ″ | rdf:type | schema:CreativeWork |
186 | sg:pub.10.1007/s10661-006-9457-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1045790557 |
187 | ″ | ″ | https://doi.org/10.1007/s10661-006-9457-5 |
188 | ″ | rdf:type | schema:CreativeWork |
189 | sg:pub.10.1007/s11273-008-9119-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1020354904 |
190 | ″ | ″ | https://doi.org/10.1007/s11273-008-9119-1 |
191 | ″ | rdf:type | schema:CreativeWork |
192 | sg:pub.10.1023/a:1025411506526 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1023749720 |
193 | ″ | ″ | https://doi.org/10.1023/a:1025411506526 |
194 | ″ | rdf:type | schema:CreativeWork |
195 | sg:pub.10.1023/a:1026339517242 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1007178648 |
196 | ″ | ″ | https://doi.org/10.1023/a:1026339517242 |
197 | ″ | rdf:type | schema:CreativeWork |
198 | sg:pub.10.1672/0277-5212(2003)023[0729:safoom]2.0.co;2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1025808682 |
199 | ″ | ″ | https://doi.org/10.1672/0277-5212(2003)023[0729:safoom]2.0.co;2 |
200 | ″ | rdf:type | schema:CreativeWork |
201 | grid-institutes:None | schema:alternateName | 22616 Shining Harness Street, 20871, Clarksburg, MD, USA |
202 | ″ | schema:name | 22616 Shining Harness Street, 20871, Clarksburg, MD, USA |
203 | ″ | rdf:type | schema:Organization |
204 | grid-institutes:grid.10706.30 | schema:alternateName | School of Environmental Sciences, Jawaharlal Nehru University, 110067, New Delhi, India |
205 | ″ | schema:name | School of Environmental Sciences, Jawaharlal Nehru University, 110067, New Delhi, India |
206 | ″ | rdf:type | schema:Organization |
207 | grid-institutes:grid.412118.f | schema:alternateName | Environmental Science Discipline, Khulna University, 9208, Khulna, Bangladesh |
208 | ″ | schema:name | Environmental Science Discipline, Khulna University, 9208, Khulna, Bangladesh |
209 | ″ | rdf:type | schema:Organization |